1
|
Reuss S, Brauksiepe B, Disque-Kaiser U, Olivier T. Serine/threonine-kinase 33 (Stk33) – Component of the neuroendocrine network? Brain Res 2017; 1655:152-160. [DOI: 10.1016/j.brainres.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/09/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
|
2
|
Ashpole NM, Chawla AR, Martin MP, Brustovetsky T, Brustovetsky N, Hudmon A. Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. J Biol Chem 2013; 288:14599-14611. [PMID: 23543737 DOI: 10.1074/jbc.m113.466235] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The extent of calcium/calmodulin-dependent protein kinase II (CaMKII) inactivation in the brain after ischemia correlates with the extent of damage. We have previously shown that a loss of CaMKII activity in neurons is detrimental to neuronal viability by inducing excitotoxic glutamate release. In the current study we extend these findings to show that the ability of astrocytes to buffer extracellular glutamate is reduced when CaMKII is inhibited. Furthermore, CaMKII inhibition in astrocytes is associated with the rapid onset of intracellular calcium oscillations. Surprisingly, this rapid calcium influx is blocked by the N-type calcium channel antagonist, ω-conotoxin. Although the function of N-type calcium channels within astrocytes is controversial, these voltage-gated calcium channels have been linked to calcium-dependent vesicular gliotransmitter release. When extracellular glutamate and ATP levels are measured after CaMKII inhibition within our enriched astrocyte cultures, no alterations in glutamate levels are observed, whereas ATP levels in the extracellular environment significantly increase. Extracellular ATP accumulation associated with CaMKII inhibition contributes both to calcium oscillations within astrocytes and ultimately cortical neuron toxicity. Thus, a loss of CaMKII signaling within astrocytes dysregulates glutamate uptake and supports ATP release, two processes that would compromise neuronal survival after ischemic/excitotoxic insults.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Aarti R Chawla
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthew P Martin
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Nickolay Brustovetsky
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Andy Hudmon
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
3
|
Davare MA, Saneyoshi T, Soderling TR. Calmodulin-kinases regulate basal and estrogen stimulated medulloblastoma migration via Rac1. J Neurooncol 2010; 104:65-82. [PMID: 21107644 DOI: 10.1007/s11060-010-0472-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/12/2010] [Indexed: 01/05/2023]
Abstract
Medulloblastoma is a highly prevalent pediatric central nervous system malignancy originating in the cerebellum, with a strong propensity for metastatic migration to the leptomeninges, which greatly increases mortality. While numerous investigations are focused on the molecular mechanisms of medulloblastoma histogenesis, the signaling pathways regulating migration are still poorly understood. Medulloblastoma likely arises from aberrant proliferative signaling in cerebellar granule precursor cells during development, and estrogen is a morphogen that promotes medulloblastoma cell migration. It has been previously shown that the calcium/calmodulin activated kinase kinase (CaMKK) pathway promotes cerebellar granule precursor migration and differentiation during normal cerebellar development via CaMKIV. Here we investigate the regulatory role of the CaMKK pathway in migration of the human medulloblastoma DAOY and cerebellar granule cells. Using pharmacological inhibitors and dominant negative approaches, we demonstrate that the CaMKK/CaMKI cascade regulates basal medulloblastoma cell migration via Rac1, in part by activation of the RacGEF, βPIX. Additionally, pharmacological inhibition of CaMKK blocks both the estrogen induced Rac1 activation and medulloblastoma migration. The CaMKK signaling module described here is one of the first reported calcium regulated pathways that modulates medulloblastoma migration. Since tumor dissemination requires cell migration to ectopic sites, this CaMKK pathway may be a putative therapeutic target to limit medulloblastoma metastasis.
Collapse
Affiliation(s)
- Monika A Davare
- Vollum Institute and Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
4
|
Saino-Saito S, Nourani RM, Iwasa H, Kondo H, Owada Y. Discrete localization of various fatty-acid-binding proteins in various cell populations of mouse retina. Cell Tissue Res 2009; 338:191-201. [PMID: 19763623 DOI: 10.1007/s00441-009-0862-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Various fatty acids (FAs) are involved as an energy source in many different functions in the organism. They are also essential ingredients of membranous lipids and act as intracellular signaling molecules. Intracellular fatty-acid-binding proteins (FABPs) comprise a family of soluble lipid-binding proteins with low molecular masses and solubilize long-chain FAs to allow intracellular translocation in the aqueous cytosol. To clarify the functions of FABPs in the retina, which is remarkably rich in polyunsaturated FAs, we have investigated the localization of B (brain type)-, H (heart type)-, E (epidermal type)-, and A (adipocyte type)-FABPs in adult mouse retinae by immunohistochemistry. In order to determine the possible involvement of FABPs in retinal degenerative diseases, we have also examined changes in FABP expression in light-induced photoreceptor cell degeneration (photic injury). The discrete localization of B-, H-, E-, and A-FABP species in various cell populations of the retina has been clarified: B-FABP is mainly localized in the cone photoreceptor cells, H-FABP in some populations of amacrine/bipolar/horizontal interneurons, and E-FABP in ganglion cells, with A-FABP-like immunoreactivity being located in resident microglia of normal retinae. E-FABP has further been localized in invasive macrophages in damaged retinae following photic injury, allowing discrete identification of the resident microglia and invasive macrophages by A- and E-FABP immunoreactivity, respectively.
Collapse
Affiliation(s)
- Sachiko Saino-Saito
- Division of Histology, Department of Cell Biology, Tohoku University Graduate School of Medical Sciences, 980-8575, Sendai, Japan
| | | | | | | | | |
Collapse
|
5
|
Colomer J, Means AR. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 2008; 45:169-214. [PMID: 18193638 DOI: 10.1007/978-1-4020-6191-2_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous hormones, growth factors and physiological processes cause a rise in cytosolic Ca2+, which is translated into meaningful cellular responses by interacting with a large number of Ca2(+)-binding proteins. The Ca2(+)-binding protein that is most pervasive in mediating these responses is calmodulin (CaM), which acts as a primary receptor for Ca2+ in all eukaryotic cells. In turn, Ca2+/CaM functions as an allosteric activator of a host of enzymatic proteins including a considerable number of protein kinases. The topic of this review is to discuss the physiological roles of a sub-set of these protein kinases which can function in cells as a Ca2+/CaM-dependent kinase signaling cascade. The cascade was originally believed to consist of a CaM kinase kinase that phosphorylates and activates one of two CaM kinases, CaMKI or CaMKIV. The unusual aspect of this cascade is that both the kinase kinase and the kinase require the binding of Ca2+/CaM for activation. More recently, one of the CaM kinase kinases has been found to activate another important enzyme, the AMP-dependent protein kinase so the concept of the CaM kinase cascade must be expanded. A CaM kinase cascade is important for many normal physiological processes that when misregulated can lead to a variety of disease states. These processes include: cell proliferation and apoptosis that may conspire in the genesis of cancer; neuronal growth and function related to brain development, synaptic plasticity as well as memory formation and maintenance; proper function of the immune system including the inflammatory response, activation of T lymphocytes and hematopoietic stem cell maintenance; and the central control of energy balance that, when altered, can lead to obesity and diabetes. Although the study of the CaM-dependent kinase cascades is still in its infancy continued analysis of the pathways regulated by these Ca2(+)-initiated signaling cascades holds considerable promise for the future of disease-related research.
Collapse
Affiliation(s)
- J Colomer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center USA
| | | |
Collapse
|
6
|
Kamata A, Sakagami H, Tokumitsu H, Sanda M, Owada Y, Fukunaga K, Kondo H. Distinct developmental expression of two isoforms of Ca2+/calmodulin-dependent protein kinase kinases and their involvement in hippocampal dendritic formation. Neurosci Lett 2007; 423:143-8. [PMID: 17669591 DOI: 10.1016/j.neulet.2007.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 06/24/2007] [Accepted: 07/02/2007] [Indexed: 11/28/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) are upstream protein kinases that phosphorylate and activate CaMKI and CaMKIV, both of which are involved in a variety of neuronal functions. Here, we first demonstrated that the two isoforms of CaMKK were differentially expressed during neural development by in situ hybridization. We also demonstrated that both dominant negative and pharmacological interference with CaMKK inhibitor, STO-609 resulted in a significant decrease in the number of primary dendrites of cultured hippocampal neurons. Our present findings provide the detailed anatomical information on the developmental expression of CaMKKs and the functional involvement of CaMKK in the formation of primary dendrites.
Collapse
Affiliation(s)
- Akifumi Kamata
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 2006; 51:823-34. [PMID: 16982426 DOI: 10.1016/j.neuron.2006.08.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 01/03/2006] [Accepted: 08/22/2006] [Indexed: 11/23/2022]
Abstract
The number and diversity of plasticity mechanisms in the brain raises a central question: does a neural circuit store all memories by stereotyped application of the available plasticity mechanisms, or can subsets of these mechanisms be selectively engaged for specific memories? The uniform architecture of the cerebellum has inspired the idea that plasticity mechanisms like cerebellar long-term depression (LTD) contribute universally to memory storage. To test this idea, we investigated a set of closely related, cerebellum-dependent motor memories. In mutant mice lacking Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), the maintenance of cerebellar LTD is abolished. Although memory for an increase in the gain of the vestibulo-ocular reflex (VOR) induced with high-frequency stimuli was impaired in these mice, memories for decreases in VOR gain and increases in gain induced with low-frequency stimuli were intact. Thus, a particular plasticity mechanism need not support all cerebellum-dependent memories, but can be engaged selectively according to the parameters of training.
Collapse
Affiliation(s)
- Edward S Boyden
- Department of Neurobiology, Stanford University, California 94305, USA
| | | | | | | | | | | |
Collapse
|
8
|
Sakagami H, Kamata A, Nishimura H, Kasahara J, Owada Y, Takeuchi Y, Watanabe M, Fukunaga K, Kondo H. Prominent expression and activity-dependent nuclear translocation of Ca2+/calmodulin-dependent protein kinase Idelta in hippocampal neurons. Eur J Neurosci 2006; 22:2697-707. [PMID: 16324104 DOI: 10.1111/j.1460-9568.2005.04463.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) including CaMKI, II and IV, are thought to regulate a variety of neuronal functions. Unlike CaMKII, which is regulated by autophosphorylation, CaMKI as well as CaMKIV are activated by CaMKK. In this study, we examined the cellular and subcellular localization of CaMKIdelta, a recently identified fourth isoform of CaMKI, in the mature brain. In situ hybridization analysis demonstrated wide expression of CaMKIdelta mRNA in the adult mouse brain with prominent expression in the hippocampal pyramidal cells. FLAG-tagged CaMKIdelta was localized at the cytoplasm and neurites without nuclear immunoreactivity in approximately 80% of the transfected primary hippocampal neurons. The stimulation with either KCl depolarization or glutamate triggered the nuclear localization of FLAG-tagged CaMKIdelta by two-fold with a peak at 1 min. In contrast, the catalytically inactive mutants of CaMKIdelta remained cytoplasmic without nuclear translocation during KCl depolarization, indicating the requirement of its activation for the nuclear translocation. Furthermore, we showed that immunoprecipitated CaMKIdelta could phosphorylate cAMP response element binding protein (CREB)alphain vitro and that the over-expression of CaMKIdelta enhanced GAL4-CREB-luciferase activity in PC12 cells stimulated by KCl depolarization. Our present study provides the first evidence for the possible involvement of CaMKIdelta in nuclear functions through its nuclear translocation in response to stimuli that trigger intracellular Ca2+ influx.
Collapse
Affiliation(s)
- Hiroyuki Sakagami
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chow FA, Anderson KA, Noeldner PK, Means AR. The autonomous activity of calcium/calmodulin-dependent protein kinase IV is required for its role in transcription. J Biol Chem 2005; 280:20530-8. [PMID: 15769749 DOI: 10.1074/jbc.m500067200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent kinase IV (CaMKIV) is a multifunctional serine/threonine kinase that is positively regulated by two main events. The first is the binding of calcium/calmodulin (Ca(2+)/CaM), which relieves intramolecular autoinhibition of the enzyme and leads to basal kinase activity. The second is activation by the upstream kinase, Ca(2+)/calmodulin-dependent kinase kinase. Phosphorylation of Ca(2+)/CaM-bound CaMKIV on its activation loop threonine (residue Thr(200) in human CaMKIV) by Ca(2+)/calmodulin-dependent kinase kinase leads to increased CaMKIV kinase activity. It has also been repeatedly noted that activation of CaMKIV is accompanied by the generation of Ca(2+)/CaM-independent or autonomous activity, although the significance of this event has been unclear. Here we demonstrate the importance of autonomous activity to CaMKIV biological function. We show that phosphorylation of CaMKIV on Thr(200) leads to the generation of a fully Ca(2+)/CaM-independent enzyme. By analyzing the behavior of wild-type and mutant CaMKIV proteins in biochemical experiments and cellular transcriptional assays, we demonstrate that CaMKIV autonomous activity is necessary and sufficient for CaMKIV-mediated transcription. The ability of wild-type CaMKIV to drive cAMP response element-binding protein-mediated transcription is strictly dependent upon an initiating Ca(2+) stimulus, which leads to kinase activation and development of autonomous activity in cells. Mutant CaMKIV proteins that are incapable of developing autonomous activity within a cellular context fail to drive transcription, whereas certain CaMKIV mutants that possess constitutive autonomous activity drive transcription in the absence of a Ca(2+) stimulus and independent of Ca(2+)/CaM binding or Thr(200) phosphorylation.
Collapse
Affiliation(s)
- Felice A Chow
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
10
|
Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H, Nozaki N, Banker G, Soderling TR. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 2004; 24:3786-94. [PMID: 15084659 PMCID: PMC6729350 DOI: 10.1523/jneurosci.3294-03.2004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium and calmodulin (CaM) are important signaling molecules that regulate axonal or dendritic extension and branching. The Ca2+-dependent stimulation of neurite elongation has generally been assumed to be mediated by CaM-kinase II (CaMKII), although other members of the CaMK family are highly expressed in developing neurons. We have examined this assumption using a combination of dominant-negative CaMKs (dnCaMKs) and other specific CaMK inhibitors. Here we report that inhibition of cytosolic CaMKI, but not CaMKII or nuclear CaMKIV, dramatically decreases axonal outgrowth and branching in cultured neonatal hippocampal and postnatal cerebellar granule neurons. CaMKI is found throughout the cell cytosol, including the growth cone. Growth cones of neurons expressing dnCaMI or dnCaMKK, the upstream activator of CaMKI, exhibit collapsed morphology with a prominent reduction in lamellipodia. Live-cell imaging confirms that these morphological changes are associated with a dramatic decrease in growth cone motility. Treatment of neurons with 1,8-naphthoylene benzimidazole-3-carboxylic acid (STO-609), an inhibitor of CaMKK, causes a similar change in morphology and reduction in growth cone motility, and this inhibition can be rescued by transfection with an STO-609-insensitive mutant of CaMKK or by transfection with constitutively active CaMKI. These results identify CaMKI as a positive transducer of growth cone motility and axon outgrowth and provide a new physiological role for the CaMKK-CaMKI pathway.
Collapse
Affiliation(s)
- Gary A Wayman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu YY, Brent GA. A complex deoxyribonucleic acid response element in the rat Ca(2+)/calmodulin-dependent protein kinase IV gene 5'-flanking region mediates thyroid hormone induction and chicken ovalbumin upstream promoter transcription factor 1 repression. Mol Endocrinol 2002; 16:2439-51. [PMID: 12403833 DOI: 10.1210/me.2001-0324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is regulated by T(3) in a time- and concentration-dependent manner in the developing rat brain and plays an important role in neuronal-specific gene regulation. T(3) treatment, but not retinoic acid (RA), stimulated endogenous CaMKIV mRNA 5-fold in mouse embryonic stem (ES) cells differentiated into neurons. We localized a region -750 to -700 in the CaMKIV gene 5'-flanking region that conferred T(3) responsiveness and bound thyroid hormone receptor (TR), retinoic acid receptor (RAR), and chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1). T(3) and RA treatment stimulated the CaMKIV hormone response element. Cotransfection of a COUP-TF1 expression vector repressed the T(3) response and augmented the RA response. Mutational analysis identified three half-sites arranged in a direct repeat (AB) and overlapping inverted repeat (BC), required for functional induction and receptor binding. TR and RAR bound predominantly to the BC portion of the element and COUP-TF1 to the AB region, with a close correlation of binding and functional studies. COUP-TF1 binding did not influence TR/retinoid X receptor binding but modestly augmented RAR/retinoid X receptor binding. A single element confers T(3) and COUP-TF1 regulation of CaMKIV expression.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | |
Collapse
|
12
|
Jusuf AA, Sakagami H, Terashima T. Expression of Ca2+/calmodulin-dependent protein kinase (CaMK) Ibeta2 in developing rat CNS. Neuroscience 2002; 109:407-20. [PMID: 11823055 DOI: 10.1016/s0306-4522(01)00514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We observed the onset time and distribution pattern of beta2 isoform of Ca2+/calmodulin-dependent protein kinase I (CaMKIbeta2) in the CNS of the rat during the embryonic period until birth using an immunohistochemical method. The expression of CaMKIbeta2 started at embryological day 10 when the three primary brain vesicles and neural tube are generated from the neural plate. During the embryonic period, highly immunoreactive products were ubiquitously detected in neurons in the CNS, although neurons in the caudate-putamen and globus pallidus were faintly immunostained or immunonegative. High expression of CaMKIbeta2 persisted in the olfactory bulb, lymbic system, neocortex, septal nuclei, amygdala complex, some hypothalamic nuclei, pontine nuclei, Purkinje cells and granule cells in the cerebellar cortex through the developing period. At the subcellular level, CaMKIbeta2 was strongly expressed in nuclei of neurons but faintly in their cytoplasm, suggesting that this protein has an important role in the nuclear signaling pathway. This study demonstrates that expression of CaMKIbeta2 begins at the earliest developmental stage of the rat CNS and persists through the developing period.
Collapse
Affiliation(s)
- A A Jusuf
- Department of Anatomy, Kobe University School of Medicine, Kobe, Japan
| | | | | |
Collapse
|
13
|
Vreugdenhil E, Engels B, Middelburg R, van Koningsbruggen S, Knol J, Veldhuisen B, de Kloet ER. Multiple transcripts generated by the DCAMKL gene are expressed in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 94:67-74. [PMID: 11597766 DOI: 10.1016/s0169-328x(01)00213-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have recently cloned a novel Doublecortin CaMK-like kinase (rDCAMKL) cDNA, and a related cDNA called CaMK-related peptide (CARP) from the rat hippocampus. These genes are structurally highly similar to the human DCAMKL-1 gene and doublecortin, a gene associated with X-linked lissencephaly and subcortical band heterotopia. Here we report on the genomic organization of the murine DCAMKL gene and its products. Our results show that DCAMKL and CARP are alternative splice products of the same gene. The DCAMKL gene also generates three alternatively-spliced rDCAMKL transcripts of which we have cloned the corresponding cDNAs and which potentially generate different DCAMKL proteins. In situ hybridization experiments show that the different rDCAMKL transcripts are all expressed in the adult rat hippocampus. We conclude that alternative splicing of the DCAMKL gene may generate different but similar proteins in the adult rat hippocampus thereby regulating different but overlapping aspects of DCAMKL controlled neuronal plasticity.
Collapse
Affiliation(s)
- E Vreugdenhil
- Division of Medical Pharmacology, Center for Drug Research (LACDR), Leiden University, P.O. Box 9503, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Jusuf AA, Sakagami H, Kikkawa S, Kondo H, Minami Y, Terashima T. Distribution of Ca(2+)/calmodulin-dependent protein kinase I beta 2 in the central nervous system of the rat. Brain Res 2001; 911:1-11. [PMID: 11489438 DOI: 10.1016/s0006-8993(01)02440-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, we reported the mRNA localization of Ca(2+)/calmodulin-dependent protein kinase I beta 2 isoform (CaMKIbeta2) in the mouse nervous system. In the present study, polyclonal antibody against CaMKIbeta2 was generated and used to investigate the distribution of the enzyme within the central nervous system of the rat. Interestingly some differences were observed between the enzyme localization and previous mRNA detection [J. Neurochem. 268 (1999) 26512]. The strongest expression of the enzyme was found in pontine nuclei. Immunopositive fibers could be traced through the middle cerebellar peduncle until they reached the cerebellum. Quite strong staining could also be observed in almost all of the neurons in the neocortex, hippocampus, amygdala, hypothalamus, brainstem and cerebellum, including the nuclei of the cranial nerves and Purkinje cell layer of the cerebellar cortex which was not clearly detected in the previous in situ hybridization study. In the spinal cord, CaMKIbeta2 could be detected in the gray matter with stronger expression in the dorsal horn. CaMKIbeta2 showed very strong nuclear localization but was also present in the cytoplasm of some neurons. Such localization suggests that CaMKIbeta2 may be involved in many neuronal functions in the central nervous system, including the possibility of important roles in nuclear signal transduction.
Collapse
|
15
|
Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci 2000. [PMID: 10964952 DOI: 10.1523/jneurosci.20-17-06459.2000] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ca(2+)/calmodulin-dependent protein kinase type IV/Gr (CaMKIV/Gr) is a key effector of neuronal Ca(2+) signaling; its function was analyzed by targeted gene disruption in mice. CaMKIV/Gr-deficient mice exhibited impaired neuronal cAMP-responsive element binding protein (CREB) phosphorylation and Ca(2+)/CREB-dependent gene expression. They were also deficient in two forms of synaptic plasticity: long-term potentiation (LTP) in hippocampal CA1 neurons and a late phase of long-term depression in cerebellar Purkinje neurons. However, despite impaired LTP and CREB activation, CaMKIV/Gr-deficient mice exhibited no obvious deficits in spatial learning and memory. These results support an important role for CaMKIV/Gr in Ca(2+)-regulated neuronal gene transcription and synaptic plasticity and suggest that the contribution of other signaling pathways may spare spatial memory of CaMKIV/Gr-deficient mice.
Collapse
|
16
|
Sakuma-Takagi M, Tohyama Y, Kasama-Yoshida H, Sakagami H, Kondo H, Kurihara T. Novel related cDNAs (C184L, C184M, and C184S) from developing mouse brain encoding two apparently unrelated proteins. Biochem Biophys Res Commun 1999; 263:737-42. [PMID: 10512749 DOI: 10.1006/bbrc.1999.1462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three related cDNAs (C184L, C184M, and C184S) were isolated from a developing mouse brain cDNA library. C184S is the 5'-end portion and C184M is the 3'-end portion, respectively, of C184L. C184S and C184M have open reading frames of 199 amino acids (ORF1) and 189 amino acids (ORF2), respectively; C184L has both ORF1 and ORF2 (dicistronic structure), but seems to translate only ORF1. Southern blot analysis suggests that all of the three related mRNAs are transcribed from the same single gene. The intervening region of C184L cDNA between ORF1 and ORF2 contained a promoter sequence for C184M mRNA, which is transcribed from the corresponding genomic sequence. Very recently, a cDNA encoding human homologue of ORF1 (human autoantigen p27) and a cDNA encoding a different mouse isoform of ORF2 (mammary tumor virus receptor) were reported. Our results indicate that the mRNAs encoding these apparently unrelated proteins are transcribed within an adjacent or overlapping area on the genome, suggesting the same origin of the two transcription units.
Collapse
Affiliation(s)
- M Sakuma-Takagi
- Institute of Life Science, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Engels BM, Lucassen PJ, de Kloet ER, Vreugdenhil E. Regional distribution of a novel calcium/calmodulin-dependent protein kinase mRNA in the rat brain. Brain Res 1999; 835:365-8. [PMID: 10415397 DOI: 10.1016/s0006-8993(99)01636-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The regional distribution of a novel Ca(2+)/calmodulin-dependent protein kinase (CaMK-VI) was examined in the adult rat brain by in situ hybridization. High levels of CaMK-VI mRNA were detected in the hippocampus, piriform cortex and habenula, moderate levels in different thalamic nuclei and cerebral cortex, and low levels in the frontal and parietal cortex. This discrete distribution pattern suggests an important role for CaMK-VI in limbic brain regions.
Collapse
Affiliation(s)
- B M Engels
- Division of Medical Pharmacology, LACDR, Leiden University, P.O. Box 9503, 2300 RA, Leiden, Netherlands
| | | | | | | |
Collapse
|
18
|
Ahn S, Ginty DD, Linden DJ. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 1999; 23:559-68. [PMID: 10433267 DOI: 10.1016/s0896-6273(00)80808-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recently, it has been shown that cerebellar LTD has a late phase that may be blocked by protein synthesis inhibitors. To understand the mechanisms underlying the late phase, we interfered with the activation of transcription factors that might couple synaptic activation to protein synthesis. Particle-mediated transfection of cultured Purkinje neurons with an expression vector encoding a dominant inhibitory form of CREB resulted in a nearly complete blockade of the late phase. Kinases that activate CREB were inhibited, and LTD was assessed. Inhibition of PKA or the MAPK/RSK cascades were without effect on the late phase, while constructs designed to interfere with CaMKIV function attenuated the late phase. These results indicate that the activation of CaMKIV and CREB are necessary to establish a late phase of cerebellar LTD.
Collapse
Affiliation(s)
- S Ahn
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
19
|
Kasahara J, Fukunaga K, Miyamoto E. Differential effects of a calcineurin inhibitor on glutamate-induced phosphorylation of Ca2+/calmodulin-dependent protein kinases in cultured rat hippocampal neurons. J Biol Chem 1999; 274:9061-7. [PMID: 10085155 DOI: 10.1074/jbc.274.13.9061] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaM kinases) are major multifunctional enzymes that play important roles in calcium-mediated signal transduction. To characterize their regulatory mechanisms in neurons, we compared glutamate-induced phosphorylation of CaM kinase IV and CaM kinase II in cultured rat hippocampal neurons. We observed that dephosphorylation of these kinases followed different time courses, suggesting different regulatory mechanisms for each kinase. Okadaic acid, an inhibitor of protein phosphatase (PP) 1 and PP2A, increased the phosphorylation of both kinases. In contrast, cyclosporin A, an inhibitor of calcineurin, showed different effects: the phosphorylation and activity of CaM kinase IV were significantly increased with this inhibitor, but those of CaM kinase II were not significantly increased. Cyclosporin A treatment of neurons increased phosphorylation of Thr196 of CaM kinase IV, the activated form with CaM kinase kinase, which was recognized with an anti-phospho-Thr196 antibody. Moreover, recombinant CaM kinase IV was dephosphorylated and inactivated with calcineurin as well as with PP1, PP2A, and PP2C in vitro. These results suggest that CaM kinase IV, but not CaM kinase II, is directly regulated with calcineurin.
Collapse
Affiliation(s)
- J Kasahara
- Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
20
|
Krebs J. Calmodulin-dependent protein kinase IV: regulation of function and expression. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:183-9. [PMID: 9920409 DOI: 10.1016/s0167-4889(98)00142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calmodulin-dependent protein kinase IV (CaMKIV) is a key mediator of Ca2+-induced gene expression. This serine/threonine kinase is itself activated by a calmodulin kinase kinase. In the present contribution the gene structure, regulation of activity, the role in Ca2+-dependent gene expression, and the hormonal induction and controlled expression of CaMKIV during tissue development are reviewed.
Collapse
Affiliation(s)
- J Krebs
- Institute of Biochemistry III, Swiss Federal Institute of Technology (ETH), Zürich.
| |
Collapse
|
21
|
Sakagami H, Saito S, Kitani T, Okuno S, Fujisawa H, Kondo H. Localization of the mRNAs for two isoforms of Ca2+/calmodulin-dependent protein kinase kinases in the adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 54:311-5. [PMID: 9555071 DOI: 10.1016/s0169-328x(97)00362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase (CaM kinase) I and IV are thought to be activated by CaM kinase kinases (CaMKK). We examined the distribution of mRNAs for two isoforms (alpha and beta) of CaMKKs in the brain by in situ hybridization histochemistry. In the adult rat brain, CaMKK alpha mRNAs are widely distributed throughout the brain, whereas CaMKK beta mRNAs are restricted to some neuronal populations, particularly the cerebellar granule cells.
Collapse
Affiliation(s)
- H Sakagami
- Department of Histology, Tohoku University, School of Medicine, Sendai 980, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Sakagami H, Kondo H. Molecular cloning and developmental expression of a rat homologue of death-associated protein kinase in the nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:249-56. [PMID: 9495546 DOI: 10.1016/s0169-328x(97)00268-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Death-associated protein kinase (DAP kinase) has been recently identified as a novel Ca2+/calmodulin-dependent protein kinase and as a potential mediator of gamma interferon-induced cell death of Hela cells, which has cytological characteristics of the programmed cell death. In order to elucidate its functional roles in the rat brain where the programmed cell death is an essential mechanism in the organization of postmitotic neurons during development, we cloned a rat homologue of the human DAP kinase from the rat embryonic brain cDNA library. The deduced amino acid sequence was highly conserved between the two species (93.6%). By in situ hybridization histochemistry, the expression of DAP kinase mRNA was observed in the mantle and ventricular zones of the entire neuraxis on embryonic day 15. However, the overall expression in the brain decreased markedly after birth and the expression was maintained at substantial levels in several restricted mature neuronal populations, such as olfactory bulb, hippocampal formation and cerebellar Purkinje and granule cells. Its wide expression during development and its maintained expression in the restricted mature neuronal population suggest that DAP kinase might be involved in some neuronal functions beyond simply executing the developmental neuronal cell death.
Collapse
Affiliation(s)
- H Sakagami
- Department of Histology, Tohoku University, School of Medicine, Sendai, Japan
| | | |
Collapse
|
23
|
Schwartz HL, Ross ME, Oppenheimer JH. Lack of effect of thyroid hormone on late fetal rat brain development. Endocrinology 1997; 138:3119-24. [PMID: 9231758 DOI: 10.1210/endo.138.8.5353] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies were undertaken to test whether alterations in fetal brain thyroid hormone levels during the final week of gestation can prematurely induce gene expression in brain or affect cerebellar morphogenesis. Pregnant dams were treated either by administration of 0.025% methimazole (MMI) in the drinking water from day 14 post conception (PC14) or administration of 2.5 mg T4/100 g BW on PC15. On PC21, treatment with MMI resulted in a 53% fall in fetal brain T3 levels and excess T4 resulted in a 2- to 3-fold increase to concentrations observed in adult brains. Neither excess nor reduced levels of T3 caused alterations in the expression of the myelin basic protein, Pcp-2 or calmodulin kinase IV genes. Cerebella of control brains showed early evidence of foliation and the presence of a several cell thick Purkinje cell layer and an external granule layer. No treatment induced effects were evident. Thus, at the late fetal stage in the rat, the developing brain appears to be unresponsive to thyroid hormone despite the presence of thyroid hormone receptors. We infer the presence of as yet unidentified factors that suppress precocious response to thyroid hormone or the absence of cofactors essential for such a response.
Collapse
Affiliation(s)
- H L Schwartz
- Department of Medicine, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
24
|
Krebs J, Honegger P. Calmodulin kinase IV: expression and function during rat brain development. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:217-22. [PMID: 8898857 DOI: 10.1016/0167-4889(96)00092-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The expression of calmodulin kinase IV (CaMKIV) can be induced by the thyroid hormone T3 in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system which can grow and differentiate under chemically defined conditions (Krebs et al. (1996) J. Biol. Chem. 271, 11055-11058). After the induction of CaMKIV by T3 we examined the influence of prolonged absence of T3 from the culture medium on the expression of CaMKIV. We could demonstrate that after the T3-dependent induction of CaMKIV, omission of the hormone, even for 8 days, from the medium did not downregulate the expression of CaMKIV indicating that different regulatory mechanisms became important for the expression of the enzyme. We further showed that CaMKIV could be involved in the Ca(2+) -dependent expression of the immediate early gene c-fos, probably via phosphorylation of the transcription factor CREB. Convergence of signal transduction pathways on this transcription factor by using different protein kinases may explain the importance of CREB for the regulation of different cellular processes.
Collapse
Affiliation(s)
- J Krebs
- Laboratory of Biochemistry III, Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | |
Collapse
|
25
|
Ji RR, Shi TJ, Xu ZQ, Zhang Q, Sakagami H, Tsubochi H, Kondo H, Hökfelt T. Ca2+/calmodulin-dependent protein kinase type IV in dorsal root ganglion: colocalization with peptides, axonal transport and effect of axotomy. Brain Res 1996; 721:167-73. [PMID: 8793097 DOI: 10.1016/0006-8993(95)01316-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using the indirect immunofluorescence technique, the distribution of Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) was studied in dorsal root ganglia (DRGs) and the sciatic nerve under normal circumstances and after axotomy and nerve ligation. CaM kinase IV-like immunoreactivity (-LI) was observed mainly in small DRG neurons but also in some large ones with the immunoreactivity mainly confined to the cell nuclei and with varying levels in the cytoplasm. CaM kinase IV-LI was present in around 1/4 of all CGRP-positive neurons and in the vast majority of the somatostatin-positive neurons. The enzyme levels decreased markedly after axotomy. The enzyme was also observed in axons in the sciatic nerve and accumulated both proximal and distal to a ligation. The present results suggest that CaM kinase is not of direct importance for upregulation of neuropeptides in DRG neurons after nerve injury. In addition to a nuclear function it may also play a role in the peripheral processes of DRG neurons.
Collapse
Affiliation(s)
- R R Ji
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Krebs J, Means RL, Honegger P. Induction of calmodulin kinase IV by the thyroid hormone during the development of rat brain. J Biol Chem 1996; 271:11055-8. [PMID: 8626646 DOI: 10.1074/jbc.271.19.11055] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This communication reports the specific induction of calmodulin kinase IV by the thyroid hormone 3,3',5-triiodo-L-thyronine (T3) in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system, which can grow and differentiate under chemically defined conditions. The induction of the enzyme that can be observed both on the mRNA and on the protein level is T3-specific, i.e. it cannot be induced by retinoic acid or reverse T3, and can be inhibited on both the transcriptional and the translational level by adding to the culture medium actinomycin D or cycloheximide, respectively. The earliest detection of calmodulin kinase IV in the fetal brain tissue of the rat is at days E16/E17, both on the mRNA as well as on the protein level. This is the first report in which a second messenger-dependent kinase involved in the control of cell regulatory processes is itself controlled by a primary messenger, the thyroid hormone.
Collapse
Affiliation(s)
- J Krebs
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | | |
Collapse
|
27
|
Sakagami H, Kondo H. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV in the mature and developing rat retina. Brain Res 1996; 719:154-60. [PMID: 8782875 DOI: 10.1016/0006-8993(96)00088-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The localization of Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) in the mature and developing rat retina was examined by immunohistochemistry and in situ hybridization histochemistry. In immunoblotting analysis, a single band of 63 kDa was detected in the crude homogenate of the adult rat retina, indicating the presence of the alpha polypeptide of CaM kinase IV. In the adult rat retina, most of the bipolar cells and some ganglion cells exhibited CaM kinase IV-immunoreactivity. By immunoelectron microscopy, the immunoreactive product was predominantly localized to the nucleus of immunoreactive cells. In the developing rat retina, immunoreactive bipolar cells were first detected on postnatal day 10 (P10), and they were abundant on P14. All these findings suggest that CaM kinase IV may participate in some yet unknown nuclear Ca(2+)-relating visual signal-processing of the retina.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University, School of Medicine, Sendai, Japan
| | | |
Collapse
|
28
|
Edelman AM, Mitchelhill KI, Selbert MA, Anderson KA, Hook SS, Stapleton D, Goldstein EG, Means AR, Kemp BE. Multiple Ca(2+)-calmodulin-dependent protein kinase kinases from rat brain. Purification, regulation by Ca(2+)-calmodulin, and partial amino acid sequence. J Biol Chem 1996; 271:10806-10. [PMID: 8631893 DOI: 10.1074/jbc.271.18.10806] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have purified to near homogeneity from rat brain two Ca(2+)-calmodulin-dependent protein kinase I (CaM kinase I) activating kinases, termed here CaM kinase I kinase-alpha and CaM kinase I kinase-beta (CaMKIK alpha and CaMKIK beta, respectively). Both CaMKIK alpha and CaMKIK beta are also capable of activating CaM kinase IV. Activation of CaM kinase I and CaM kinase IV occurs via phosphorylation of an equivalent Thr residue within the "activation loop" region of both kinases, Thr-177 and Thr-196, respectively. The activities of CaMKIK alpha and CaMKIK beta are themselves strongly stimulated by the presence of Ca(2+)-CaM, and both appear to be capable of Ca(2+)-CaM-dependent autophosphorylation. Automated microsequence analysis of the purified enzymes established that CaMKIK alpha and -beta are the products of distinct genes. In addition to rat, homologous nucleic acids corresponding to these CaM kinase kinases are present in humans and the nematode, Caenorhabditis elegans. CaMKIK alpha and CaMKIK beta are thus representatives of a family of enzymes, which may function as key intermediaries in Ca(2+)-CaM-driven signal transduction cascades in a wide variety of eukaryotic organisms.
Collapse
Affiliation(s)
- A M Edelman
- Department of Pharmacology and Toxicology, State University of New York, Buffalo 14214, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nakamura Y, Okuno S, Kitani T, Otake K, Sato F, Fujisawa H. Distribution of Ca2+/calmodulin-dependent protein kinase kinase alpha in the rat central nervous system: an immunohistochemical study. Neurosci Lett 1996; 204:61-4. [PMID: 8929978 DOI: 10.1016/0304-3940(96)12317-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase IV (CaM-kinase IV) is activated by CaM-kinase IV kinase. We provided a rabbit antiserum against 20 amino acid residues at the carboxyl-terminal end of CaM-kinase IV kinase, and examined regional and intracellular distribution of CaM-kinase IV kinase immunohistochemically in the central nervous system of the rat by light and electron microscopy. The immunoreactivity was found in cellular nuclei of virtually all neurons. However, the immunoreactivity was weak in the nuclei of the granule cells in the cerebellar cortex, although the nuclei of the granule cells were reported to contain high CaM-kinase IV activity. Thus, it was suggested that other types of CaM-kinase IV kinase might exist in the cerebellum, and the present CaM-kinase IV kinase was named as CaM-kinase kinase alpha.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Sawamura Y, Sakagami H, Kondo H. Localization of mRNA for Ca2+/calmodulin-dependent protein kinase I in the brain of developing and mature rats. Brain Res 1996; 706:259-66. [PMID: 8822365 DOI: 10.1016/0006-8993(95)01161-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The gene expression of Ca2+/calmodulin-dependent protein kinase I (CaM kinase I) in the brain of developing and adult rats was examined by in situ hybridization histochemistry. During the development, CaM kinase I showed two chronological expression patterns; the persistent and relative high expression as observed in the olfactory bulb and cerebellar cortex, and the gradual decrease in the expression during the postnatal development as observed in most other brain regions. The gene expression was not detected in the germinal ventricular zone and cerebellar external granular layer. In the mature brain, CaM kinase I mRNA was expressed widely, though weakly in general, in almost all neurons, except for the olfactory bulb, cerebellum and hippocampus expressing at high intensity. These findings suggest that CaM kinase I may play a variety of neuronal Ca2+/calmodulin-mediated signaling processes in the developing and mature brains.
Collapse
Affiliation(s)
- Y Sawamura
- Department of Anatomy, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
31
|
von Agoston D, Palkovits CG, Fitzgerald SF, Brenneman DE. Developmental changes in the inducibility of fos-like immunoreactivity in primary embryonic spinal cord cultures. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:173-86. [PMID: 8612322 DOI: 10.1016/0165-3806(95)00111-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The immediate early gene (IEG) transcription factor c-fos coordinates changes in the pattern of long term gene expression and, therefore, it may be involved in mediating epigenetic control during neurodevelopment. We used pharmacological treatments mimicking various environmental and intracellular signals and assessed the inducibility of fos-like immunoreactivity (LIR) at various stages of neurodifferentiation in a primary embryonic spinal cord culture system by immunohistochemistry. Constitutive fos LIR exclusively found in neurons, was driven by the onset and extent of spontaneous electrical activity, as it was blockable by tetrodotoxin (TTX) at all developmental stages. Phorbol myristate 13 acetate (PMA) increased the number of fos-LIR cells equally effectively at all stages, but the predominant cellular localization of fos-LIR changed through ontogeny. The effect of veratridine, kainate and serum-derived factors in significantly inducing fos-LIR was restricted to the earliest developmental stage (4 days in vitro; DIV) investigated; whereas forskolin, the GABAA antagonist picrotoxin and NMDA failed to induce fos-LIR at this stage, but increased the number of fos-LIR neurons at later stages. Dihydropyridine agonists of the voltage-sensitive calcium channels (VSCC) raised the number of fos-LIR neurons and also prevented TTX-mediated down-regulation; whereas antagonists markedly reduced fos-LIR at all ages. Either type of NMDA antagonists (AP5 and MK801) and the GABAA agonist muscimol significantly reduced fos-LIR at all ages. These findings demonstrate that the inducibility of fos-LIR is substantially different in embryonic neurons than in adult ones and that inducibility by various first and second messengers is dependent on the development stage.
Collapse
Affiliation(s)
- D von Agoston
- National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4480, USA.
| | | | | | | |
Collapse
|
32
|
Nakamura Y, Okuno S, Sato F, Fujisawa H. An immunohistochemical study of Ca2+/calmodulin-dependent protein kinase IV in the rat central nervous system: light and electron microscopic observations. Neuroscience 1995; 68:181-94. [PMID: 7477923 DOI: 10.1016/0306-4522(95)00092-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We observed the distribution pattern of Ca2+/calmodulin-dependent protein kinase IV in rat brain and spinal cord using an immunohistochemical method by light and electron microscopy. Particularly strong immunoreactivity was detected in the telencephalic structures such as the olfactory bulb, cerebral cortex, hippocampal formation, caudate-putamen, most nuclei of the dorsal thalamus and the granule cell layer of the cerebellum. Relatively weak staining was observed in the amygdaloid body, some neuron groups of the brainstem reticular formation, the inferior olivary nucleus and the posterior horn of the spinal cord. Immunohistochemical reactivity was not detected in the globus pallidus, substantia nigra, sensory and motor nuclei of the cranial nerves, or in the spinal cord anterior horn. Overall, the distribution of Ca2+/calmodulin-dependent protein kinase IV-like immunoreactivity broadly paralleled the sites of expression of signals for messenger RNA of this enzyme. At the subcellular level, Ca2+/calmodulin-dependent protein kinase IV-like immunoreactivity appeared exclusively in the nuclei of neurons in the various brain regions, and immunopositive reactivity, although less strong, was also observed in dendritic processes, as well as on the granular endoplasmic reticulum in neuronal somata in these areas. Axon terminals, however, did not show immunoreactivity. These studies demonstrate that Ca2+/calmodulin-dependent protein kinase IV-like immunoreactivity is distributed widely in the central nervous system. The significance of the localization of this enzyme in nuclei is discussed in relation to gene expression.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Anatomy, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
33
|
Sakagami H, Tsubochi H, Kondo H. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV in the peripheral ganglia and paraganglia of developing and mature rats. Brain Res 1994; 666:173-81. [PMID: 7882027 DOI: 10.1016/0006-8993(94)90769-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase type IV (CaM kinase IV) was examined in rat peripheral ganglia and paraganglia as well as brain. In sensory ganglia including the trigeminal and dorsal root ganglia, small- to medium-sized neurons were intensely immunoreactive. In the spinal cord, immunoreactive small neurons were seen in superficial laminae of the dorsal horn, whereas motoneurons were immunonegative. In autonomic ganglia including the superior cervical, celiac, and submandibular ganglia, almost all neurons were intensely immunoreactive for CaM kinase IV. In the small intestine, immunoreactive neurons were seen in the submucosal and myenteric ganglia. In all immunoreactive neurons, the immunoreactivity was localized predominantly in cell nuclei, whereas nucleoli and nerve fibers were completely free from immunoreaction. From the wide distribution and predominant nuclear localization of CaM kinase IV, it is suggested that CaM kinase IV might be involved in the modulation of gene transcription through the nuclear Ca(2+)-signaling in the peripheral as well as central nervous system.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University, School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
34
|
Sakagami H, Ebina K, Kondo H. Re-examination of the ontogeny in the gene expression of DARPP-32 in the rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:67-72. [PMID: 7984053 DOI: 10.1016/0169-328x(94)90279-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
By in situ hybridization histochemistry, we have re-examined the ontogeny of the gene expression of mRNA encoding the dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32,000, termed DARPP-32. On E13 and E15, weak expression signals were detected in the mantle zones and ventricular germinal zones of the fore-, mid-, hind-brain, and spinal cord. In the caudate putamen, the expression signals were first visible at its lateral margin on E15. The ventrolateral region of the caudate putamen expressed the gene intensely, while its ventricular germinal zone expressed it weakly on E18-20. Thereafter, the mRNA for DARPP-32 were expressed over the entire caudate putamen in patchy patterns. After birth, the expression levels in the caudate putamen increased markedly, with the majority of the neurons in the caudate putamen expressing the gene intensely on P7 and thereafter. In addition to the caudate putamen, expression signals were detected, albeit faintly, in the olfactory bulb, cortical plate, hippocampal pyramidal cell layer, and their ventricular zones on E18-20. The olfactory tubercle and medial habenular nucleus expressed the gene at slightly higher levels. In the cerebellum, the Purkinje cells showed progressively increasing gene expression from E20 to P7, whereas the external granule cell layer expressed the gene weakly. The ontogeny of the gene expression is largely consistent with previous immunohistochemical findings by other authors. Furthermore, the present finding suggests that DARPP-32 is involved in the regulation of the mitosis-related dephosphorylation by protein phosphatase 1 in the neuroepithelium.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University, School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
35
|
Bland MM, Monroe RS, Ohmstede CA. The cDNA sequence and characterization of the Ca2+/calmodulin-dependent protein kinase-Gr from human brain and thymus. Gene 1994; 142:191-7. [PMID: 8194751 DOI: 10.1016/0378-1119(94)90260-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have isolated and sequenced cDNAs encoding Ca2+/calmodulin-dependent protein kinase type Gr (CaM-K-Gr, also called CaM-K-IV) from human brain and thymus. The sequence of the protein coding region of the cDNA is identical in both brain and thymus, although Northern hybridization analysis shows variation of the mRNA transcripts in these tissues. The sequence predicts a protein of M(r) 51,897 that is 83.7% identical and shows 89.2% similarity with the rat homologue. The deduced human CaM-K-Gr is identical to the rat and mouse proteins in the portion of the enzyme involved in ATP binding, the catalytic domain and Ca2+/calmodulin-binding domain; however, the N terminus of the human kinase, which may comprise a second regulatory domain [McDonald et al., J. Biol. Chem. 268 (1993) 10054-10059], contains a 4-amino-acid (aa) insertion relative to the rodent enzymes. Additionally, the C-terminal association domain shows only 45.2 and 41.6% identity with the rat and mouse proteins, respectively, suggesting that this domain is not constrained by stringent structural and functional requirements. Based on the predicted aa sequence of the human kinase, we produced polyclonal antisera against a C-terminal peptide that recognizes two forms of CaM-K-Gr in human T-cell lymphoma and neuroblastoma cell lines. The human antiserum cross-reacts with the rat and mouse proteins and immunoprecipitates the active kinase.
Collapse
Affiliation(s)
- M M Bland
- Wellcome Research Laboratories, Research Triangle Park, NC 27709
| | | | | |
Collapse
|
36
|
Sakagami H, Kondo H. Differential expression of mRNAs encoding gamma and delta subunits of Ca2+/calmodulin-dependent protein kinase type II (CaM kinase II) in the mature and postnatally developing rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 20:51-63. [PMID: 8255181 DOI: 10.1016/0169-328x(93)90109-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The expression of mRNAs encoding gamma and delta subunits of Ca2+/calmodulin-dependent protein kinase type II (CaM kinase II) in the brain of mature and postnatally developing rats was examined by in situ hybridization histochemistry. At the adult stage, mRNAs for both subunits were expressed in the olfactory bulb, and piriform cortex. The cerebral neocortex expressed the gamma subunit mRNA evenly through the layers II to VI at a moderate level, whereas the delta subunit mRNA was expressed in a distinctly laminar distribution. The hippocampal pyramidal and dentate granule cells expressed the gamma subunit mRNA intensely without any significant expression signals for the delta subunit. In the cerebellum, moderate expression signals for the gamma subunit were confined to the Purkinje cell layer, while intense expression signals for the delta subunit were detected in the cerebellar granule cell layer, without any significant expression signals in the Purkinje cell layer. In the spinal cord, mRNA for the gamma subunit was expressed in neurons throughout the gray matter, while the expression of mRNA for the delta subunit was confined to neurons in laminae I and IX. The expression pattern of genes for both subunits was basically accomplished at birth with lower intensity, except for the striatum and cerebellar Purkinje cells, which transiently expressed mRNA for the gamma and delta subunits, respectively, at birth. These results indicate that the expression of genes for each of the subunits of CaM kinase II is differentially regulated in various brain regions and that the individual subunits are involved in differential functions in mature and developing rat brain.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|
37
|
Sakagami H, Kondo H. Cloning and sequencing of a gene encoding the beta polypeptide of Ca2+/calmodulin-dependent protein kinase IV and its expression confined to the mature cerebellar granule cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 19:215-8. [PMID: 8412563 DOI: 10.1016/0169-328x(93)90029-o] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A cDNA encoding the beta polypeptide of Ca2+/calmodulin-dependent protein kinase IV (CaM kinase IV) was isolated and sequenced from a rat cerebellar cDNA library. By in situ hybridization histochemistry, we demonstrated the differential gene expression for alpha and beta polypeptides of CaM kinase IV in mature and developing rat brains using oligonucleotide probes specific for each polypeptide.
Collapse
Affiliation(s)
- H Sakagami
- Department of Anatomy, Tohoku University School of Medicine, Sendai, Japan
| | | |
Collapse
|