1
|
Honar H, Riazi K, Homayoun H, Sadeghipour H, Rashidi N, Ebrahimkhani MR, Mirazi N, Dehpour AR. Ultra-low dose naltrexone potentiates the anticonvulsant effect of low dose morphine on clonic seizures. Neuroscience 2005; 129:733-42. [PMID: 15541894 DOI: 10.1016/j.neuroscience.2004.08.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 11/26/2022]
Abstract
Significant potentiation of analgesic effects of opioids can be achieved through selective blockade of their stimulatory effects on intracellular signaling pathways by ultra-low doses of opioid receptor antagonists. However, the generality and specificity of this interaction is not well understood. The bimodal modulation of pentylenetetrazole-induced seizure threshold by opioids provide a model to assess the potential usefulness of this approach in seizure disorders and to examine the differential mechanisms involved in opioid anti- (morphine at 0.5-3 mg/kg) versus pro-convulsant (20-100 mg/kg) effects. Systemic administration of ultra-low doses of naltrexone (100 fg/kg-10 ng/kg) significantly potentiated the anticonvulsant effect of morphine at 0.5 mg/kg while higher degrees of opioid receptor antagonism blocked this effect. Moreover, inhibition of opioid-induced excitatory signaling by naltrexone (1 ng/kg) unmasked a strong anticonvulsant effect for very low doses of morphine (1 ng/kg-100 microg/kg), suggesting that a presumed inhibitory component of opioid receptor signaling can exert strong seizure-protective effects even at very low levels of opioid receptor activation. However, ultra-low dose naltrexone could not increase the maximal anticonvulsant effect of morphine (1-3 mg/kg), possibly due to a ceiling effect. The proconvulsant effects of morphine on seizure threshold were minimally altered by ultra-low doses of naltrexone while being completely blocked by a higher dose (1 mg/kg) of the antagonist. The present data suggest that ultra-low doses of opioid receptor antagonists may provide a potent strategy to modulate seizure susceptibility, especially in conjunction with very low doses of opioids.
Collapse
Affiliation(s)
- H Honar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Sheng Y, Montplaisir V, Liu XJ. Co-operation of Gsalpha and Gbetagamma in maintaining G2 arrest in Xenopus oocytes. J Cell Physiol 2005; 202:32-40. [PMID: 15389551 DOI: 10.1002/jcp.20084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Progesterone-induced oocyte maturation is thought to involve the inhibition of an oocyte adenylyl cyclase and reduction of intracellular cAMP. Our previous studies demonstrated that injection of inhibitors of G protein betagamma complex induces hormone-independent oocyte maturation. In contrast, over-expression of Xenopus Gbeta1 (xGbeta1), alone or together with bovine Ggamma2, elevates oocyte cAMP and inhibits progesterone-induced oocyte maturation. To further investigate the mechanism of Gbetagamma-induced oocyte maturation, we generated a mutant xGbeta1, substituting Asp-228 for Gly (D228G). An equivalent mutation in the mammalian Gbeta1 results in the loss of its ability to activate adenylyl cyclases. Indeed, co-injection of xGbeta1D228G with Ggamma2 failed to increase oocyte cAMP or inhibit progesterone-induced oocyte maturation. To directly demonstrate that oocytes contained a Gbetagamma-regulated adenylyl cyclase, we analyzed cAMP formation in vitro by using oocyte membrane preparations. Purified brain Gbetagamma complexes significantly activated membrane-bound adenylyl cyclase activities. Multiple adenylyl cyclase isoforms were identified in frog oocytes by PCR using degenerate primers corresponding to highly conserved catalytic amino acid sequences. Among these we identified a partial Xenopus adenylyl cyclase 7 (xAC7) that was 65% identical in amino acid sequence to human AC7. A dominant-negative mutant of xAC7 induced hormone-independent oocyte maturation and accelerated progesterone-induced oocyte maturation. Theses findings suggest that xAC7 is a major component of the G2 arrest mechanism in Xenopus oocytes.
Collapse
Affiliation(s)
- Yinglun Sheng
- Ottawa Health Research Institute, Ottawa Hospital, 1053 Carling Avenue, Ottawa, Canada
| | | | | |
Collapse
|
3
|
Ikeda M, Nelson CS, Shinagawa H, Shinoe T, Sugiyama T, Allen CN, Grandy DK, Yoshioka T. Cyclic AMP regulates the calcium transients released from IP(3)-sensitive stores by activation of rat kappa-opioid receptors expressed in CHO cells. Cell Calcium 2001; 29:39-48. [PMID: 11133354 DOI: 10.1054/ceca.2000.0161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analyzed intracellular Ca(2+)and cAMP levels in Chinese hamster ovary cells expressing a cloned rat kappa opioid receptor (CHO-kappa cells). Although expression of kappa(kappa)-opioid receptors was confirmed with a fluorescent dynorphin analog in almost all CHO-kappa cells, the kappa-specific agonists, U50488H or U69593, induced a Ca(2+) transient only in 35% of the cells. The Ca(2+) response occurred in all-or-none fashion and the half-maximal dosage of U50488H (812.1nM) was higher than that (3.2nM) to inhibit forskolin-stimulated cAMP. The kappa-receptors coupled to G(i/o)proteins since pertussis toxin significantly reduced the U50488H actions on intracellular Ca(2+) and cAMP. The Ca(2+) transient originates from IP(3)-sensitive internal stores since the Ca(2+) response was blocked by a PLC inhibitor (U73122) or by thapsigargin depletion of internal stores while removal of extracellular Ca(2+) had no effect. Interestingly, application of dibutyryl cAMP (+ 56.2%) or 8-bromo-cAMP (+ 174.7%) significantly increased the occurrence of U50488H-induced Ca(2+) mobilization while protein kinase A (PKA) inhibitors, Rp-cAMP (-32.3%) or myr-psi PKA (-73.9%) significantly reduced the response. Therefore, it was concluded that cAMP and PKA activity can regulate the Ca(2+) mobilization. These results suggest that the kappa receptor-linked cAMP cascade regulates the occurrence of kappa-opioid-mediated Ca(2+) mobilization.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Analgesics/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Benzeneacetamides
- Bucladesine/pharmacology
- CHO Cells
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cloning, Molecular
- Colforsin/pharmacology
- Cricetinae
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Peptides
- Pyrrolidines/pharmacology
- Rats
- Receptors, Opioid, kappa/analysis
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Thionucleotides/pharmacology
- Transfection
Collapse
Affiliation(s)
- M Ikeda
- Advanced Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Lee YS, Lee JA, Jung J, Oh U, Kaang BK. The cAMP-dependent kinase pathway does not sensitize the cloned vanilloid receptor type 1 expressed in xenopus oocytes or Aplysia neurons. Neurosci Lett 2000; 288:57-60. [PMID: 10869815 DOI: 10.1016/s0304-3940(00)01208-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Capsaicin-activated channels present in sensory neurons are ligand-gated cation channels that largely account for mediating some types of pain. The cAMP-dependent protein kinase (PKA) signal pathway was suggested to mediate the prostaglandin-induced enhancement of capsaicin-evoked inward current (I(CAP)) in rat sensory neurons. It is not clear, however, whether PKA acts directly on the capsaicin-sensitive channel that is responsible for I(CAP). To address this issue, we overexpressed the cloned capsaicin receptor, VR1, in heterologous expression systems such as Xenopus oocytes or Aplysia R2 neuron and stimulated PKA pathways. As a result, activation of PKA by applying either 8-bromo-cAMP or forskolin with 3-isobutyl-1-methylxanthine or through activation of beta(2) adrenergic receptors failed to enhance I(CAP) in oocytes or R2 neurons expressing VR1. Our results raise two possibilities. (1) Direct phosphorylation of VR1 by PKA may not be responsible for the sensitization; instead, phosphorylation of regulatory proteins associated with VR1 would account for the sensitization of I(CAP) evoked by prostaglandin E(2) in dorsal root ganglion (DRG) neurons. (2) DRG neurons may have a different PKA signaling mechanism that is not replicable in Xenopus oocytes or Aplysia R2 neurons.
Collapse
Affiliation(s)
- Y S Lee
- Molecular Neurobiology Laboratory, Institute of Molecular Biology and Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | |
Collapse
|
5
|
Gintzler AR, Chakrabarti S. Opioid tolerance and the emergence of new opioid receptor-coupled signaling. Mol Neurobiol 2000; 21:21-33. [PMID: 11327148 DOI: 10.1385/mn:21:1-2:021] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multiple cellular adaptations are elicited by chronic exposure to opioids. These include diminution of spare opioid receptors, decreased opioid receptor density, and G-protein content and coupling thereof. All imply that opioid tolefance is a manifestation of a loss of opioid function, i.e., desensitization. Recent observations challenge the exclusiveness of this formulation and indicate that opioid tolerance also results from qualitative changes in opioid signaling. In this article, Gintzler and Chakrabarti discuss the evidence that suggests that opioid tolerance results not only from impaired opioid receptor functionality, but also from altered consequences of coupling. Underlying the latter are fundamental changes in the nature of effectors that are coupled to the opioid receptor/G-protein signaling pathway. These molecular changes include the upregulation of adenylyl cyclase isoforms of the type II family as well as a substantial increase in their phosphorylation state. As a result, there is a shift in opioid receptor/G-protein signaling from predominantly Gialpha inhibitory to Gbetagamma stimulatory following chronic in vivo morphine exposure. These adaptations to chronic morphine indicate the plasticity of opioid-signal transduction mechanisms and the ability of chronic morphine to augment new signaling strategies.
Collapse
Affiliation(s)
- A R Gintzler
- Department of Biochemistry, State University of New York Health Science Center at Brooklyn, 11203, USA.
| | | |
Collapse
|
6
|
Opioid enhancement of calcium oscillations and burst events involving NMDA receptors and L-type calcium channels in cultured hippocampal neurons. J Neurosci 1999. [PMID: 10559380 DOI: 10.1523/jneurosci.19-22-09705.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opioid receptor agonists are known to alter the activity of membrane ionic conductances and receptor-activated channels in CNS neurons and, via these mechanisms, to modulate neuronal excitability and synaptic transmission. In neuronal-like cell lines opioids also have been reported to induce intracellular Ca(2+) signals and to alter Ca(2+) signals evoked by membrane depolarization; these effects on intracellular Ca(2+) may provide an additional mechanism through which opioids modulate neuronal activity. However, opioid effects on resting or stimulated intracellular Ca(2+) levels have not been demonstrated in native CNS neurons. Thus, we investigated opioid effects on intracellular Ca(2+) in cultured rat hippocampal neurons by using fura-2-based microscopic Ca(2+) imaging. The opioid receptor agonist D-Ala(2)-N-Me-Phe(4),Gly-ol(5)-enkephalin (DAMGO; 1 microM) dramatically increased the amplitude of spontaneous intracellular Ca(2+) oscillations in the hippocampal neurons, with synchronization of the Ca(2+) oscillations across neurons in a given field. The effects of DAMGO were blocked by the opioid receptor antagonist naloxone (1 microM) and were dependent on functional NMDA receptors and L-type Ca(2+) channels. In parallel whole-cell recordings, DAMGO enhanced spontaneous, synaptically driven NMDA receptor-mediated burst events, depolarizing responses to exogenous NMDA and current-evoked Ca(2+) spikes. These results show that the activation of opioid receptors can augment several components of neuronal Ca(2+) signaling pathways significantly and, as a consequence, enhance intracellular Ca(2+) signals. These results provide evidence of a novel neuronal mechanism of opioid action on CNS neuronal networks that may contribute to both short- and long-term effects of opioids.
Collapse
|
7
|
Thorlin T, Eriksson PS, Persson PA, Aberg ND, Hansson E, Rönnbäck L. Delta-opioid receptors on astroglial cells in primary culture: mobilization of intracellular free calcium via a pertussis sensitive G protein. Neuropharmacology 1998; 37:299-311. [PMID: 9681928 DOI: 10.1016/s0028-3908(98)00026-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytes in primary culture from rat cerebral cortex were probed concerning the expression of delta-opioid receptors and their coupling to changes in intracellular free calcium concentrations ([Ca2+]i). Fluo-3 or fura-2 based microspectrofluorometry was used for [Ca2+]i measurements on single astrocytes in a mixed astroglial-neuronal culture. Application of the selective delta-opioid receptor agonist, [D-Pen2, D-Pen5]-enkephalin (DPDPE), at concentrations ranging from 10 nM to 100 microM, induced concentration-dependent increases in [Ca2+]i (EC50 = 114 nM). The responses could be divided into two phases, with an initial spike in [Ca2+]i followed by either oscillations or a sustained elevation of [Ca2+]i. These effects were blocked by the selective delta-opioid receptor antagonist ICI 174864 (10 microM). The expression of delta-opioid receptors on astroglial cells was further verified immunohistochemically, using specific antibodies, and by Western blot analyses. Pre-treatment of the cells with pertussis toxin (100 ng/ml, 24 h) blocked the effects of delta-opioid receptor activation, consistent with a Gi- or Go-mediated response. The sustained elevation of [Ca2+]i was not observed in low extracellular Ca2+ and was partly blocked by nifedipine (1 microM), indicating the involvement of L-type Ca2+ channels. Stimulating neurons with DPDPE resulted in a decrease in [Ca2+]i, which may be consistent with the closure of the plasma membrane Ca2+ channels on these cells. The current results suggest a role for astrocytes in the response of the brain to delta-opioid peptides and that these opioid effects in part involve altered astrocytic intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- T Thorlin
- Institute of Neurobiology, Department of Neurobiology, Göteborg University, Sweden.
| | | | | | | | | | | |
Collapse
|
8
|
Kaneko S, Yada N, Fukuda K, Kikuwaka M, Akaike A, Satoh M. Inhibition of Ca2+ channel current by mu- and kappa-opioid receptors coexpressed in Xenopus oocytes: desensitization dependence on Ca2+ channel alpha 1 subunits. Br J Pharmacol 1997; 121:806-12. [PMID: 9208152 PMCID: PMC1564739 DOI: 10.1038/sj.bjp.0701181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Desensitization of mu- and kappa-opioid receptor-mediated inhibition of voltage-dependent Ca2+ channels was studied in a Xenopus oocyte translation system. 2. In the oocytes coexpressing kappa-opioid receptors with N- or Q-type Ca2+ channel alpha 1 and beta subunits, the kappa-agonist, U50488H, inhibited both neuronal Ca2+ channel current responses in a pertussis toxin-sensitive manner and the inhibition was reduced by prolonged agonist exposure. 3. More than 10 min was required to halve the inhibition of Q-type channels by the kappa-agonist. However, the half-life for the inhibition of N-type channels was only 6 +/- 1 min. In addition, in the oocytes coexpressing mu-opioid receptors with N-type or Q-type channels, the uncoupling rate of the mu-receptor-mediated inhibition of N-channels was also faster than that of Q-type channels. 4. In the oocytes coexpressing both mu- and kappa-receptors with N-type channels, stimulation of either receptor resulted in a cross-desensitization of the subsequent response to the other agonist. Treatment of oocytes with either H-8 (100 microM), staurosporine (400 nM), okadaic acid (200 nM), phorbol myristate acetate (5 nM) or forskolin (50 microM) plus phosphodiesterase inhibitor did not affect either the desensitization or the agonist-evoked inhibition of Ca2+ channels. 5. These results suggest that the rate of rapid desensitization is dependent on the alpha 1 subtype of the neuronal Ca2+ channel, and that a common phosphorylation-independent mechanism underlies the heterologous desensitization between opioid receptor subtypes.
Collapse
Affiliation(s)
- S Kaneko
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Wotta DR, Birnbaum AK, Wilcox GL, Elde R, Law PY. mu-opioid receptor regulates CFTR coexpressed in Xenopus oocytes in a cAMP independent manner. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 44:55-65. [PMID: 9030698 DOI: 10.1016/s0169-328x(96)00189-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The objective of this study was to characterize the signaling mechanisms of the mu-opioid receptor in its coupling to the cystic fibrosis transmembrane conductance regulator (CFTR) when coexpressed in Xenopus oocytes. Because oocytes do not contain endogenous cAMP-regulated ion channels, the cAMP-modulated CFTR was coexpressed with receptors as a 'reporter' channel. Agonist treatment of oocytes coexpressing mu-opioid receptors, beta2-adrenergic receptors and CFTR produced Cl- currents in a dose-related manner and immunocytochemical analysis confirmed receptor expression. These data suggest that opioid agonists could activate adenylyl cyclase in this system to elevate cAMP levels. Heterotrimeric G protein betagamma-subunits acting on adenylyl cyclase type II would increase cAMP levels. The probable presence of adenylyl cyclase type II and other components of opioid signal transduction such as G(i alpha2), were demonstrated by RT-PCR. However, measurement of cAMP levels in individual oocytes by radioimmunoassay showed that opioid agonist application to oocytes expressing mu-opioid receptors, beta2-adrenergic receptors and CFTR did not increase cAMP levels, whereas application of the beta2-adrenergic agonist, isoproterenol, or IBMX alone did increase cAMP levels. Opioid-induced CFTR activation was not affected by either application of the broad spectrum kinase inhibitor, H7, nor by application of the specific PKA inhibitor, KT5720. Injection of free betagamma-subunits, which could activate the endogenous type II cyclase, was unable to produce measurable currents in oocytes expressing the CFTR. These studies indicate that opioid activation of the CFTR is not mediated through a cAMP/PKA pathway, by either betagamma-subunit activation of an adenylyl cyclase type II or promiscuous coupling to G(s alpha).
Collapse
Affiliation(s)
- D R Wotta
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
10
|
Sarne Y, Fields A, Keren O, Gafni M. Stimulatory effects of opioids on transmitter release and possible cellular mechanisms: overview and original results. Neurochem Res 1996; 21:1353-61. [PMID: 8947925 DOI: 10.1007/bf02532376] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Opiates and opioid peptides carry out their regulatory effects mainly by inhibiting neuronal activity. At the cellular level, opioids block voltage-dependent calcium channels, activate potassium channels and inhibit adenylate cyclase, thus reducing neurotransmitter release. An increasing body of evidence indicates an additional opposite, stimulatory activity of opioids. The present review summarizes the potentiating effects of opioids on transmitter release and the possible cellular events underlying this potentiation: elevation of cytosolic calcium level (by either activating Ca2+ influx or mobilizing intracellular stores), blockage of K+ channels and stimulation of adenylate cyclase. Biochemical, pharmacological and molecular biology studies suggest several molecular mechanisms of the bimodal activity of opioids, including the coupling of opioid receptors to various GTP-binding proteins, the involvement of different subunits of these proteins, and the activation of several intracellular signal transduction pathways. Among the many experimental preparations used to study the bimodal opioid activity, the SK-N-SH neuroblastoma cell line is presented here as a suitable model for studying the complete chain of events leading from binding to receptors down to regulation of transmitter release, and for elucidating the molecular mechanism involved in the stimulatory effects of opioid agonists.
Collapse
Affiliation(s)
- Y Sarne
- Sackler School of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
11
|
Fukuda K, Kaneko S, Yada N, Kikuwaka M, Akaike A, Satoh M. Cyclic AMP-dependent modulation of N- and Q-type Ca2+ channels expressed in Xenopus oocytes. Neurosci Lett 1996; 217:13-6. [PMID: 8905728 DOI: 10.1016/0304-3940(96)13055-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Xenopus oocytes were used for investigating the cAMP-dependent modulation of N- and Q-type Ca2+ channels. Treatments to increase intracellular cAMP concentration with forskolin (FK) and 3-isobutyl-1-methylxanthine (IBMX) markedly potentiated Q-type Ca2+ channel current in oocytes coexpressing alpha 1A and beta subunits, and the enhancement was reversed by protein kinase A inhibitors. Moderate enhancement was observed by FK+IBMX in N-type channel current, of which potentiation was equivalent to that of endogenous Ca2+ channel current being activated by exogenously-expressed beta subunits. No potentiation was observed in the oocyte-native Ca2+ channel current. These results suggest that Q-type Ca2+ channels are more susceptible to the protein kinase A-mediated facilitation than N-type channels. A significant role of Ca2+ channel beta subunits for the cAMP-dependent positive modulation was also suggested.
Collapse
Affiliation(s)
- K Fukuda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Smart D, Lambert DG. The stimulatory effects of opioids and their possible role in the development of tolerance. Trends Pharmacol Sci 1996; 17:264-9. [PMID: 8756186 DOI: 10.1016/0165-6147(96)10023-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Opioids have stimulatory as well as the traditional inhibitory effects on neurotransmission, but the underlying mechanisms are poorly understood. Here, Darren Smart and David Lambert review the stimulatory effects of opioids on second messengers, including inositol (1,4,5)-trisphosphate (IP3), protein kinase C (PKC), Ca2+, and cAMP, and propose that these coordinated changes at the cellular level underlie the facilitatory effects of opioids on neurotransmission. The evidence for a possible role for these stimulatory effects, particularly the activation of PKC by opioids, in the development of tolerance is also discussed.
Collapse
Affiliation(s)
- D Smart
- Parke-Davis Neuroscience Research Centre, Cambridge University, UK
| | | |
Collapse
|
13
|
Simmons ML, Chavkin C. Endogenous opioid regulation of hippocampal function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:145-96. [PMID: 8894847 DOI: 10.1016/s0074-7742(08)60666-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endogenous opioid peptides modulate neural transmission in the hippocampus. Procnkephalin-derived peptides have been demonstrated to act at mu and delta opioid receptors to inhibit GABA release from inhibitory interneurons, resulting in increased excitability of hippocampal pyramidal cells and dentate gyrus granule cells. Prodynorphin-derived peptides primarily act at presynaptic kappa opioid receptors to inhibit excitatory amino acid release from perforant path and mossy fiber terminals. Opioid receptors reduce membrane excitability by modulating ion conductances, and in this way they may decrease voltage-dependent calcium influx and transmitter release. Synaptic plasticity in the hippocampus also is modulated by endogenous opioids. Enkephalins facilitate long-term potentiation, whereas dynorphins inhibit the induction of this type of neuroplasticity. Further, opioids may play important roles in hippocampal epilepsy. Recurrent seizures induce changes in the expression of opioid peptides and receptors. Also, enkephalins have proconvulsant effects in the epileptic hippocampus, whereas dynorphins may function as endogenous anticonvulsants.
Collapse
Affiliation(s)
- M L Simmons
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
14
|
Kieffer BL. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell Mol Neurobiol 1995; 15:615-35. [PMID: 8719033 DOI: 10.1007/bf02071128] [Citation(s) in RCA: 294] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Opioid peptides are a family of structurally related neuromodulators which play a major role in the control of nociceptive pathways. These peptides act through membrane receptors of the nervous system, defined as mu, delta and kappa and endowed with overlapping but distinct pharmacological, anatomical and functional properties. 2. Recent cloning of an opioid receptor gene family has opened the way to the use of recombinant DNA technology at the receptor level. 3. This review focuses on the molecular cloning and functional characterization of opioid receptors and provides first insights into molecular aspects of opioid peptide recognition and signal transduction mechanisms, using the cloned receptors as investigation tools.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Brain/physiology
- Cloning, Molecular
- GTP-Binding Proteins/physiology
- Humans
- Mice
- Molecular Sequence Data
- Multigene Family
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, mu/chemistry
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- B L Kieffer
- Ecole Supérieure de Biotechnologie de Strabourg, Illkirch France
| |
Collapse
|
15
|
Minami M, Satoh M. Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci Res 1995; 23:121-45. [PMID: 8532211 DOI: 10.1016/0168-0102(95)00933-k] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Opiates like morphine and endogenous opioid peptides exert their pharmacological and physiological effects through binding to their endogenous receptors, opioid receptors. The opioid receptors are classified into at least three types, mu-, delta- and kappa-types. Recently, cDNAs of the opioid receptors have been cloned and have greatly advanced our understanding of their structure, function and expression. This review focuses on the recent advances in the studies on opioid receptors using the cloned cDNAs. We describe the molecular cloning of the opioid receptor gene family and studies of the structure-function relationships, modes of coupling to second messenger systems, pharmacological effects of antisense oligonucleotide and anatomical distributions of opioid receptors.
Collapse
Affiliation(s)
- M Minami
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
16
|
Abstract
Opioid receptors are the primary sites of actions of opiates and endogenous opioid peptides, which have a wide variety of pharmacological and physiological effects. The opioid receptors are classified into at least three subtypes, mu, delta, and kappa, and their cDNAs have been cloned. In this review, we describe the molecular cloning of opioid receptor gene family and studies of the structure-function relationships, modes of coupling to second messenger systems, pharmacological effects of antisense oligonucleotides, and anatomical distribution of opioid receptor mRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Central Nervous System/metabolism
- Ganglia, Spinal/metabolism
- Molecular Sequence Data
- RNA, Messenger/analysis
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Second Messenger Systems/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Satoh
- Department of Molecular Pharmacology, Kyoto University, Japan
| | | |
Collapse
|