1
|
Fu Z, Qiu H, Xu Y, Tan C, Wang H. Biological effects, properties and tissue engineering applications of polyhydroxyalkanoates: A review. Int J Biol Macromol 2024; 293:139281. [PMID: 39736299 DOI: 10.1016/j.ijbiomac.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are a group of polymers with a variety of monomers, which are extracted from microorganisms and plants. Due to its good biocompatibility, biodegradability, tunable mechanical property and piezoelectricity, PHAs have been widely used in biomedical fields, such as bone, cartilage, nerve, vascular and skin tissue engineering. This review focuses on the in vivo synthesis, metabolism and biological functions of PHA, and the applications of PHAs in the field of tissue engineering and commercial were also summarized and discussed. Moreover, this review hints the future perspective and research direction of PHA-based materials in the challenging field of tissue engineering. We hope that this review will catalyze the continued advancement and broadening of PHAs' applications in biomedicine.
Collapse
Affiliation(s)
- Zeyu Fu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China
| | - He Qiu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China; Department of Cosmetic and Plastic Surgery, West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuan Xu
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China
| | - Chang Tan
- Beijing Joyinera biomaterial Technology Co., Ltd., Beijing, China.
| | - Hang Wang
- Department of Cosmetic and Plastic Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
4
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
5
|
Chen S, Li Y, Yan E, Lu H, Gao J, Wang Y. A novel polyhydroxyalkanoate/polyvinyl alcohol composite porous membrane via electrospinning and spin coating as potential application for chemotherapy and tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3154-3163. [DOI: 10.1002/pat.6133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 01/06/2025]
Abstract
AbstractPolyhydroxyalkanoate/polyvinyl alcohol (PHA/PVA) composite porous membranes were successfully prepared by coupling of electrospinning and spin‐coating. The resulting composite membranes were characterized by scanning electron microscope (SEM), FT‐IR spectrometer, x‐ray diffraction (XRD), contact angle tester and Brunner–Emmet–Teller (BET). It indicated that the PHA/PVA membrane belonged to a mesoporous material, which can be used as a drug delivery carrier for doxorubicin hydrochloride (DOX). In vitro drug release experiments showed that DOX loaded PHA/PVA composite membranes presented higher DOX release level in acidic environment than that in neutral environment since the degradation rate of the membranes under pH = 4 was significantly higher. And that, the DOX loaded membranes exhibited excellent performance for inhibiting the growth of Caco‐2 cells, which revealed the membranes' biomedical potential for chemotherapy of colon cancer. Meanwhile, in view of the good adhesion of the cells to the membranes, this novel mesoporous material was also perspective in tissue engineering.
Collapse
Affiliation(s)
- Shengnan Chen
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Yuxin Li
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Eryun Yan
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Hong Lu
- College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composition Materials Qiqihar University Qiqihar People's Republic of China
| | - Jianwei Gao
- College of Food and Biological Engineering Qiqihar University Qiqihar People's Republic of China
| | - Yan Wang
- College of Food and Biological Engineering Qiqihar University Qiqihar People's Republic of China
| |
Collapse
|
6
|
Rosa AD, Secco MC, De Cezaro AM, Fischer B, Cansian RL, Junges A, Franceschi E, Backes GT, Valduga E. Encapsulation of olive leaf (Olea europaea) extract using solution-enhanced dispersion by supercritical fluids (SEDS) technique. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Aguilar-Rabiela AE, Homaeigohar S, González-Castillo EI, Sánchez ML, Boccaccini AR. Comparison between the Astaxanthin Release Profile of Mesoporous Bioactive Glass Nanoparticles (MBGNs) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV)/MBGN Composite Microspheres. Polymers (Basel) 2023; 15:polym15112432. [PMID: 37299231 DOI: 10.3390/polym15112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications.
Collapse
Affiliation(s)
- Arturo E Aguilar-Rabiela
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Eduin I González-Castillo
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mirna L Sánchez
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional Quilmes, Bernal B1876, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Caputo MR, Fernández M, Aguirresarobe R, Kovalcik A, Sardon H, Candal MV, Müller AJ. Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate). Polymers (Basel) 2023; 15:polym15081817. [PMID: 37111965 PMCID: PMC10143864 DOI: 10.3390/polym15081817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.
Collapse
Affiliation(s)
- Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - María Virginia Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
9
|
Ribeiro MEA, Checca Huaman NR, Gomez JGC, Rodríguez RJS. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and amino-functionalized nanodiamond bionanocomposites for bone tissue defect repair. Int J Biol Macromol 2023; 226:1041-1053. [PMID: 36435460 DOI: 10.1016/j.ijbiomac.2022.11.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Injection-molded nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with 6 % of 3-hydroxyvalerate (HV) and amino-nanodiamonds (nD-A) were produced and characterized to investigate the effect of functionalized nanodiamonds on mechanical and biological behavior to bone replacement application. To prepare mixtures of PHBHV and nD-A in different concentrations, nD-A was dispersed in chloroform by sonication with 40 % of amplitude. Three specimens were characterized by infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (DRX), differential scanning calorimetry (DSC), 3-point flexural tests, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). FTIR and TGA evidenced the existence of interactions between the nD-A and PHBHV. The crystallinity degree of PHBHV slightly reduced (~9 %) in nanocomposites and the morphology of the crystals changed. Nanocomposites achieved satisfactory dispersion and distribution of nD-A for low concentrations. Elastic modulus (E) increased from 1.96 ± 0.20 (PHBHV) to 2.59 ± 0.19 GPa (PHBHV/1.0%nD-A) (30 %). Despite the relatively limited dispersion, PHBHV/2.0 % nD-A had the best combination of E, strength, and maximum deformation. It had the highest glass transition temperature (43.1 vs 40.3 °C of PHBHV) and the best adhesion coefficient and reinforcement effectiveness. PHBHV-nD-A did not induce toxicity in 7 days and allowed cell fixation and expansion. These bionanocomposites should be considered for supplementary studies for bone tissue engineering.
Collapse
Affiliation(s)
- Maria Eduarda Araújo Ribeiro
- Advanced Materials Laboratory-LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28015-620 Campos dos Goytacazes, RJ, Brazil.
| | - Noemi Raquel Checca Huaman
- Centro Brasileiro de Pesquisas Físicas-CBPF, R. Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ, Brazil
| | | | - Rubén J Sánchez Rodríguez
- Advanced Materials Laboratory-LAMAV, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28015-620 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
10
|
Naseem R, Montalbano G, German MJ, Ferreira AM, Gentile P, Dalgarno K. Influence of PCL and PHBV on PLLA Thermal and Mechanical Properties in Binary and Ternary Polymer Blends. Molecules 2022; 27:7633. [PMID: 36364463 PMCID: PMC9657691 DOI: 10.3390/molecules27217633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2024] Open
Abstract
PLLA, PCL and PHBV are aliphatic polyesters which have been researched and used in a wide range of medical devices, and all three have advantages and disadvantages for specific applications. Blending of these materials is an attractive way to make a material which overcomes the limitations of the individual polymers. Both PCL and PHBV have been evaluated in polymer blends with PLLA in order to provide enhanced properties for specific applications. This paper explores the use of PCL and PHBV together with PLLA in ternary blends with assessment of the thermal, mechanical and processing properties of the resultant polymer blends, with the aim of producing new biomaterials for orthopaedic applications. DSC characterisation is used to demonstrate that the materials can be effectively blended. Blending PCL and PHBV in concentrations of 5-10% with PLLA produces materials with average modulus improved by up to 25%, average strength improved by up to 50% and average elongation at break improved by 4000%, depending on the concentrations of each polymer used. PHBV impacts most on the modulus and strength of the blends, whilst PCL has a greater impact on creep behaviour and viscosity. Blending PCL and PHBV with PLLA offers an effective approach to the development of new polyester-based biomaterials with combinations of mechanical properties which cannot be provided by any of the materials individually.
Collapse
Affiliation(s)
- Raasti Naseem
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Matthew J. German
- School of Dental Sciences, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
11
|
Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. Int J Biol Macromol 2022; 221:1184-1201. [PMID: 36113591 DOI: 10.1016/j.ijbiomac.2022.09.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 01/23/2023]
Abstract
PHA is one of the most promising candidates in bio-polymer family which is biodegradable and environment-friendly in nature. In recent years, it has been applied as a biodegradable alternative for petroleum-based plastic across different domains. In literature, several research groups have scrutinised the biocompatibility and biodegradability of PHA in both in vivo settings as well as in in vitro conditions. Microbial yield polyhydroxyalkanoates (PHAs) are promoted at present as biodegradable plastics. On the other hand, only a limited number of products is being commercially manufactured out of PHAs (e.g., bottles). A succession of microbes (prokaryotes in addition to eukaryotes) has been identified as potential candidates that can disintegrate PHAs. These materials have been successfully employed in packaging industry, medical devices and implants, moulded goods, paper coatings, adhesives, performance additives, mulch films, non-woven fabrics, etc. The present paper reviews and focuses on the potential applications of PHA and its derivatives in different industries.
Collapse
|
12
|
Electrochemical and physicochemical degradability evaluation of printed flexible carbon electrodes in seawater. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Separation of monodisperse poly(3-hydroxybutyrate) particles by fractionation: Theory and practice. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. MATERIALS 2021; 14:ma14226899. [PMID: 34832300 PMCID: PMC8624846 DOI: 10.3390/ma14226899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Injuries of the bone/cartilage and central nervous system are still a serious socio-economic problem. They are an effect of diversified, difficult-to-access tissue structures as well as complex regeneration mechanisms. Currently, commercially available materials partially solve this problem, but they do not fulfill all of the bone/cartilage and neural tissue engineering requirements such as mechanical properties, biochemical cues or adequate biodegradation. There are still many things to do to provide complete restoration of injured tissues. Recent reports in bone/cartilage and neural tissue engineering give high hopes in designing scaffolds for complete tissue regeneration. This review thoroughly discusses the advantages and disadvantages of currently available commercial scaffolds and sheds new light on the designing of novel polymeric scaffolds composed of hydrogels, electrospun nanofibers, or hydrogels loaded with nano-additives.
Collapse
|
15
|
The over-expression of phasin and regulator genes promoting the synthesis of polyhydroxybutyrate in Cupriavidus necator H16 under non-stress conditions. Appl Environ Microbiol 2021; 88:e0145821. [PMID: 34731058 DOI: 10.1128/aem.01458-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cupriavidus necator H16 is an ideal strain for polyhydroxybutyrate (PHB) production from CO2. Low-oxygen-stress can induce PHB synthesis in C. necator H16 while reducing bacterial growth under chemoautotrophic culture. The optimum growth and PHB synthesis of C. necator H16 cannot be achieved simultaneously, which restricts PHB production. The present study was initiated to address the issue through comparative transcriptome and gene function analysis. Firstly, the comparative transcriptome of C. necator H16 chemoautotrophically cultured under low-oxygen-stress and non-stress conditions was studied. Three types of transcription different genes were discovered: PHB enzymatic synthesis, PHB granulation, and regulators. Under low-oxygen-stress condition, acetoacetyl-CoA reductase gene phaB2, PHB synthase gene phaC2, phasins genes phaP1 and phaP2, regulators genes uspA and rpoN were up-regulated 3.0, 2.5, 1.8, 2.7, 3.5, 1.6 folds, respectively. Secondly, the functions of up-regulated genes and their applications in PHB synthesis were further studied. It was found that the over-expression of phaP1, phaP2, uspA, and rpoN can induce PHB synthesis under non-stress condition, while phaB2 and phaC2 have no significant effect. Under the optimum condition, PHB percentage content in C. necator H16 was respectively increased by 37.2%, 28.4%, 15.8%, and 41.0% with the over-expression of phaP1, phaP2, uspA, and rpoN, and the corresponding PHB production increased by 49.8%, 42.9%, 47.0%, and 77.5% under non-stress chemoautotrophic conditions. Similar promotion by phaP1, phaP2, uspA, and rpoN was observed in heterotrophically cultured C. necator H16. The PHB percentage content and PHB production were respectively increased by 54.4% and 103.1% with the over-expression of rpoN under non-stress heterotrophic conditions. Importance Microbial fixation of CO2 is an effective way to reduce greenhouse gases. Some microbes such as C. necator H16 usually accumulate PHB when they grow under stress. Low-oxygen-stress can induce PHB synthesis when C. necator H16 is autotrophically cultured with CO2, H2, and O2, while under stress, growth is restricted and total PHB yield is reduced. Achieving the optimal bacterial growth and PHB synthesis at the same time is an ideal condition for transforming CO2 into PHB by C. necator H16. The present study was initiated to clarify the molecular basis of low-oxygen-stress promoting PHB accumulation and to realize the optimal PHB production by C. necator H16. Genes up-regulated under non-stress conditions were identified through comparative transcriptome analysis and over-expression of phasin and regulator genes were demonstrated to promote PHB synthesis in C. necator H16.
Collapse
|
16
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
17
|
Zeinali R, Khorasani MT, Behnamghader A, Atai M, del Valle L, Puiggalí J. Poly(hydroxybutyrate- co-hydroxyvalerate) Porous Matrices from Thermally Induced Phase Separation. Polymers (Basel) 2020; 12:E2787. [PMID: 33255699 PMCID: PMC7760090 DOI: 10.3390/polym12122787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/08/2023] Open
Abstract
Thermally induced phase separation followed by freeze drying has been used to prepare biodegradable and biocompatible scaffolds with interconnected 3D microporous structures from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) copolymers containing 5 and 12 wt % of 3-hydroxyvalerate (HV). Solutions of PHBV in 1,4-dioxane, underwent phase separation by cooling under two different thermal gradients (at -25 °C and -5 °C). The cloud point and crystallization temperature of the polymer solutions were determined by turbidimetry and differential scanning calorimetry, respectively. Parameters affecting the phase separation mechanism such as variation of both the cooling process and the composition of the PHBV copolymer were investigated. Afterwards, the influence of these variables on the morphology of the porous structure and the final mechanical properties (i.e., rigidity and damping) was evaluated via scanning electron microscopy and dynamic mechanical thermal analysis, respectively. While the morphology of the scaffolds was considerably affected by polymer crystallization upon a slow cooling rate, the effect of solvent crystallization was more evident at either high hydroxyvalerate content (i.e., 12 wt % of HV) or high cooling rate. The decrease in the HV content gave rise to scaffolds with greater stiffness because of their higher degree of crystallinity, being also noticeable the greater consistency of the structure attained when the cooling rate was higher. Scaffolds were fully biocompatible supports for cell adhesion and proliferation in 3D cultures and show potential application as a tool for tissue regeneration.
Collapse
Affiliation(s)
- Reza Zeinali
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | | | - Aliasghar Behnamghader
- Research Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj 3177983634, Iran;
| | - Mohammad Atai
- Department of Polymer Science, Iran Polymer and Petrochemical Institute, Tehran 1497713115, Iran;
| | - Luis del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| |
Collapse
|
18
|
Gigante V, Cinelli P, Righetti MC, Sandroni M, Polacco G, Seggiani M, Lazzeri A. On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoates-Bran Biocomposites. Polymers (Basel) 2020; 12:polym12112615. [PMID: 33172020 PMCID: PMC7694654 DOI: 10.3390/polym12112615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
In this work, processability and mechanical performances of bio-composites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) containing 5, 10, and 15 wt % of bran fibers, untreated and treated with natural carnauba and bee waxes were evaluated. Wheat bran, the main byproduct of flour milling, was used as filler to reduce the final cost of the PHBV-based composites and, in the same time, to find a potential valorization to this agro-food by-product, widely available at low cost. The results showed that the wheat bran powder did not act as reinforcement, but as filler for PHBV, due to an unfavorable aspect ratio of the particles and poor adhesion with the polymeric matrix, with consequent moderate loss in mechanical properties (tensile strength and elongation at break). The surface treatment of the wheat bran particles with waxes, and in particular with beeswax, was found to improve the mechanical performance in terms of tensile properties and impact resistance of the composites, enhancing the adhesion between the PHBV-based polymeric matrix and the bran fibers, as confirmed by predictive analytic models and dynamic mechanical analysis results.
Collapse
Affiliation(s)
- Vito Gigante
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
| | - Patrizia Cinelli
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
- CNR-IPCF, National Research Council—Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy;
- Correspondence: (P.C.); (M.S.)
| | - Maria Cristina Righetti
- CNR-IPCF, National Research Council—Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Marco Sandroni
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
| | - Giovanni Polacco
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
| | - Maurizia Seggiani
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
- Correspondence: (P.C.); (M.S.)
| | - Andrea Lazzeri
- Inter University Consortium of Material Science and Technology, c/o Unit Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (V.G.); (M.S.); (G.P.); (A.L.)
- CNR-IPCF, National Research Council—Institute for Chemical and Physical Processes, Via Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
19
|
|
20
|
Degradability of Biodegradable Soil Moisture Sensor Components and Their Effect on Maize ( Zea mays L.) Growth. SENSORS 2020; 20:s20216154. [PMID: 33138313 PMCID: PMC7663592 DOI: 10.3390/s20216154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/01/2023]
Abstract
Inexpensive and no-maintenance biodegradable soil moisture sensors could improve existing knowledge on spatial and temporal variability of available soil water at field-scale. Such sensors can unlock the full potential of variable-rate irrigation (VRI) systems to optimize water applications in irrigated cropping systems. The objectives of this study were to assess (i) the degradation of soil moisture sensor component materials and (ii) the effects of material degradation on maize (Zea Mays L.) growth and development. This study was conducted in a greenhouse at Colorado State University, Colorado, USA, by planting maize seeds in pots filled with three growing media (field soil, silica sand, and Promix commercial potting media). The degradation rate of five candidate sensor materials (three blends of beeswax and soy wax, balsa wood, and PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate))) was assessed by harvesting sensor materials at four maize growth stages (30, 60, 90, and 120 days after transplanting). All materials under consideration showed stability in terms of mass and dimension except PHBV. PHBV was degraded entirely within 30 days in soil and Promix, and within 60 days in sand. Balsa wood did now show any significant reduction in mass and dimensions in all growth media. Similarly, there was no significant mass loss across wax blends (p = 0.05) at any growth stage, with a few exceptions. Among the wax blends, 3:1 (beeswax:soy wax) was the most stable blend in terms of mass and dimension with no surface cracks, making it a suitable encapsulant for soil sensor. All materials under consideration did not have any significant effect on maize growth (dry biomass, green biomass, and height) as compared to control plants. These results indicated that 3:1 beeswax:soy wax blend, PHBV, and balsa wood could be suitable candidates for various components of biodegradable soil moisture sensors.
Collapse
|
21
|
Optimization and Characterization of PHA (SCL-SCL) Copolymer by Indigenous Bacillus thuringiensis A102 Strain for Biomedical Applications. Curr Microbiol 2020; 77:3978-3989. [PMID: 33021690 DOI: 10.1007/s00284-020-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
PHA is one of the leading commercially important bio-polyesteric compounds piled up as an intracellular lipid-based energy storage compound by numerous microorganisms. An indigenous Gram-positive bacterium isolated from fire ant (Solenopsis invicta) has known to potentially accumulate PHA. Various nutritional elements like carbon, nitrogen, phosphate and C/N ratio were optimized. The indigenous B.t.A102 strain grown in optimized RC medium yielded PHA of about 3.25 g/L. The extracted polymer was characterized by NMR, GC-MS, X-ray diffraction and thermal analysis via TGA & DTA. The characterized PHA was used to prepare scaffold using the solvent casting method. The non-toxic nature of the composite material was evaluated on NIH/3T3 fibroblast cell lines using different staining (like Giemsa staining, AO/EB dual staining, neutral red staining) techniques and cell viability assay. This paper dealt with the optimization of the media components that increase PHA production and primary in vitro testing for its possible application as wound dressing materials.
Collapse
|
22
|
Sosa‐Hernández JE, Villalba‐Rodríguez AM, Romero‐Castillo KD, Zavala‐Yoe R, Bilal M, Ramirez‐Mendoza RA, Parra‐Saldivar R, Iqbal HMN. Poly‐3‐hydroxybutyrate‐based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Kenya D. Romero‐Castillo
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Ricardo Zavala‐Yoe
- Instituto Tecnologico de Monterrey, Campus Ciudad de Mexico Mexico City Mexico
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of Technology Huaian China
| | - Ricardo A. Ramirez‐Mendoza
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Roberto Parra‐Saldivar
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de MonterreySchool of Engineering and Sciences, Campus Monterrey Monterrey Nuevo Leon Mexico
| |
Collapse
|
23
|
Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int J Biol Macromol 2020; 146:596-619. [DOI: 10.1016/j.ijbiomac.2019.12.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
24
|
Bejagam KK, Iverson CN, Marrone BL, Pilania G. Molecular dynamics simulations for glass transition temperature predictions of polyhydroxyalkanoate biopolymers. Phys Chem Chem Phys 2020; 22:17880-17889. [DOI: 10.1039/d0cp03163a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) represent an emerging class of biosynthetic and biodegradable polyesters that exhibit considerable potential to replace petroleum-based plastics towards a sustainable future.
Collapse
Affiliation(s)
- Karteek K. Bejagam
- Materials Science and Technology Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - Carl N. Iverson
- Chemistry Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | | | - Ghanshyam Pilania
- Materials Science and Technology Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| |
Collapse
|
25
|
Ambrosi M, Raudino M, Diañez I, Martínez I. Non-isothermal crystallization kinetics and morphology of poly(3-hydroxybutyrate)/pluronic blends. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Utilization of desugarized sugar beet molasses for the production of poly(3-hydroxybutyrate) by halophilic Bacillus megaterium uyuni S29. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Avugadda SK, Materia ME, Nigmatullin R, Cabrera D, Marotta R, Cabada TF, Marcello E, Nitti S, Artés-Ibañez EJ, Basnett P, Wilhelm C, Teran FJ, Roy I, Pellegrino T. Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:5450-5463. [PMID: 31631940 PMCID: PMC6795213 DOI: 10.1021/acs.chemmater.9b00728] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/25/2019] [Indexed: 05/24/2023]
Abstract
Here, we report a nanoplatform based on iron oxide nanocubes (IONCs) coated with a bioresorbable polymer that, upon exposure to lytic enzymes, can be disassembled increasing the heat performances in comparison with the initial clusters. We have developed two-dimensional (2D) clusters by exploiting benchmark IONCs as heat mediators for magnetic hyperthermia and a polyhydroxyalkanoate (PHA) copolymer, a biodegradable polymer produced by bacteria that can be digested by intracellular esterase enzymes. The comparison of magnetic heat performance of the 2D assemblies with 3D centrosymmetrical assemblies or single IONCs emphasizes the benefit of the 2D assembly. Moreover, the heat losses of 2D assemblies dispersed in water are better than the 3D assemblies but worse than for single nanocubes. On the other hand, when the 2D magnetic beads (2D-MNBs) are incubated with the esterase enzyme at a physiological temperature, their magnetic heat performances began to progressively increase. After 2 h of incubation, specific absorption rate values of the 2D assembly double the ones of individually coated nanocubes. Such an increase can be mainly correlated to the splitting of the 2D-MNBs into smaller size clusters with a chain-like configuration containing few nanocubes. Moreover, 2D-MNBs exhibited nonvariable heat performances even after intentionally inducing their aggregation. Magnetophoresis measurements indicate a comparable response of 3D and 2D clusters to external magnets (0.3 T) that is by far faster than that of single nanocubes. This feature is crucial for a physical accumulation of magnetic materials in the presence of magnetic field gradients. This system is the first example of a nanoplatform that, upon exposure to lytic enzymes, such as those present in a tumor environment, can be disassembled from the initial 2D-MNB organization to chain-like assemblies with clear improvement of the heat magnetic losses resulting in better heat dissipation performances. The potential application of 2D nanoassemblies based on the cleavable PHAs for preserving their magnetic losses inside cells will benefit hyperthermia therapies mediated by magnetic nanoparticles under alternating magnetic fields.
Collapse
Affiliation(s)
- Sahitya Kumar Avugadda
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento di Chimica
e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | | | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - David Cabrera
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Roberto Marotta
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | | | - Elena Marcello
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Simone Nitti
- Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Emilio J. Artés-Ibañez
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes
(MSC) UMR 7057 CNRS and Université Paris Diderot, 75205 Paris Cedex
05, France
| | - Francisco J. Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, C/ Faraday 9, 28049 Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología
(CSIC), Nanobiotecnología (iMdea
Nanociencia), 28049 Madrid, Spain
| | - Ipsita Roy
- School of Life Sciences, College of Liberal
Arts and Sciences, University of Westminster, New Cavendish Street, London W1W 6UW, U.K.
| | | |
Collapse
|
28
|
Kundrat V, Cernekova N, Kovalcik A, Enev V, Marova I. Drug Release Kinetics of Electrospun PHB Meshes. MATERIALS 2019; 12:ma12121924. [PMID: 31207921 PMCID: PMC6631252 DOI: 10.3390/ma12121924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Microbial poly(3-hydroxybutyrate) (PHB) has several advantages including its biocompatibility and ability to degrade in vivo and in vitro without toxic substances. This paper investigates the feasibility of electrospun PHB meshes serving as drug delivery systems. The morphology of the electrospun samples was modified by varying the concentration of PHB in solution and the solvent composition. Scanning electron microscopy of the electrospun PHB scaffolds revealed the formation of different morphologies including porous, filamentous/beaded and fiber structures. Levofloxacin was used as the model drug for incorporation into PHB electrospun meshes. The entrapment efficiency was found to be dependent on the viscosity of the PHB solution used for electrospinning and ranged from 14.4–81.8%. The incorporation of levofloxacin in electrospun meshes was confirmed by Fourier-transform infrared spectroscopy and UV-VIS spectroscopy. The effect of the morphology of the electrospun meshes on the levofloxacin release profile was screened in vitro in phosphate-buffered saline solution. Depending upon the morphology, the electrospun meshes released about 14–20% of levofloxacin during the first 24 h. The percentage of drug released after 13 days increased up to 32.4% and was similar for all tested morphologies. The antimicrobial efficiency of all tested samples independent of the morphology, was confirmed by agar diffusion testing.
Collapse
Affiliation(s)
- Vojtech Kundrat
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Nicole Cernekova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Vojtech Enev
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Ivana Marova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
29
|
Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev Med Devices 2019; 16:467-482. [PMID: 31058550 DOI: 10.1080/17434440.2019.1615439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The applications of naturally obtained polymers are tremendously increased due to them being biocompatible, biodegradable, environmentally friendly and renewable in nature. Among them, polyhydroxyalkanoates are widely studied and they can be utilized in many areas of human life research such as drug delivery, tissue engineering, and other medical applications. AREAS COVERED This review provides an overview of the polyhydroxyalkanoates biosynthesis and their possible applications in drug delivery in the range of micro- and nano-size. Moreover, the possible applications in tissue engineering are covered considering macro- and microporous scaffolds and extracellular matrix analogs. EXPERT COMMENTARY The majority of synthetic plastics are non-biodegradable so, in the last years, a renewed interest is growing to develop alternative processes to produce biologically derived polymers. Among them, PHAs present good properties such as high immunotolerance, low toxicity, biodegradability, so, they are promisingly using as biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Enas Elmowafy
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Abdalla Abdal-Hay
- b Dentistry and Oral Health School , The University of Queensland , Qld , Australia
| | - Athanasios Skouras
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy.,d Department of Life Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Mattia Tiboni
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Luca Casettari
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Vincenzo Guarino
- e Institute of Polymers, composites and Biomaterials , National Research Council of Italy , Naples , Italy
| |
Collapse
|
30
|
Belyamani I, Kim K, Rahimi SK, Sahukhal GS, Elasri MO, Otaigbe JU. Creep, recovery, and stress relaxation behavior of nanostructured bioactive calcium phosphate glass-POSS/polymer composites for bone implants studied under simulated physiological conditions. J Biomed Mater Res B Appl Biomater 2019; 107:2419-2432. [PMID: 30835946 DOI: 10.1002/jbm.b.34335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 11/10/2022]
Abstract
The creep and recovery and the stress relaxation behaviors of poly(butylene adipate-co-terephthalate) (PBAT) and polyhydroxyalkanoates (PHA) binary blends incorporating 30 wt % of a mixture of trisilanolisobutyl polyhedral oligomeric silsesquioxanes (POSS) and calcium phosphate glass (CaP-g) were investigated under simulated physiological and human body temperature conditions. The synergistic effect of PHA and CaP-g/POSS filler remarkably improved the creep behavior of the PBAT matrix and decreased its residual strain, consequently enhancing its elastic recovery. A considerable increase of the relaxation modulus of the hybrid materials was also observed upon incorporation of PHA and CaP-g/POSS. The relaxation modulus of the neat PBAT sample increased from ~60 MPa to ~1600 MPa after addition of 30 wt % CaP-g/POSS and 70 wt % PHA. However, after exposure of the composites to the simulated human body conditions for 14 days, a drop of dynamic mechanical properties of the studied material systems was observed along with formation of a desirable calcium phosphate phase on the material surface. The long-term (i.e., up to 7 × 105 s) viscoelastic behavior of the studied materials was successfully predicted using the time-temperature superposition principle and the obtained creep strain and the relaxation modulus master curves were satisfactorily fitted to the Findley power law equation and the generalized Maxwell model, respectively. This study demonstrates a facile method for tailoring CaP-g/POSS bioactive glasses composition for bone-like apatite formation on biopolymer surfaces. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2419-2432, 2019.
Collapse
Affiliation(s)
- Imane Belyamani
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| | - Kyoungtae Kim
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| | - Shahab Kashani Rahimi
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| | - Gyan S Sahukhal
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, Mississippi 39406
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, Mississippi 39406
| | - Joshua U Otaigbe
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| |
Collapse
|
31
|
Designing Novel Interfaces via Surface Functionalization of Short-Chain-Length Polyhydroxyalkanoates. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/3831251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polyhydroxyalkanoates (PHA), a microbial plastic has emerged as promising biomaterial owing to the broad range of mechanical properties. However, some studies revealed that PHA is hydrophobic and has no recognition site for cell attachment and this is often a limitation in tissue engineering aspects. Owing to this, the polymer is tailored accordingly in order to enhance the biocompatibilityin vivoas well as to suit the intended application. Thus far, these surface modifications have led to PHA being widely used in various biomedical and pharmaceutical applications such as cardiac patches, wound management, nerve, bone, and cartilage repair. This review addresses the surface modification on biomedical applications focusing on short-chain-length PHA such as poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)].
Collapse
|
32
|
Abdelwahab M, Salahuddin N, Gaber M, Mousa M. Poly(3-hydroxybutyrate)/polyethylene glycol-NiO nanocomposite for NOR delivery: Antibacterial activity and cytotoxic effect against cancer cell lines. Int J Biol Macromol 2018; 114:717-727. [DOI: 10.1016/j.ijbiomac.2018.03.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
|
33
|
Polyák P, Dohovits E, Nagy GN, Vértessy BG, Vörös G, Pukánszky B. Enzymatic degradation of poly-[(R)-3-hydroxybutyrate]: Mechanism, kinetics, consequences. Int J Biol Macromol 2018; 112:156-162. [DOI: 10.1016/j.ijbiomac.2018.01.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
|
34
|
Kavitha G, Rengasamy R, Inbakandan D. Polyhydroxybutyrate production from marine source and its application. Int J Biol Macromol 2018; 111:102-108. [DOI: 10.1016/j.ijbiomac.2017.12.155] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
|
35
|
Bahari Javan N, Jafary Omid N, Moosavi Hasab N, Rezaie Shirmard L, Rafiee-Tehrani M, Dorkoosh F. Preparation, statistical optimization and in vitro evaluation of pramipexole prolonged delivery system based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Controlled-Release Matrixes for Drugs Based on Polyamide-Polyhydroxybutyrate Compositions. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Sabarinathan D, Chandrika SP, Venkatraman P, Easwaran M, Sureka CS, Preethi K. Production of polyhydroxybutyrate (PHB) from Pseudomonas plecoglossicida and its application towards cancer detection. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
38
|
Mangeon C, Renard E, Thevenieau F, Langlois V. Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:760-770. [DOI: 10.1016/j.msec.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/09/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023]
|
39
|
Effects of various monomers and micro-structure of polyhydroxyalkanoates on the behavior of endothelial progenitor cells and endothelial cells for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1341-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Ebrahimi T, Aluthge DC, Patrick BO, Hatzikiriakos SG, Mehrkhodavandi P. Air- and Moisture-Stable Indium Salan Catalysts for Living Multiblock PLA Formation in Air. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01939] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tannaz Ebrahimi
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
- Department
of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada, V6T1Z3
| | - Dinesh C. Aluthge
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
| | - Brian O. Patrick
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
| | - Savvas G. Hatzikiriakos
- Department
of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada, V6T1Z3
| | - Parisa Mehrkhodavandi
- Department
of Chemistry, University of British Columbia, Vancouver, BC Canada, V6T1Z1
| |
Collapse
|
41
|
Polyák P, Szemerszki D, Vörös G, Pukánszky B. Mechanism and kinetics of the hydrolytic degradation of amorphous poly(3-hydroxybutyrate). Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Alizadeh B, Bahari Javan N, Akbari Javar H, Khoshayand MR, Dorkoosh F. Prolonged injectable formulation of Nafarelin using in situ gel combination delivery system. Pharm Dev Technol 2017; 23:132-144. [DOI: 10.1080/10837450.2017.1321662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Behnoush Alizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Nika Bahari Javan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Khoshayand
- Department of Drug and Food Control and Pharmaceutical Quality Assurance Research Center, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
43
|
Bagi Z, Ács N, Böjti T, Kakuk B, Rákhely G, Strang O, Szuhaj M, Wirth R, Kovács KL. Biomethane: The energy storage, platform chemical and greenhouse gas mitigation target. Anaerobe 2017; 46:13-22. [PMID: 28341558 DOI: 10.1016/j.anaerobe.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/21/2017] [Accepted: 03/02/2017] [Indexed: 01/10/2023]
Abstract
Results in three areas of anaerobic microbiology in which methane formation and utilization plays central part are reviewed. a.) Bio-methane formation by reduction of carbon dioxide in the power-to-gas process and the various possibilities of improvement of the process is a very intensively studied topic recently. From the numerous potential methods of exploiting methane of biological origin two aspects are discussed in detail. b.) Methane can serve as a platform chemical in various chemical and biochemical synthetic processes. Particular emphasis is put on the biochemical conversion pathways involving methanotrophs and their methane monooxygenase-catalyzed reactions leading to various small molecules and polymeric materials such as extracellular polysaccharides, polyhydroxyalkanoates and proteins. c.) The third area covered concerns methane-consuming reactions and methane emission mitigation. These investigations comprise the anaerobic microbiology of ruminants and approaches to diminishing methane emissions from ruminant animals.
Collapse
Affiliation(s)
- Zoltán Bagi
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Norbert Ács
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Tamás Böjti
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary; Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged 6726, Hungary.
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Roland Wirth
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary.
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Közép Fasor 52, Szeged 6726, Hungary; Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári Krt. 62, Szeged 6726, Hungary; Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza L. Krt. 64, Szeged 6720, Hungary.
| |
Collapse
|
44
|
Polyák P, Rácz P, Rózsa P, Nagy GN, Vértessy BG, Pukánszky B. The novel technique of vapor pressure analysis to monitor the enzymatic degradation of PHB by HPLC chromatography. Anal Biochem 2017; 521:20-27. [DOI: 10.1016/j.ab.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
|
45
|
Ke Y, Zhang X, Ramakrishna S, He L, Wu G. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1107-1119. [DOI: 10.1016/j.msec.2016.03.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/06/2016] [Accepted: 03/31/2016] [Indexed: 01/11/2023]
|
46
|
Monnier A, Rombouts C, Kouider D, About I, Fessi H, Sheibat-Othman N. Preparation and characterization of biodegradable polyhydroxybutyrate-co-hydroxyvalerate/polyethylene glycol-based microspheres. Int J Pharm 2016; 513:49-61. [PMID: 27593898 DOI: 10.1016/j.ijpharm.2016.08.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/25/2023]
Abstract
The in vivo effectiveness of biomolecules may be limited by their rapid diffusion in the body and short half-life time. Encapsulation of these biomolecules allows protecting them against degradation and ensuring a controlled release over time. In this work, the production of polyhydroxybutyrate-co-hydroxyvalerate/polyethylene glycol-based microspheres loaded with heparin by double emulsion-solvent evaporation is investigated. Significant improvements are achieved after blending PHB-HV microspheres with PEG. First of all, an important decrease of the initial burst effect is ensured. Moreover, lower degradation of the microspheres is observed after 30days in the release medium. Finally, the release rate could be controlled using different PEG molecular weights and concentrations. A toxic effect of PHB-HV 30% PEG 1100gmol-1 microspheres is observed whereas PHB-HV and PHB-HV 30% PEG 10,000gmol-1 microspheres are not toxic. These microspheres seem to be most suited for further tissue engineering applications. The effectiveness of direct PEG blending to PHB-HV is proved, limiting the use of chemical reagents for PHB-HV/PEG copolymer synthesis and steps for chemical reagents removal from the copolymer.
Collapse
Affiliation(s)
- Alexandre Monnier
- Université de Lyon, Univ. Lyon 1, CNRS, CPE, UMR 5007, Laboratoire d'Automatisme et de Génie des procédés (LAGEP), 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | | | - Dania Kouider
- Université de Lyon, Univ. Lyon 1, CNRS, CPE, UMR 5007, Laboratoire d'Automatisme et de Génie des procédés (LAGEP), 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Imad About
- Aix Marseille Université, CNRS, ISM UMR 7287, Marseille, France
| | - Hatem Fessi
- Université de Lyon, Univ. Lyon 1, CNRS, CPE, UMR 5007, Laboratoire d'Automatisme et de Génie des procédés (LAGEP), 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Nida Sheibat-Othman
- Université de Lyon, Univ. Lyon 1, CNRS, CPE, UMR 5007, Laboratoire d'Automatisme et de Génie des procédés (LAGEP), 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
47
|
Romero AI, Bermudez JM, Villegas M, Dib Ashur MF, Parentis ML, Gonzo EE. Modeling of Progesterone Release from Poly(3-Hydroxybutyrate) (PHB) Membranes. AAPS PharmSciTech 2016; 17:898-906. [PMID: 26729524 DOI: 10.1208/s12249-015-0410-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 01/24/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) biodegradable polymeric membranes were evaluated as platform for progesterone (Prg)-controlled release. In the design of new drug delivery systems, it is important to understand the mass transport mechanism involved, as well as predict the process kinetics. Drug release experiments were conducted and the experimental results were evaluated using engineering approaches that were extrapolated to the pharmaceutical field by our research group. Membranes were loaded with different Prg concentrations and characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). SEM images showed that membranes have a dense structure before and after the progesterone addition. DSC and FTIR allowed determining the influence of the therapeutic agent in the membrane properties. The in vitro experiments were performed using two different techniques: (A) returning the sample to the receptor solution (constant volume of the delivery medium) and (B) extracting total volume of the receptor solution. In this work, we present a simple and accurate "lumped" second-order kinetic model. This lumped model considers the different mass transport steps involved in drug release systems. The model fits very well the experimental data using any of the two experimental procedures, in the range 0 ≤ t ≤ ∞ or 0 ≤ M t ≤ M ∞. The drug release analysis using our proposed approaches is relevant for establishing in vitro-in vivo correlations in future tests in animals.
Collapse
|
48
|
Lightfoot Vidal S, Rojas C, Bouza Padín R, Pérez Rivera M, Haensgen A, González M, Rodríguez-Llamazares S. Synthesis and characterization of polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for encapsulation of quercetin. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516635839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyhydroxybutyrate- co-hydroxyvalerate has been identified as a useful polymer for biomedical application due to its biocompatibility and processability. Polyhydroxybutyrate- co-hydroxyvalerate nanoparticles loaded with quercetin, an antimicrobial, anti-inflammatory, and antiviral polyphenol with limited solubility, were obtained using a high-speed double-emulsion technique. The nanoparticle size and the dissolution of quercetin were controlled simultaneously through high-speed stirring (15,000 r/min) in the emulsification process. The size range of quercetin-loaded polyhydroxybutyrate- co-hydroxyvalerate nanoparticles was between 250 and 650 nm. Spherical shape with no aggregation of nanoparticles was confirmed by electron microscopy. Loaded nanoparticles showed less thermal degradation than unloaded nanoparticles. An encapsulation efficiency of 51% was found. Most of the quercetin was released from the nanoparticles within the first 5 h of water immersion. A biocompatibility analysis of the nanoparticles showed no cytotoxicity and no significant difference between loaded and unloaded nanoparticles.
Collapse
Affiliation(s)
- Sarah Lightfoot Vidal
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Centro de Investigación de Polímeros Avanzados (CIPA), Concepción, Chile
| | - Claudio Rojas
- Centro de Investigación de Polímeros Avanzados (CIPA), Concepción, Chile
| | - Rebeca Bouza Padín
- Grupo de Polímeros, Departamento de Física, E.U.P. Ferrol, Universidad de A Coruña, Ferrol, Spain
| | - Mónica Pérez Rivera
- Department of Polymers, Faculty of Chemical Science, Universidad de Concepción, Concepción, Chile
| | - Astrid Haensgen
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcelo González
- Laboratorio de Fisiología Vascular, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | | |
Collapse
|
49
|
Bahari Javan N, Rezaie Shirmard L, Jafary Omid N, Akbari Javar H, Rafiee Tehrani M, Abedin Dorkoosh F. Preparation, statistical optimisation andin vitrocharacterisation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/poly (lactic-co-glycolic acid) blend nanoparticles for prolonged delivery of teriparatide. J Microencapsul 2016; 33:460-474. [DOI: 10.1080/02652048.2016.1208296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites with reinforcement by hydroxyapatite using extrusion processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:19-26. [PMID: 27157723 DOI: 10.1016/j.msec.2016.04.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/03/2016] [Accepted: 04/06/2016] [Indexed: 11/20/2022]
Abstract
The aim of this study was to prepare poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV, biocomposites with incorporating various percentages of hydroxyapatite (HAP) using extrusion processing. The biocomposites were produced by melt extrusion of PHBV with untreated HAP and surface-treated HAP crystals. The structure of biopolymer/HAP biocomposites was investigated by XRD, FTIR, DSC and SEM. Silane coupling agent was used for HAP surface treatment in PHBV/HAP composites. Silane-treated HAP nanoparticles yielded nanocomposites characterized by good mechanical performance and fine nanofiller dispersion, as shown by SEM investigations. The Halpin-Tsai and Hui-Shia models were used to evaluate the effect of reinforcement by HAP particles on the elastic modulus of the composites. Micromechanical models for initial composite stiffness showed good correlation with experimental values. Disparities in the Halpin-Tsai model were evident for composite with higher HAP loadings.
Collapse
|