1
|
Fu YL, Wang YJ, Mu TW. Proteostasis Maintenance of Cys-Loop Receptors. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:1-23. [DOI: 10.1016/bs.apcsb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Wong LW, Tae HS, Cromer BA. Role of the ρ1 GABA(C) receptor N-terminus in assembly, trafficking and function. ACS Chem Neurosci 2014; 5:1266-77. [PMID: 25347026 DOI: 10.1021/cn500220t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The GABAC receptor and closely related GABAA receptor are members of the pentameric ligand-gated ion channels (pLGICs) superfamily and mediate inhibitory fast synaptic transmission in the nervous system. Each pLGIC subunit comprises an N-terminal extracellular agonist-binding domain followed by a channel domain and a variable intracellular domain. Available structural information shows that the core of the agonist-binding domain is a β sandwich of ten β-strands, which form the agonist-binding pocket at the subunit interface. This β-sandwich is preceded by an N-terminal α-helix in eukaryotic structures but not in prokaryotic structures. The N-terminal α-helix has been shown to be functionally essential in α7 nicotinic acetylcholine receptors. Sequence analysis of GABAC and GABAA receptors predicts an α-helix in a similar position but preceded by 8 to 46 additional residues, of unknown function, which we term the N-terminal extension. To test the functional role of both the N-terminal extension and the putative N-terminal α-helix in the ρ1 GABAC receptor, we created a series of deletions from the N-terminus. The N-terminal extension was not functionally essential, but its removal did reduce both cell surface expression and cooperativity of agonist-gated channel function. Further deletion of the putative N-terminal α-helix abolished receptor function by preventing cell-surface expression. Our results further demonstrate the essential role of the N-terminal α-helix in the assembly and trafficking of eukaryotic pLGICs. They also provide evidence that the N-terminal extension, although not essential, contributes to receptor assembly, trafficking and conformational changes associated with ligand gating.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
- Department
of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Han-Shen Tae
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Brett A. Cromer
- Health
Innovation Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
3
|
|
4
|
Criado M, Mulet J, Castillo M, Gerber S, Sala S, Sala F. The loop between β-strands β2 and β3 and its interaction with the N-terminal α-helix is essential for biogenesis of α7 nicotinic receptors. J Neurochem 2010; 112:103-11. [DOI: 10.1111/j.1471-4159.2009.06439.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Caffery PM, Krishnaswamy A, Sanders T, Liu J, Hartlaub H, Klysik J, Cooper E, Hawrot E. Engineering neuronal nicotinic acetylcholine receptors with functional sensitivity to alpha-bungarotoxin: a novel alpha3-knock-in mouse. Eur J Neurosci 2009; 30:2064-76. [PMID: 20128845 DOI: 10.1111/j.1460-9568.2009.07016.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report here the construction of a novel knock-in mouse expressing chimeric alpha3 nicotinic acetylcholine receptor (nAChR) subunits with pharmacological sensitivity to alpha-bungarotoxin (alphaBTX). Sensitivity was generated by substituting five amino acids in the loop C (beta9-beta10) region of the mouse alpha3 subunit with the corresponding residues from the alpha1 subunit of the muscle type receptor from Torpedo californica. To demonstrate the utility of the underlying concept, expressed alpha3[5] subunits were characterized in the superior cervical ganglia (SCG) of homozygous knock-in mice, where the synaptic architecture of postsynaptic alpha3-containing nAChR clusters could now, for the first time, be directly visualized and interrogated by live-staining with rhodamine-conjugated alphaBTX. Consistent with the postsynaptic localization of ganglionic nAChRs, the alphaBTX-labeled puncta colocalized with a marker for synaptic varicosities. Following in vivo deafferentation, these puncta persisted but with significant changes in intensity and distribution that varied with the length of the recovery period. Compound action potentials and excitatory postsynaptic potentials recorded from SCG of mice homozygous for alpha3[5] were abolished by 100 nmalphaBTX, even in an alpha7 null background, demonstrating that synaptic throughput in the SCG is completely dependent on the alpha3-subunit. In addition, we observed that the genetic background of various inbred and outbred mouse lines greatly affects the functional expression of alpha3[5]-nAChRs, suggesting a powerful new approach for exploring the molecular mechanisms underlying receptor assembly and trafficking. As alphaBTX-sensitive sequences can be readily introduced into other nicotinic receptor subunits normally insensitive to alphaBTX, the findings described here should be applicable to many other receptors.
Collapse
Affiliation(s)
- Philip M Caffery
- Department of Molecular Pharmacology, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Castillo M, Mulet J, Aldea M, Gerber S, Sala S, Sala F, Criado M. Role of the N-terminal α-helix in biogenesis of α7 nicotinic receptors. J Neurochem 2009; 108:1399-409. [DOI: 10.1111/j.1471-4159.2009.05924.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Millar NS, Harkness PC. Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 2008; 25:279-92. [PMID: 18446614 DOI: 10.1080/09687680802035675] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of an extensive super-family of neurotransmitter-gated ion channels. In humans, nAChRs are expressed within the nervous system and at the neuromuscular junction and are important targets for pharmaceutical drug discovery. They are also the site of action for neuroactive pesticides in insects and other invertebrates. Nicotinic receptors are complex pentameric transmembrane proteins which are assembled from a large family of subunits; seventeen nAChR subunits (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) have been identified in vertebrate species. This review will discuss nAChR subunit diversity and factors influencing receptor assembly and trafficking.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Pharmacology, University College London, London, UK.
| | | |
Collapse
|
8
|
Ortells MO, Barrantes GE. A model for the assembly of nicotinic receptors based on subunit-subunit interactions. Proteins 2007; 70:473-88. [PMID: 17705274 DOI: 10.1002/prot.21529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuronal ion-channels are complex multimeric proteins. Within a given family, the variability of their pharmacological responses depends on subunit composition and subunit arrangement. We report here that protein assembly in the pentameric nicotinic acetylcholine receptor family, the best characterized of all neuronal receptors, can be predicted using information derived from homology modeled surface to surface subunit interactions based on the atomic structure of a snail acetylcholine-binding protein. An empirical assembly model is able to establish both subunit stoichiometry and subunit arrangement of known neuronal and muscle nicotinic receptors. This contribution to the understanding of nicotinic receptor assembly and variability might be extended to other types of ion-channels.
Collapse
Affiliation(s)
- Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón and Consejo de Investigaciones Científicas y Técnicas (CONICET), Machado 914, 4to piso, 1708 Morón, Argentina.
| | | |
Collapse
|
9
|
Baker ER, Zwart R, Sher E, Millar NS. Pharmacological Properties of α9α10 Nicotinic Acetylcholine Receptors Revealed by Heterologous Expression of Subunit Chimeras. Mol Pharmacol 2004; 65:453-60. [PMID: 14742688 DOI: 10.1124/mol.65.2.453] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) alpha9 and alpha10 subunits are expressed primarily within hair cells of the inner ear and have been implicated in auditory processing. Although functional recombinant nAChRs generated by the coexpression of alpha9 and alpha10 in Xenopus laevis oocytes have been described previously, there have been no reports of the successful heterologous expression of alpha9alpha10 nAChRs in cultured cell lines. In this study, subunit chimeras (alpha9chi and alpha10chi) have been constructed that contain the extracellular, ligand binding domain of the alpha9 or alpha10 subunits fused to the C-terminal domain of the 5-hydroxytryptamine type 3A (5HT3A) subunit. Specific high-affinity binding of the nicotinic radioligand [3H]methyllycaconitine was detected in membrane preparations of mammalian cells transfected with alpha9chi or alpha10chi alone, but significantly higher levels of binding were detected when alpha9chi and alpha10chi were cotransfected, providing evidence of a requirement for coassembly of alpha9 and alpha10 for the efficient formation of a nicotinic binding site. The pharmacological profile of alpha9chialpha10chi receptors, determined by equilibrium radioligand binding studies, is broadly similar to that determined previously by electrophysiological studies conducted with native and recombinant alpha9alpha10 nAChRs. In agreement with evidence that alpha9alpha10 nAChRs exhibit an atypical pharmacological profile, we have identified specific high-affinity binding of several non-nicotinic ligands including strychnine (a glycine receptor antagonist), bicuculline (a GABAA receptor antagonist), and atropine (a muscarinic acetylcholine receptor antagonist). Results have also been compared with radioligand binding data conducted with a previously described alpha7/5HT3A (alpha7chi) subunit chimera.
Collapse
Affiliation(s)
- Elizabeth R Baker
- Department of Pharmacology, University College London, Gower Street, London, United Kingdom
| | | | | | | |
Collapse
|
10
|
Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG. Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 2003; 278:2731-9. [PMID: 12429746 DOI: 10.1074/jbc.m201926200] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter (DAT) is a presynaptic plasma membrane protein responsible for the termination of dopaminergic neurotransmission in the central nervous system. While most studies have focused on structure/function analysis, much less information is available regarding the assembly and the trafficking of this protein. To address this problem, we performed a mutational analysis of the DAT protein, combined with biochemical, immunological, and functional approaches. In mammalian cells co-expressing differentially tagged DAT molecules, HA-tagged DAT co-purified with 6His-tagged DAT demonstrating a physical interaction between transporter proteins. Evidence for the functional oligomerization of DAT was obtained using dominant-negative mutants of DAT. Two loss-of-function mutant transporters (Y335A and D79G) that were targeted to the cell surface inhibited wild-type DAT uptake activity without affecting the membrane targeting of the wild-type transporter. Moreover, non-functional amino and carboxyl termini-truncated mutants of DAT inhibited wild-type DAT function by interfering with the normal processing of the wild-type transporter to the cell membrane. Mutations in the leucine repeat of the second transmembrane domain of the transporter could eliminate the dominant-negative effect of all these mutants. In addition, a small fragment comprising the first two transmembrane domains of DAT inhibited wild-type transporter function but not when the leucine repeat motif was mutated. Taken together, our results suggest that the assembly of DAT monomers plays a critical role in the expression and function of the transporter.
Collapse
Affiliation(s)
- Gonzalo E Torres
- Howard Hughes Medical Institute, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Boorman JP, Groot-Kormelink PJ, Sivilotti LG. Stoichiometry of human recombinant neuronal nicotinic receptors containing the b3 subunit expressed in Xenopus oocytes. J Physiol 2000; 529 Pt 3:565-77. [PMID: 11118490 PMCID: PMC2270211 DOI: 10.1111/j.1469-7793.2000.00565.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The neuronal nicotinic subunit beta3 forms functional receptors when co-expressed with both an alpha and a beta subunit, such as alpha3 and beta4. We examined the subunit stoichiometry of these 'triplet' alpha3beta4beta3 receptors by expression in Xenopus oocytes of the alpha3, beta4 and beta3 subunits, either in wild-type form or after insertion of a reporter mutation. The mutation chosen was the substitution of a conserved hydrophobic residue in the second transmembrane domain of the subunits (leucine or valine 9THORN ) with a hydrophilic threonine. In other ion channels within the nicotinic superfamily, this mutation type consistently increases the potency of agonists. In muscle-type nicotinic receptors, the magnitude of this effect is approximately constant for each mutant subunit incorporated. In alpha3beta4beta3 receptors, the ACh EC50 was decreased by approximately 17-fold when this mutation was in alpha3 alone and only by fourfold when beta3 alone was mutated. Mutating beta4 was equivalent to mutating alpha3, suggesting that the 'triplet' receptor contains one copy of beta3 and two copies each of alpha3 and beta4. Mutating beta3 and alpha3 or beta3 and beta4 reduced the ACh EC50 further, to values two- to threefold lower than those seen when only alpha3 or beta4 carried the mutation. In 'pair' alpha3beta4 receptors (known to contain two alpha and three beta subunits), mutating beta4 had a greater effect on the ACh EC50 than mutating alpha3, in agreement with an alpha:beta ratio of 2:3 and a constant and independent effect of each copy of the mutation. Our results suggest that alpha3beta4beta3 neuronal nicotinic receptors contain one copy of beta3 and two copies each of alpha3 and beta4 and confirm that in pair alpha3beta4 receptors the alpha/beta subunits are present in a 2:3 ratio.
Collapse
Affiliation(s)
- J P Boorman
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
12
|
Abstract
gamma-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the mammalian central nervous system and gates at least three subclasses of receptors, termed GABA(A), GABA(B) and GABA(C). Accumulating evidence indicates that GABA(C) receptors are composed exclusively of rho subunits. The N-terminal half of the rho subunits has been shown to mediate formation of homo- and heterooligomeric GABA(C) receptors. In this study, we searched for specific sequences within the N-terminus of the rho1 subunit involved in the assembly process. Assembly sequences were localized to a 128-amino acid region by deletion of progressively larger regions of a chimeric rho1beta1 subunit previously shown to disrupt rho1 and rho2 assembly. To confirm this observation, a series of GABA(A) receptor beta subunit chimeras containing different regions of the rho1 N-terminus were tested for interference with rho1 and rho2 subunit assembly into functional GABA receptors. Transfer of 70 residues within the 128 amino acid region to the beta1 subunit created a chimera that disrupted rho1, but not rho2, assembly into functional receptors. These observations refine the location of signals involved in rho1 subunit assembly, and suggest that different signals exist for the formation of rho1 homooligomeric and rho1/rho2 heterooligomeric GABA(C) receptors.
Collapse
Affiliation(s)
- R Enz
- Institut fuer Biochemie, Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | | |
Collapse
|
13
|
Torres GE, Egan TM, Voigt MM. Identification of a domain involved in ATP-gated ionotropic receptor subunit assembly. J Biol Chem 1999; 274:22359-65. [PMID: 10428806 DOI: 10.1074/jbc.274.32.22359] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X receptors are ATP-gated ion channels found in a variety of tissues and cell types. Seven different subunits (P2X(1)-P2X(7)) have been molecularly cloned and are known to form homomeric, and in some cases heteromeric, channel complexes. However, the molecular determinants leading to the assembly of subunits into P2X receptors are unknown. To address this question we utilized a co-immunoprecipitation assay in which epitope-tagged deletion mutants and chimeric constructs were examined for their ability to co-associate with full-length P2X subunits. Deletion mutants of the P2X(2) receptor subunit were expressed individually and together with P2X(2) or P2X(3) receptor subunits in HEK 293 cells. Deletion of the amino terminus up to the first transmembrane domain (amino acid 28) and beyond (to amino acid 51) did not prevent subunit assembly. Analysis of the carboxyl terminus demonstrated that mutants missing the portion of the protein downstream of the second transmembrane domain could also still co-assemble. However, a mutant terminating 25 amino acids before the second transmembrane domain could not assemble with other subunits or itself, implicating the missing region of the protein in assembly. This finding was supported and extended by data utilizing a chimera strategy that indicated TMD2 is a critical determinant of P2X subunit assembly.
Collapse
Affiliation(s)
- G E Torres
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- W N Green
- Department of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Wells GB, Anand R, Wang F, Lindstrom J. Water-soluble nicotinic acetylcholine receptor formed by alpha7 subunit extracellular domains. J Biol Chem 1998; 273:964-73. [PMID: 9422757 DOI: 10.1074/jbc.273.2.964] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Water-soluble models of ligand-gated ion channels would be advantageous for structural studies. We investigated the suitability of three versions of the N-terminal extracellular domain (ECD) of the alpha7 subunit of the nicotinic acetylcholine receptor (AChR) family for this purpose by examining their ligand-binding and assembly properties. Two versions included the first transmembrane domain and were solubilized with detergent after expression in Xenopus oocytes. The third was truncated before the first transmembrane domain and was soluble without detergent. For all three, their equilibrium binding affinities for alpha-bungarotoxin, nicotine, and acetylcholine, combined with their velocity sedimentation profiles, were consistent with the formation of native-like AChRs. These characteristics imply that the alpha7 ECD can form a water-soluble AChR that is a model of the ECD of the full-length alpha7 AChR.
Collapse
Affiliation(s)
- G B Wells
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6082, USA.
| | | | | | | |
Collapse
|
16
|
Fritschy JM, Benke D, Johnson DK, Mohler H, Rudolph U. GABAA-receptor alpha-subunit is an essential prerequisite for receptor formation in vivo. Neuroscience 1997; 81:1043-53. [PMID: 9330366 DOI: 10.1016/s0306-4522(97)00244-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanisms governing the assembly of alpha-, beta- and gamma-subunits to form GABAA-receptors are poorly understood. Here, we report that the alpha-subunit is essential for receptor assembly. In mice homozygous for a deletion on chromosome 7 spanning the alpha 5- and gamma 3-subunit genes, zolpidem-insensitive benzodiazepine binding sites, corresponding to GABAA-receptors containing the alpha 5-subunit, were absent in the hippocampus. This loss of alpha 5-GABAA-receptor binding was also apparent as a 21% decrease in the total number of benzodiazepine binding sites in the hippocampus. In addition, immunoreactivity for the beta 2,3- and gamma 2-subunit was decreased exclusively in neurons which normally express the alpha 5-subunit, such as olfactory bulb granule cells and hippocampal pyramidal cells. In other brain regions of the mutants, the beta 2,3- and gamma 2-subunit staining was unaffected. Controls included two lines of mice homozygous for a shorter chromosomal deletion, that either included or excluded the gamma 3-subunit gene. These two lines were indistinguishable with regard to numbers of benzodiazepine binding sites and levels alpha 5-, beta 2,3- and gamma 2-subunit immunoreactivity, indicating that the lack of gamma 3-subunit gene did not contribute to the observed deficit in receptor formation. These results demonstrate that the absence of the alpha 5-subunit gene prevents the formation of the entire respective receptor complex in adult mouse brain. Thus, the alpha-subunit, unlike the gamma 2-subunit, might play a major role in the assembly or targeting of GABAA-receptor complexes.
Collapse
Affiliation(s)
- J M Fritschy
- Institute of Pharmacology, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Gehle VM, Walcott EC, Nishizaki T, Sumikawa K. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:219-29. [PMID: 9149096 DOI: 10.1016/s0169-328x(96)00256-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of the conserved carbohydrate moiety in the expression of complete acetylcholine receptor (AChR), alpha2 beta gamma delta was re-investigated by expressing additional site-directed mutant subunits, lacking an N-glycosylation site, in Xenopus oocytes. All mutant subunits were stably expressed and appeared to associate with other normal subunits; however, removal of carbohydrate on the alpha subunit inhibited the formation of 125I-alpha-bungarotoxin (alpha-BuTX) binding sites and functional ACh-gated ion channels. 125I-alpha-BuTX binding to AChRs was also significantly reduced by removal of the conserved carbohydrate on the gamma or delta subunits. Immunoprecipitation with monoclonal antibodies that recognize the two distinct alpha-BuTX sites on the AChR indicated that the mutant gamma subunit did not interfere with efficient formation of the alpha-BuTX binding site at the alpha/delta interface, but loss of the carbohydrate did interfere with formation of the alpha-BuTX binding site at the alpha/mutant gamma interface. A similar result was obtained with the mutant delta subunit. Furthermore, the mutant gamma and mutant delta subunits were not incorporated efficiently into the mature (correct tertiary conformation capable of alpha-BuTX binding) alpha beta delta or alpha beta gamma complexes, respectively. Since both mutant gamma and mutant delta subunits were capable of assembling with the alpha subunits (immature assembly), these results suggest that the formation of the two alpha-BuTX binding sites requires correct folding of the alpha gamma and alpha delta complexes, which is aided by the conserved carbohydrate on the gamma and delta subunits. Electrophysiological experiments demonstrated that functional receptors containing mutant subunits were produced, but the functional properties of the mutant receptors were differentially altered, depending on the subunit mutated. Together, our results suggest that N-glycosylation of AChR subunits ensures the correct folding of important functional domains and expression of proper functional receptors in the plasma membrane.
Collapse
Affiliation(s)
- V M Gehle
- Department of Psychobiology, University of California at Irvine, 92697-4550, USA
| | | | | | | |
Collapse
|
19
|
Ben-Efraim I, Shai Y. The structure and organization of synthetic putative membranous segments of ROMK1 channel in phospholipid membranes. Biophys J 1997; 72:85-96. [PMID: 8994595 PMCID: PMC1184299 DOI: 10.1016/s0006-3495(97)78649-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hydropathy plot of ROMK1, an inwardly rectifying K+ channel, suggests that the channel contains two transmembrane domains (M1 and M2) and a linker between them with significant homology to the H5 pore region of voltage-gated K+ channels. To gain structural information on the pore region of the ROMK1 channel, we used a spectrofluorimetric approach and characterized the structure, the organization state, and the ability of the putative membranous domains of the ROMK1 channel to self-assemble and coassemble within lipid membranes. Circular dichroism (CD) spectroscopy revealed that M1 and M2 adopt high alpha-helical structures in egg phosphatidylcholine small unilamellar vesicles and 40% trifluoroethanol (TFE)/water, whereas H5 is not alpha-helical in either egg phosphatidylcholine small unilamellar vesicles or 40% TFE/water. Binding experiments with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD)-labeled peptide demonstrated that all of the peptides bind to zwitterionic phospholipid membranes with partition coefficients on the order of 10(5) M-1. Tryptophan quenching experiments using brominated phospholipids revealed that M1 is dipped into the hydrophobic core of the membrane. Resonance energy transfer (RET) measurements between fluorescently labeled pairs of donor (NBD)/acceptor (rhodamine) peptides revealed that H5 and M2 can self-associate in their membrane-bound state, but M1 cannot. Moreover, the membrane-associated nonhelical H5 serving as a donor can coassemble with the alpha-helical M2 but not with M1, and M1 can coassemble with M2. No coassembly was observed between any of the segments and a membrane-embedded alpha-helical control peptide, pardaxin. The results are discussed in terms of their relevance to the proposed topology of the ROMK1 channel, and to general aspects of molecular recognition between membrane-bound polypeptides.
Collapse
Affiliation(s)
- I Ben-Efraim
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
20
|
Walcott EC, Sumikawa K. A conserved disulfide loop facilitates conformational maturation in the subunits of the acetylcholine receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 41:289-300. [PMID: 8883962 DOI: 10.1016/0169-328x(96)00122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the structural determinants for the assembly of ligand-gated receptors, we constructed mutant alpha, beta, gamma and delta subunits of the Torpedo acetylcholine receptor (AChR), lacking one of the conserved cysteine residues which forms a 13-amino acid disulfide loop in the amino terminal domain of each subunit. Mutant subunits were co-expressed with complementary wild-type subunits in Xenopus oocytes. Using subunit-specific antisera and monoclonal antibodies that recognize the two distinct alpha-bungarotoxin (alpha-BuTX) sites on the AChR, we were able to distinguish immature subunit associations from conformationally mature AChR complexes. Removal of the disulfide loop on the alpha subunit completely destroyed the formation of the two toxin-binding sites, while removal of the structure on the beta subunit had little effect. While mutant gamma and delta subunits were capable of forming associations (immature assembly) with other subunits, the formation of alpha-BTX sites between alpha and mutant gamma or mutant delta subunits was diminished. Interestingly, assembly of alpha beta gamma subunits remained efficient in the presence of mutant delta subunits, whereas assembly of alpha beta delta subunits was inefficient in the presence of mutant gamma subunits. Thus, these results indicate that the formation of the disulfide loop facilitates the conformational maturation of alpha gamma and alpha delta complexes, which may be conditional for correct subunit coupling in assembling receptors. Furthermore, it seems likely that the correct coupling between the alpha and gamma subunits is the most important step in subunit assembly.
Collapse
Affiliation(s)
- E C Walcott
- Department of Psychobiology, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
21
|
Rabow LE, Russek SJ, Farb DH. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 1995; 21:189-274. [PMID: 8578436 DOI: 10.1002/syn.890210302] [Citation(s) in RCA: 405] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gamma-aminobutyric acid type A (GABAA) receptor represents an elementary switching mechanism integral to the functioning of the central nervous system and a locus for the action of many mood- and emotion-altering agents such as benzodiazepines, barbiturates, steroids, and alcohol. Anxiety, sleep disorders, and convulsive disorders have been effectively treated with therapeutic agents that enhance the action of GABA at the GABAA receptor or increase the concentration of GABA in nervous tissue. The GABAA receptor is a multimeric membrane-spanning ligand-gated ion channel that admits chloride upon binding of the neurotransmitter GABA and is modulated by many endogenous and therapeutically important agents. Since GABA is the major inhibitory neurotransmitter in the CNS, modulation of its response has profound implications for brain functioning. The GABAA receptor is virtually the only site of action for the centrally acting benzodiazepines, the most widely prescribed of the anti-anxiety medications. Increasing evidence points to an important role for GABA in epilepsy and various neuropsychiatric disorders. Recent advances in molecular biology and complementary information derived from pharmacology, biochemistry, electrophysiology, anatomy and cell biology, and behavior have led to a phenomenal growth in our understanding of the structure, function, regulation, and evolution of the GABAA receptor. Benzodiazepines, barbiturates, steroids, polyvalent cations, and ethanol act as positive or negative modulators of receptor function. The description of a receptor gene superfamily comprising the subunits of the GABAA, nicotinic acetylcholine, and glycine receptors has led to a new way of thinking about gene expression and receptor assembly in the nervous system. Seventeen genetically distinct subunit subtypes (alpha 1-alpha 6, beta 1-beta 4, gamma 1-gamma 4, delta, p1-p2) and alternatively spliced variants contribute to the molecular architecture of the GABAA receptor. Mysteriously, certain preferred combinations of subunits, most notably the alpha 1 beta 2 gamma 2 arrangement, are widely codistributed, while the expression of other subunits, such as beta 1 or alpha 6, is severely restricted to specific neurons in the hippocampal formation or cerebellar cortex. Nervous tissue has the capacity to exert control over receptor number, allosteric uncoupling, subunit mRNA levels, and posttranslational modifications through cellular signal transduction mechanisms under active investigation. The genomic organization of the GABAA receptor genes suggests that the present abundance of subtypes arose during evolution through the duplication and translocations of a primordial alpha-beta-gamma gene cluster. This review describes these varied aspects of GABAA receptor research with special emphasis on contemporary cellular and molecular discoveries.
Collapse
Affiliation(s)
- L E Rabow
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
22
|
|
23
|
Jinnai K, Ashizawa T, Atassi MZ. Analysis of exposed regions on the main extracellular domain of mouse acetylcholine receptor alpha subunit in live muscle cells by binding profiles of antipeptide antibodies. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:715-22. [PMID: 7710661 DOI: 10.1007/bf01886954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study the structural organization of the main extracellular domain of the nicotinic acetylcholine receptor (AChR) alpha subunit in live muscle cells, we examined the native membrane-bound receptors in cultured mouse skeletal muscle cells for their ability to bind a panel of antibodies against uniform-sized overlapping synthetic peptides which collectively represent this entire domain. The binding profile indicated that the regions alpha 23-49, alpha 78-126, alpha 146-174, and alpha 182-210 are accessible to binding with antibody. Residues alpha 23-49, alpha 78-126, and alpha 194-210 contain binding regions for alpha-neurotoxin and some myasthenia gravis autoantibodies. A comparison of this binding profile with the profile obtained for membrane-bound Torpedo californica AChR in isolated membrane fractions showed some similarities as well as significant differences between the subunit organization in the isolated membrane fraction and that in the membrane of live muscle cells. Regions alpha 89-104 and alpha 158-174, which are exposed in the isolated membrane fraction, are also exposed in the live cell. On the other hand, regions alpha 23-49, and alpha 182-210, which are exposed in the live cell, are not accessible in the isolated membrane and, furthermore, the region alpha 1-16, which has marginal accessibility in the cell, becomes highly accessible in the membrane isolates. The exposed regions defined by this study may be the primary targets for the initial autoimmune attack on the receptors in experimental autoimmune myasthenia gravis.
Collapse
Affiliation(s)
- K Jinnai
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
24
|
Sumikawa K, Nishizaki T. The amino acid residues 1-128 in the alpha subunit of the nicotinic acetylcholine receptor contain assembly signals. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:257-64. [PMID: 7808225 DOI: 10.1016/0169-328x(94)90161-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of nicotinic acetylcholine receptor (AChR) involves complex processes including assembly of different receptor subunits into hetero-oligomers. To identify the minimal N-terminal region involved in AChR subunit association, we used a dominant negative assay. Co-expression of fragments of the alpha subunit, containing the N-terminal extracellular domain and transmembrane domain 1 (TM 1), with the parental AChR subunits in Xenopus oocytes blocked functional expression of the receptor. In contrast, co-expression of N-terminal extracellular fragments without TM1 failed to inhibit functional expression of AChRs, but altered the functional properties of co-expressed parental AChRs. Furthermore, when these alpha subunit fragments were co-expressed with the beta, gamma, and delta subunits, they were co-immunoprecipitated with a mixture of beta, gamma, and delta subunit specific antibodies. These results suggest that 'assembly signals' are confined to a local structure in the N-terminal extracellular domain. Our findings also indicate that an assembly step may be a target for genetic intervention not only to block the expression of functional receptors, but also to alter the function of the receptor.
Collapse
Affiliation(s)
- K Sumikawa
- Department of Psychobiology, University of California, Irvine 92717-4550
| | | |
Collapse
|
25
|
Eiselé JL, Bertrand S, Galzi JL, Devillers-Thiéry A, Changeux JP, Bertrand D. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 1993; 366:479-83. [PMID: 8247158 DOI: 10.1038/366479a0] [Citation(s) in RCA: 342] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The neuronal nicotinic alpha 7 (nAChR) and 5-hydroxytryptamine (5HT3) receptors are ligand-gated ion channels with a homologous topological organization and have activation and desensitization reactions in common. Yet these homo-oligomeric receptors differ in the pharmacology of their binding sites for agonists and competitive antagonists, and in their sensitivity to Ca2+ ions. The alpha 7 channel is highly permeable to Ca2+ ions and external Ca2+ ions potentiate, in an allosteric manner, the permeability response to acetylcholine, as shown for other neuronal nAChRs. The 5HT3 channel, in contrast, is not permeable to Ca2+ ions, but blocked by them. To assign these properties to delimited domains of the primary structure, we constructed several recombinant chimaeric alpha 7-5HT3 receptors. We report here that one of the constructs expresses a functional receptor that contains the serotonergic channel still blocked by Ca2+ ions, but is activated by nicotinic ligands and potentiated by external Ca2+ ions.
Collapse
Affiliation(s)
- J L Eiselé
- Unité de Recherche Associée au Centre National de la Recherche Scientifique D1284, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Kuhse J, Laube B, Magalei D, Betz H. Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron 1993; 11:1049-56. [PMID: 8274276 DOI: 10.1016/0896-6273(93)90218-g] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The inhibitory glycine receptor (GlyR) is a pentameric protein composed of two types (alpha and beta) of membrane-spanning subunits. Coexpression in Xenopus oocytes of a low affinity mutant of the alpha 2 subunit with the alpha 1 and beta subunits indicated that GlyRs assembled from alpha 1 and alpha 2 polypeptides contain variable subunit ratios, whereas alpha/beta hetero-oligomers have an invariant (3:2) stoichiometry. Analysis of different alpha/beta chimeric constructs revealed that this difference in assembly behavior is mediated by the N-terminal extracellular regions of the receptor subunits. Substitution of residues diverging between the alpha and beta subunits identified combinations of sequence motifs determining subunit stoichiometry.
Collapse
Affiliation(s)
- J Kuhse
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Frankfurt, Federal Republic of Germany
| | | | | | | |
Collapse
|