1
|
Gordon T. Neurotrophic factor expression in denervated motor and sensory Schwann cells: relevance to specificity of peripheral nerve regeneration. Exp Neurol 2014; 254:99-108. [PMID: 24468476 DOI: 10.1016/j.expneurol.2014.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Tessa Gordon
- Department of Surgery, Division of Plastic Reconstructive Surgery 5549A, The Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
2
|
Guo Y, Yao F, Lu S, Cao DY, Reed WR, Zhao Y. The major histocompatibility complex genes are associated with basal pain sensitivity differences between Dark-Agouti and novel congenic DA.1U rats. Life Sci 2010; 86:972-8. [DOI: 10.1016/j.lfs.2010.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 03/17/2010] [Accepted: 05/07/2010] [Indexed: 11/24/2022]
|
3
|
Parkitna JR, Bilbao A, Rieker C, Engblom D, Piechota M, Nordheim A, Spanagel R, Schütz G. Loss of the serum response factor in the dopamine system leads to hyperactivity. FASEB J 2010; 24:2427-35. [PMID: 20223941 DOI: 10.1096/fj.09-151423] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The serum response factor (SRF) is a key regulator of neural development and cellular plasticity, which enables it to act as a regulator of long-term adaptations in neurons. Here we performed a comprehensive analysis of SRF function in the murine dopamine system. We found that loss of SRF in dopaminoceptive, but not dopaminergic, neurons is responsible for the development of a hyperactivity syndrome, characterized by reduced body weight into adulthood, enhanced motor activity, and deficits in habituation processes. Most important, the hyperactivity also develops when the ablation of SRF is induced in adult animals. On the molecular level, the loss of SRF in dopaminoceptive cells is associated with altered expression of neuronal plasticity-related genes, in particular transcripts involved in calcium ion binding, formation of the cytoskeleton, and transcripts encoding neuropeptide precursors. Furthermore, abrogation of SRF causes specific deficits in activity-dependent transcription, especially a complete lack of psychostimulant-induced expression of the Egr genes. We inferred that alterations in SRF-dependent gene expression underlie the observed hyperactive behavior. Thus, SRF depletion in dopaminoceptive neurons might trigger molecular mechanisms responsible for development of psychopathological conditions involving hyperactivity.
Collapse
Affiliation(s)
- Jan Rodriguez Parkitna
- Molecular Biology of the Cell I, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Pi X, Lee J, Li F, Rosenberg HC. Decreased expression of brain cAMP response element-binding protein gene following pentylenetetrazol seizure. ACTA ACUST UNITED AC 2004; 127:60-7. [PMID: 15306121 DOI: 10.1016/j.molbrainres.2004.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2004] [Indexed: 11/22/2022]
Abstract
The present study investigated whether the expression of the cAMP response element-binding protein (CREB) in the rat brain is altered following an acute self-limited seizure induced by pentylenetetrazol (PTZ). Male rats were injected intraperitoneally with a single convulsive dose (45 mg/kg) of PTZ, and the matched controls were given saline. For immunohistochemistry, animals were perfused with 4% parafomaldehyde at 24 h following PTZ seizures, and CREB immunoreactivity was examined in rat brain. For real-time RT-PCR, animals were sacrificed at 2 and 24 h and 1 week following PTZ seizures. Tissues from different rat brain regions were micropunched and subjected to real-time RT-PCR using Taqman probe. The CREB immunoreactive profiles were significantly decreased in CA3 and dentate gyrus of hippocampal formation, sensory cerebral cortex and thalamus at 24 h after PTZ seizures. Consistent with changes in CREB immunoreactivity, levels of CREB mRNA were significantly decreased in the hippocampus, cerebral cortex, amygdala and thalamus at 24 h after PTZ seizures. No significant change was found for CREB mRNA expression in these regions at 2 h or 1 week following PTZ seizures. These results show that a brief seizure caused a decline in CREB expression up to 24 h later.
Collapse
Affiliation(s)
- Xiujun Pi
- Department of Pharmacology and Therapeutics, Medical College of Ohio, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
Experimental models such as the facial nerve axotomy paradigm in rodents allow the systematic and detailed study of the response of neurones and their microenvironment to various types of challenges. Well-studied experimental examples include peripheral nerve trauma, the retrograde axonal transport of neurotoxins and locally enhanced inflammation following the induction of experimental autoimmune encephalomyelitis in combination with axotomy. These studies have led to novel insights into the regeneration programme of the motoneurone, the role of microglia and astrocytes in synaptic plasticity and the biology of glial cells. Importantly, many of the findings obtained have proven to be valid in other functional systems and even across species barriers. In particular, microglial expression of major histocompatibility complex molecules has been found to occur in response to various types of neuronal damage and is now regarded as a characteristic component of "glial inflammation". It is found in the context of numerous neurodegenerative disorders including Parkinson's and Alzheimer's disease. The detachment of afferent axonal endings from the surface membrane of regenerating motoneurones and their subsequent displacement by microglia ("synaptic stripping") and long-lasting insulation by astrocytes have also been confirmed in humans. The medical implications of these findings are significant. Also, the facial nerve system of rats and mice has become the best studied and most widely used test system for the evaluation of neurotrophic factors.
Collapse
Affiliation(s)
- Linda B Moran
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| | | |
Collapse
|
6
|
Brodie CR, Khaliq M, Yin JCP, Brent Clark H, Orr HT, Boland LM. Overexpression of CREB reduces CRE-mediated transcription: behavioral and cellular analyses in transgenic mice. Mol Cell Neurosci 2004; 25:602-11. [PMID: 15080890 DOI: 10.1016/j.mcn.2003.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 11/18/2022] Open
Abstract
The CREB transcription factor mediates neuronal plasticity in many systems, but the relationship between CREB levels and CRE-mediated transcription in individual neurons in vivo is unclear. In FVB/N nontransgenic mice, we observed that Purkinje cells showed low basal levels of Ser(133)-phosphorylated CREB protein yet displayed strong CRE-directed transcription. Transgenic mice overexpressing CREB in Purkinje cells and dentate gyrus granule cells showed a decreased CRE-lacZ signal in the same cells, indicating repression of ATF/CREB family function. Dentate region long-term potentiation was not altered by these changes in CREB expression. CREB transgenic mice demonstrated an inability to perform the rotarod task, without signs of overt ataxia. Our results demonstrate that the level of phosphorylated CREB protein is not a reliable indicator of CRE-mediated function. Furthermore, we conclude that CRE-mediated transcription may be linked to only a subset of cerebellum-mediated motor behaviors and may not be universally required for long-lasting synaptic potentiation.
Collapse
Affiliation(s)
- Christopher R Brodie
- Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
7
|
Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schütz G. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 2002; 34:245-53. [PMID: 11970866 DOI: 10.1016/s0896-6273(02)00656-6] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biological rhythms are driven in mammals by a central circadian clock located in the suprachiasmatic nucleus (SCN). Light-induced phase shifting of this clock is correlated with phosphorylation of CREB at Ser133 in the SCN. Here, we characterize phosphorylation of CREB at Ser142 and describe its contribution to the entrainment of the clock. In the SCN, light and glutamate strongly induce CREB Ser142 phosphorylation. To determine the physiological relevance of phosphorylation at Ser142, we generated a mouse mutant, CREB(S142A), lacking this phosphorylation site. Light-induced phase shifts of locomotion and expression of c-Fos and mPer1 in the SCN are significantly attenuated in CREB(S142A) mutants. Our findings provide genetic evidence that CREB Ser142 phosphorylation is involved in the entrainment of the mammalian clock and reveal a novel phosphorylation-dependent regulation of CREB activity.
Collapse
Affiliation(s)
- Daniel Gau
- Division of Molecular Biology of the Cell I, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ma W, Quirion R. Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain 2001; 93:295-301. [PMID: 11514088 DOI: 10.1016/s0304-3959(01)00335-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Partial sciatic nerve injury causes neuropathic pain associated with behavioral changes such as spontaneous pain, hyperalgesia and allodynia. Both central and peripheral sensitization of pain pathways are likely to be involved in these alterations. Nerve injury induced plastic changes in the dorsal horn, where the second relay nociceptive neurons are located, may contribute to the central sensitization process. It is thus important to establish the intracellular events through which a partial nerve injury can induce plasticity leading to neuropathic pain. In this study, we investigated whether partial sciatic nerve ligation (PSNL), a well-characterized neuropathic pain model, is able to induce the phosphorylation of a transcription factor, known as the cyclic AMP response element-binding protein (CREB) which is believed to be involved in the transcriptional regulation of many genes. Using immunocytochemistry, we found that 3 weeks following PSNL, the number of phosphorylated (p) CREB-IR cells was significantly increased in the injured side dorsal horn of rats, particularly in the superficial laminae. Interestingly, the majority of pCREB-IR cells expressed protein kinase Cgamma, an enzyme shown to be involved in the development of neuropathic pain in PSNL model. Taken together, these results suggest that increased CREB phosphorylation induced by PSNL may be one of the key molecular events leading to synaptic alterations and persistent pain in the PSNL model of neuropathic pain.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Verdun, Montreal, QC, Canada H4H 1R3
| | | |
Collapse
|
9
|
Ouyang YB, He QP, Zhang XH, Wang GX, Siesjö BK, Hu BR. Alteration of cyclic adenosine monophosphate response element binding protein in rat brain after hypoglycemic coma. J Cereb Blood Flow Metab 2000; 20:1550-6. [PMID: 11083229 DOI: 10.1097/00004647-200011000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the current study, the temporal and regional changes of the transcription factor cyclic adenosine monophosphate response element binding protein (CREB) were investigated in rat brains subjected to 30 minutes of hypoglycemic coma followed by varied periods of recovery using Western blot and confocal microscopy. The total amount of CREB was not altered in any area examined after coma. The level of the phosphorylated form of CREB decreased during coma but rebounded after recovery. In the relatively resistant areas, such as the inner layers of the neocortex and the inner and outer blades of the dentate gyms (DG), phospho-CREB increased greater than the control level after 30 minutes of recovery and continued to increase up to 3 hours of recovery. In contrast, little or no increase of phospho-CREB was observed during the recovery period in the outer layers of the neocortex and at the tip of the DG, that is, regions that are selectively vulnerable to hypoglycemic insults. The current findings suggest that a neuroprotective signaling pathway may be more activated in the resistant regions than in the vulnerable ones after hypoglycemic coma.
Collapse
Affiliation(s)
- Y B Ouyang
- Center for the Study of Neurological Disease, The Queen's Medical Center, Honolulu, Hawaii, USA
| | | | | | | | | | | |
Collapse
|
10
|
Xu M, Ng YK, Leong SK. Distinct subcellular localization and mRNA expression of neuronal nitric oxide synthase in the nucleus dorsalis and red nucleus and their correlation with inducible transcription factors after spinal cord hemisection. Nitric Oxide 2000; 4:483-95. [PMID: 11020337 DOI: 10.1006/niox.2000.0301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported on the differential expression of neuronal nitric oxide synthase (nNOS) in neurons of the nucleus dorsalis (ND) and red nucleus (RN), as well as differential roles of nitric oxide (NO) in these two distinct groups' neurons characterized with different nNOS phenotypes after lower thoracic spinal cord hemisection. To further understand the enzyme, nNOS expression was studied at the subcellular and mRNA levels by using electron microscopic immunohistochemistry (EM-IHC) and in situ hybridization respectively. Possible transcriptional regulation by c-Jun or CREB in the differential nNOS expression in both ND and RN neurons was also studied. nNOS mRNA was not found in the normal ND neurons, but was shown in the normal RN neurons. After spinal cord hemisection, nNOS mRNA was induced in the ipsilateral ND, while upregulated on both sides of the RN, which preceded protein induction or upregulation. By EM-IHC, nNOS immunoreaction products were predominantly bound to the membrane of the mitochondria, rough endoplasmic reticulum (rER), Golgi apparatus, and nuclear envelope in the RN neurons of normal rats as well as rats subjected to spinal cord hemisection. In contrast, nNOS-immunoreactive deposits in the experimental ND neurons were found to be mainly granular, being dispersed throughout the cytoplasmic matrix. It is speculated that the differential subcellular localizationof nNOS indicates that axotomy may trigger different nNOS transcripts and lead to different nNOS isoform expression in the normally non-nNOS- and normally nNOS-containing neurons. c-Jun was induced in the ipsilateral ND neuronsand upregulated only in the contralateral RN neurons. Activation of CREB by phosphorylation was occasionally detectable in the ND neurons, but not in the RN neurons. Double-labeling data showed a large proportion of c-Jun and nNOS colocalization in neurons of the ipsilateral ND and contralateral RN after spinal cord hemisection. However, dissociation of nNOS expression kinetics with c-Jun was observed in the ipsilateral RN. The results implied that nNOS expression might not be under the direct transcriptional regulation by c-Jun, although it seemed to be closely related to the c-Jun expression.
Collapse
Affiliation(s)
- M Xu
- Department of Anatomy, Faculty of Medicine, National University of Singapore, MD10, 4 Medical Drive, 117597, Singapore
| | | | | |
Collapse
|
11
|
Tanaka K, Nagata E, Suzuki S, Dembo T, Nogawa S, Fukuuchi Y. Immunohistochemical analysis of cyclic AMP response element binding protein phosphorylation in focal cerebral ischemia in rats. Brain Res 1999; 818:520-6. [PMID: 10082840 DOI: 10.1016/s0006-8993(98)01263-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of cyclic AMP response element binding protein (CREB) is one of the most important mechanisms controlling various gene transcriptions. In the present study, the phosphorylation of CREB was examined immunohistochemically at 24 h of recirculation following 1.5 h of middle cerebral artery occlusion (MCAO) in rats. MCAO was induced by the intraluminal suture method. The infarct core revealed a significant reduction in the number of immunoreactive cells with the anti-phosphorylated CREB and with the anti-CREB antibody, which binds to both unphosphorylated and phosphorylated CREB. In contrast, the peri-infarct area exhibited a marked increase in the number of immunopositive cells as well as in the intensity of nuclear staining with each antibody, so that almost all of the cells expressing CREB demonstrated phosphorylation of CREB. On the other hand, about half of the CREB immunopositive cells reacted weakly with the anti-phosphorylated CREB antibody in the sham group. These findings indicated that the expression as well as phosphorylation of CREB protein was significantly activated in the regions surrounding the infarct area. Since phosphorylation of CREB has recently been implicated in signal transductions that promote the survival and differentiation of neurons, the present data suggest that tissue repair mechanisms may be markedly activated in the peri-infarct area.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1056] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
13
|
Hermanson O, Larhammar D, Blomqvist A. Preprocholecystokinin mRNA-expressing neurons in the rat parabrachial nucleus: Subnuclear localization, efferent projection, and expression of nociceptive-related intracellular signaling substances. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981019)400:2<255::aid-cne7>3.0.co;2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Panickar KS, Purushotham K, King MA, Rajakumar G, Simpkins JW. Hypoglycemia-induced seizures reduce cyclic AMP response element binding protein levels in the rat hippocampus. Neuroscience 1998; 83:1155-60. [PMID: 9502254 DOI: 10.1016/s0306-4522(97)00466-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic AMP response element binding protein (CREB) is a transcription factor that has been implicated in the activation of protein synthesis required for long-term memory. Since memory deficits are manifest following seizure, we undertook the present study to investigate the effects of hypoglycemia-induced seizure on CREB-immunoreactive neurons in several brain regions. We induced generalized seizures in male Long Evans rats (n=5) by injecting them with insulin (30 IU/kg, i.p). Animals were recovered by administration of 3 ml of 30% glucose within 5 min of the occurrence of seizure. Control animals (n=3) were injected with saline instead of insulin. All animals were perfused 90 min after recovery and the brains processed for CREB immunohistochemistry. Cell counts were determined for CREB-positive neurons using a computer-assisted program. When compared to control animals there was a 50% decrease (P<0.0001) in CREB-positive neurons in the CA1 region of the experimental animals. In the CA3 and dentate gyrus there was a 36% (P<0.001) and 25% decrease (P<0.001), respectively. Given the importance of hippocampus in memory-related processes and evidence that CREB is critical for memory formation, it is possible that seizures interfere with memory by disrupting CREB-dependent transcription.
Collapse
Affiliation(s)
- K S Panickar
- Department of Pharmacology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
15
|
Panickar KS, Guan G, King MA, Rajakumar G, Simpkins JW. 17?-estradiol attenuates CREB decline in the rat hippocampus following seizure. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4695(199712)33:7<961::aid-neu7>3.0.co;2-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Herdegen T, Blume A, Buschmann T, Georgakopoulos E, Winter C, Schmid W, Hsieh TF, Zimmermann M, Gass P. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience 1997; 81:199-212. [PMID: 9300412 DOI: 10.1016/s0306-4522(97)00170-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of the constitutive transcription factors activating transcription factor-2 (ATF-2), serum response factor (SRF) and cAMP/Ca response element binding factor (CREB), and the phosphorylation of SRF and CREB were studied in the untreated adult rat nervous system and following seizure activities and neurodegenerative stimuli. In the untreated rat, intense nuclear SRF immunoreactivity was present in the vast majority of neurons in the forebrain, cortex, striatum, amygdala and hippocampus, and in some scattered neurons in the medulla and spinal cord. In contrast, SRF immunoreactivity was absent in the midline areas of the forebrain, e.g., the globus pallidum and septum, and in the hypothalamus, thalamus, mesencephalon and motoneurons. Nuclear ATF-2 was expressed at high levels in apparently all neurons, but not glial cells, throughout the neuraxis except for those neuronal populations which exhibit a high basal level of c-Jun, i.e. dentate gyrus and the motoneurons of cranial and somatosensory neurons. CREB immunoreactivity was present at a rather uniform intensity in all neuronal and glial cells throughout the neuraxis. Two hours, but not 5 h or 24 h, following systemic application of kainic acid, an increase in SRF was detectable by western blot analysis in hippocampal and cortical homogenates whereas the expression of ATF-2 and CREB did not change. Phosphorylation of CREB at serine 133 and of SRF at serine 103 were studied with specific antisera. In untreated rats, intense phosphoCREB and phosphoSRF immunoreactivities labelled many glial cells and/or neurons with the highest levels in the dentate gyrus, the entorhinal cortex and the retrosplenial cortex. Following kainate-induced seizures, phosphoSRF-IR but not phosphoCREB-IR transiently increased between 0.5 h and 2 h. Following transection of peripheral or central nerve fibres such as optic nerve, medial forebrain bundle, vagal and facial nerve fibres, ATF-2 rapidly decreased in the axotomized neurons during that period when c-Jun was rapidly expressed. SRF remained unchanged and CREB disappeared in some axotomized subpopulations. Similar to axotomy, c-Jun increased and ATF-2 decreased in cultured adult dorsal root ganglion neurons following ultraviolet irradiation. The distribution of SRF and ATF-2 suggests that their putative target genes c-fos, junB, krox-24 and c-jun can be independently regulated from SRF and ATF-2. The suppression of ATF-2 and the expression of c-Jun following axotomy and ultraviolet irradiation might be part of a novel neuronal stress response in the brain that strongly resembles the stress response characterized in non-neuronal cells.
Collapse
Affiliation(s)
- T Herdegen
- Department of Pharmacology, University of Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Houpt TA. CREB phosphorylation in the nucleus of the solitary tract and parabrachial nucleus is not altered by peripheral cholecystokinin that induces c-Fos. Brain Res 1997; 751:143-7. [PMID: 9098578 DOI: 10.1016/s0006-8993(96)01413-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ca ++/cAMP response element binding protein (CREB), phosphoCREB, and c-Fos-like (c-FL) immunoreactivity (IR) were examined in the nucleus of the solitary tract (NTS) and parabrachial nucleus (PBN) after peripheral cholecystokinin (CCK). c-FLIR was observed only after CCK, but CCK did not alter high basal levels of CREB-IR and phosphoCREB-IR. PhosphoCREB may be necessary but is not sufficient to induce c-Fos after CCK injection.
Collapse
Affiliation(s)
- T A Houpt
- E.W. Bourne Behavioral Research Laboratory, Department of Psychiatry, Cornell University Medical College, White Plains, NY 10605, USA.
| |
Collapse
|
18
|
Ambron RT, Walters ET. Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol Neurobiol 1996; 13:61-79. [PMID: 8892336 DOI: 10.1007/bf02740752] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Successful axon regeneration requires that signals from the site of injury reach the nucleus to elicit changes in transcription. In spite of their obvious importance, relatively few of these signals have been identified. Recent work on regeneration in the marine mollusk Aplysia californica has provided several insights into the molecular events that occur in neurons after axon injury. Based on these findings, we propose a model in which axon regeneration is viewed as the culmination of a series of temporally distinct but overlapping phases. Within each phase, specific signals enter the nucleus to prime the cell for the arrival of subsequent signals. The first phase begins with the arrival of injury-induced action potentials, which act via calcium and cAMP to turn on genes used in the early stages of repair. In the next phase, MAP-kinases and other intrinsic constituents activated at the injury site are retrogradely transported through the axon to the nucleus, informing the nucleus of the severity of the axonal injury, reinforcing the earlier events, and triggering additional changes. The third phase is characterized by the arrival of signals that originate from extrinsic growth factors and cytokines released by cells at the site of injury. In the last phase, signals from target-derived growth factors arrive in the cell soma to stop growth. Because many of these events appear to be universal, this framework may be useful in studies of nerve repair in both invertebrates and vertebrates.
Collapse
Affiliation(s)
- R T Ambron
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
19
|
Isaacs KR, de Erausquin G, Strauss KI, Jacobowitz DM, Hanbauer I. Differential effects of excitatory amino acids on mesencephalic neurons expressing either calretinin or tyrosine hydroxylase in primary cultures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 36:114-26. [PMID: 9011746 DOI: 10.1016/0169-328x(95)00252-n] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mesencephalic primary cultures derived from E14 rat embryos, calretinin- and tyrosine hydroxylase-immunoreactive neurons comprised 2% and 5% of the total cell population, respectively, at 6-7 days in vitro. The number of calretinin-immunoreactive neurons was unchanged after a 12- or 24-h exposure to 500 microM kainic acid (KA), but a 50% cell loss was detected after a 48-h exposure to KA. Tyrosine hydroxylase-immunoreactive neurons demonstrated a 50% and 67% cell loss at 24- and 48-h exposures to 500 microM KA. A 500 microM N-methyl-D-aspartic acid (NMDA) incubation for 24 h had no effect on calretinin-immunoreactive cell number, but did significantly reduce tyrosine hydroxylase-immunoreactive cell numbers by 26%. In tyrosine hydroxylase-immunoreactive cells, exposure to KA appeared to stimulate the retraction of the neuritic tree and to cause somatic swelling. In contrast, calretinin-immunoreactive neurons developed larger and more complex neuritic trees after a 24-h exposure to 500 microM KA but not NMDA. Immunohistochemical colocalization studies revealed that all tyrosine hydroxylase-immunoreactive and the majority of calretinin-immunoreactive neurons expressed the glutamate receptor subunits GluR2-R3. Very low levels of NMDAR1 receptor subunits were detected on cells in this culture and GluR4 receptor subunits were not detectable. Our experiments showed that glutamate receptors present in both calretinin- and tyrosine hydroxylase-immunoreactive cells were functional, since phosphorylated cAMP/Ca2+ response element-binding protein levels were increased in both cell types after 10 or 30 min exposures to 500 microM KA. The present results indicate that in the mesencephalic cultures tyrosine hydroxylase-immunoreactive cells are more vulnerable to KA excitotoxicity than calretinin-immunoreactive neurons.
Collapse
Affiliation(s)
- K R Isaacs
- Laboratory of Clinical Science, NIMH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
20
|
Gass P, Herdegen T. Neuronal expression of AP-1 proteins in excitotoxic-neurodegenerative disorders and following nerve fiber lesions. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80004-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Tamotsu S, Schomerus C, Stehle JH, Roseboom PH, Korf HW. Norepinephrine-induced phosphorylation of the transcription factor CREB in isolated rat pinealocytes: an immunocytochemical study. Cell Tissue Res 1995; 282:219-26. [PMID: 8565052 DOI: 10.1007/bf00319113] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the present study we investigated whether norepinephrine, which stimulates melatonin biosynthesis in the mammalian pineal organ, causes phosphorylation of the cyclic AMP responsive element binding protein (CREB) in rat pinealocytes. Cells isolated from the pineal organ of adult male rats and cultured on coated coverslips were treated with norepinephrine, beta- or alpha 1-adrenergic agonists for 12, 5, 10, 20, 30, 60 or 300 min and then immunocytochemically analyzed with an antibody against phosphorylated CREB (p-CREB). Treatment with norepinephrine or beta-adrenergic agonists resulted in a similar, time-dependent induction of p-CREB immunoreactivity, exclusively found in cell nuclei. The alpha 1-adrenergic agonist phenylephrine did not induce p-CREB immunoreactivity at low doses (0.1 microM) or when high doses (10 microM) were applied in combination with a beta-antagonist (propranolol, 0.1 microM). This indicates that induction of CREB phosphorylation is elicited by beta-adrenergic receptor stimulation. The response was first seen after 10 min and reached a maximum after 30 to 60 min when more than 90% of the cells displayed p-CREB immunoreactivity. The intensity of the p-CREB immunoreactivity showed marked cell-to-cell variation, but nearly all immunoreactive cells were identified as pinealocytes by double-labeling with an antibody against the S-antigen, a pinealocyte-specific marker. The results show that norepinephrine stimulation induces p-CREB immunoreactivity by acting upon beta-adrenergic receptors in virtually all rat pinealocytes. The findings support the notion that phosphorylation of CREB is a rather rapid and uniform response of pinealocytes to noradrenergic stimulation and thus is an important link between adrenoreceptor activation and subsequent gene expression in the rat pineal organ.
Collapse
Affiliation(s)
- S Tamotsu
- Section Neurobiology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
22
|
Herdegen T, Zimmermann M. Immediate early genes (IEGs) encoding for inducible transcription factors (ITFs) and neuropeptides in the nervous system: functional network for long-term plasticity and pain. PROGRESS IN BRAIN RESEARCH 1995; 104:299-321. [PMID: 8552775 DOI: 10.1016/s0079-6123(08)61797-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Herdegen
- University of Heidelberg II. Institute of Physiology, Germany
| | | |
Collapse
|
23
|
Herdegen T, Zimmermann M. Expression of c-Jun and JunD transcription factors represent specific changes in neuronal gene expression following axotomy. PROGRESS IN BRAIN RESEARCH 1994; 103:153-71. [PMID: 7886203 DOI: 10.1016/s0079-6123(08)61135-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Herdegen
- II Institute of Physiology, University of Heidelberg, Germany
| | | |
Collapse
|