1
|
McCosh RB, O'Bryne KT, Karsch FJ, Breen KM. Regulation of the gonadotropin-releasing hormone neuron during stress. J Neuroendocrinol 2022; 34:e13098. [PMID: 35128742 PMCID: PMC9232848 DOI: 10.1111/jne.13098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
The effect of stress on reproduction and gonadal function has captivated investigators for almost 100 years. Following the identification of gonadotropin-releasing hormone (GnRH) 50 years ago, a niche research field emerged fixated on how stress impairs this central node controlling downstream pituitary and gonadal function. It is now clear that both episodic GnRH secretion in males and females and surge GnRH secretion in females are inhibited during a variety of stress types. There has been considerable advancement in our understanding of numerous stress-related signaling molecules and their ability to impair reproductive neuroendocrine activity during stress. Recently, much attention has turned to the effects of stress on two populations of kisspeptin neurons: the stimulatory afferents to GnRH neurons that regulate pulsatile and surge-type gonadotropin secretion. Indeed, future work is still required to fully construct the neuroanatomical framework underlying stress effects, directly or indirectly, on GnRH neuron function. The present review evaluates and synthesizes evidence related to stress-related signaling molecules acting directly on GnRH neurons. Here, we review the evidence for and against the action of a handful of signaling molecules as inhibitors of GnRH neuron function, including corticotropin-releasing hormone, urocortins, norepinephrine, cortisol/corticosterone, calcitonin gene-related peptide and arginine-phenylalanine-amide-related peptide-3.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, CA, USA
| | - Kevin T O'Bryne
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, UK
| | - Fred J Karsch
- Reproductive Sciences Program and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, CA, USA
| |
Collapse
|
2
|
Spergel DJ. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front Endocrinol (Lausanne) 2019; 10:329. [PMID: 31178828 PMCID: PMC6538683 DOI: 10.3389/fendo.2019.00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons in vivo or ex vivo (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons. However, except for GABA, nitric oxide, and prostaglandin E2, which appear to be essential for normal GnRH neuron activity, GnRH secretion, and fertility in males and/or females, the biological significance of their direct modulation of GnRH neuron activity and/or GnRH secretion in the central regulation of reproduction remains largely unknown and requires further exploration.
Collapse
|
3
|
Molina-Jiménez T, Limón-Morales O, Bonilla-Jaime H. Early postnatal treatment with clomipramine induces female sexual behavior and estrous cycle impairment. Pharmacol Biochem Behav 2018; 166:27-34. [PMID: 29407872 DOI: 10.1016/j.pbb.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
Abstract
Administration of clomipramine (CMI), a tricyclic antidepressant, in early stages of development in rats, is considered an animal model for the study of depression. This pharmacological manipulation has induced behavioral and physiological alterations, i.e., less pleasure-seeking behaviors, despair, hyperactivity, cognitive dysfunction, alterations in neurotransmitter systems and in HPA axis. These abnormalities in adult male rats are similar to the symptoms observed in major depressive disorders. One of the main pleasure-seeking behaviors affected in male rats treated with CMI is sexual behavior. However, to date, no effects of early postnatal CMI treatment have been reported on female reproductive cyclicity and sexual behavior. Therefore, we explored CMI administration in early life (8-21 PN) on the estrous cycle and sexual behavior of adult female rats. Compared to the rats in the early postnatal saline treatment (CTRL group), the CMI rats had fewer estrous cycles, fewer days in the estrous stage, and longer cycles during a 20-day period of vaginal cytology analysis. On the behavioral test, the CMI rats displayed fewer proceptive behaviors (hopping, darting) and had lower lordosis quotients. Also, they usually failed to display lordosis and only rarely manifested marginal or normal lordosis. In contrast, the CTRL rats tended to display normal lordosis. These results suggest that early postnatal CMI treatment caused long-term disruptions of the estrous cycle and female sexual behavior, perhaps by alteration in the hypothalamic-pituitary-gonadal (HPG) axes and in neuronal circuits involved in the regulation of the performance and motivational of sexual behavior as the noradrenergic and serotonergic systems.
Collapse
Affiliation(s)
- Tania Molina-Jiménez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Apartado, Postal 55 535, C.P. 09340 Ciudad de México, Mexico
| | - Ofelia Limón-Morales
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Av Universidad 3000, Cd. Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55 535, C.P. 09340 Ciudad de México, Mexico.
| |
Collapse
|
4
|
Molina-Jímenez T, Landa-Cadena L, Bonilla-Jaime H. Chronic treatment with estradiol restores depressive-like behaviors in female Wistar rats treated neonatally with clomipramine. Horm Behav 2017; 94:61-68. [PMID: 28606740 DOI: 10.1016/j.yhbeh.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 11/30/2022]
Abstract
Neonatal administration of clomipramine (CMI) induces diverse behavioral and neurochemical alterations in adult male rats that resemble major depression disorder. However, the possible behavioral alterations in adult female rats subjected to neonatal treatment with clomipramine are unknown. Therefore, the aim of this study was to explore the effect of neonatal treatment with CMI on adult female rats in relation to locomotion and behavioral despair during the estrus cycle. Also evaluated was the effect of chronic treatment with E2 on these female CMI rats. We found no effects on spontaneous locomotor activity due to neonatal treatment with CMI, or after 21days of E2 administration. In the FST, neonatal treatment with CMI increased immobility and decreased active swimming and climbing behaviors. Influence of the ovarian cycle was detected only in relation to climbing behavior, as the rats in the MD phase displayed less climbing activity. Chronic E2 administration decreased immobility but increased only swimming in CMI rats. These results suggest that neonatal treatment with CMI induces despair-like behavior in female rats, but that chronic E2 administration generates antidepressant-like behavior by decreasing immobility and increasing swimming, perhaps through interaction with the serotonergic system.
Collapse
Affiliation(s)
- Tania Molina-Jímenez
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55 535, C.P. 09340 Ciudad de México, México
| | - Liliana Landa-Cadena
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria Xalapa, Veracruz, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55 535, C.P. 09340 Ciudad de México, México.
| |
Collapse
|
5
|
Varju P, Chang KC, Hrabovszky E, Merchenthaler I, Liposits Z. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1–7 cells. Neurochem Int 2009; 54:119-34. [DOI: 10.1016/j.neuint.2008.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 01/27/2023]
|
6
|
Han SK, Herbison AE. Norepinephrine suppresses gonadotropin-releasing hormone neuron excitability in the adult mouse. Endocrinology 2008; 149:1129-35. [PMID: 18079196 PMCID: PMC6103434 DOI: 10.1210/en.2007-1241] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Norepinephrine (NE) is considered to exert an important modulatory influence upon the activity of GnRH neurons. In the present study, we used a transgenic GnRH-green fluorescent protein mouse model to examine the effects of NE on the electrical excitability of GnRH neurons in male and female mice. Gramicidin-perforated patch recordings demonstrated that NE (10-100 mum) exerted a robust membrane hyperpolarization, with associated suppression of firing, in more than 85% of male prepubertal and adult GnRH neurons (n = 25). The same hyperpolarizing action was observed in female GnRH neurons from diestrous (91%, n = 11), proestrous (50%, n = 14), estrous (77%, n = 13), and ovariectomized (82%, n = 11) mice. A subpopulation (<10%) of silent GnRH neurons in all groups responded to NE with hyperpolarization followed by the initiation of firing upon NE washout. The hyperpolarizing actions of NE were mimicked by alpha1-adrenergic (phenylephrine) and beta-adrenergic (isoproterenol) receptor agonists, but alpha2 receptor activation (guanabenz) had no effect. Approximately 75% of the NE-evoked hyperpolarization was blocked by the alpha1 receptor antagonist prazosin, and 75% of GnRH neurons responded to both phenylephrine and isoproterenol. These findings indicate that NE acts through both alpha1- and beta-adrenergic receptors located on the soma/dendrites of GnRH neurons to directly suppress their excitability throughout the estrous cycle and after ovariectomy. These data force a reanalysis of existing models explaining the effects of NE on gonadotropin secretion.
Collapse
Affiliation(s)
- Seong-Kyu Han
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju, South Korea
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Allan E. Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
7
|
Jacobi JS, Martin C, Nava G, Jeziorski MC, Clapp C, Martínez de la Escalera G. 17-Beta-estradiol directly regulates the expression of adrenergic receptors and kisspeptin/GPR54 system in GT1-7 GnRH neurons. Neuroendocrinology 2007; 86:260-9. [PMID: 17728535 DOI: 10.1159/000107770] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 08/03/2007] [Indexed: 02/03/2023]
Abstract
Estradiol plays a critical role in the feedback regulation of reproduction, in part by modulating the neurosecretory activity of gonadotropin-releasing hormone (GnRH) neurons. While indirect effects of estradiol on GnRH neurons have been clearly demonstrated, direct actions are still controversial. In the current study, we examined direct effects of 17beta-estradiol upon the expression of receptors for afferent signals at the level of the GnRH neuron, using immortalized GT1-7 cells. Using RT-PCR, we confirmed the expression of mRNA for the adrenergic receptors (AR) alpha(1)A-, alpha(1)B-, alpha(1)D-, alpha(2)A-, alpha(2)C-, and beta(1)-AR, and showed for the first time that mRNAs for alpha(2)B-, beta(2)- and beta(3)-AR, for kisspeptin and its receptor GPR54 and for the novel estrogenic receptor GPR30 are expressed in GT1-7 cells. After treatment with 10 nM 17beta-estradiol, alpha(1)B-AR mRNA was significantly increased (14-fold) after 6 h as determined by real-time PCR, while alpha(1)B- and alpha(1)D-AR mRNA were significantly increased (19- and 23-fold, respectively) after 24 h. The expression of KiSS-1 and GPR54 mRNAs were also significantly increased (8- and 6-fold, respectively) after 24 h treatment of GT1-7 cells with estradiol. GPR30 mRNA expression was not affected by estradiol. Our data also showed that kisspeptin-10 (1-10 nM) can significantly stimulate GnRH release and GnRH mRNA expression in GT1-7 cells. These results suggest that the complex physiologic effects of estradiol on the function of the reproductive axis could be mediated partly through direct modulation of the expression of receptors for afferent signals in GnRH neurons.
Collapse
MESH Headings
- Animals
- Cell Line, Transformed
- Estradiol/physiology
- Gene Expression Regulation/physiology
- Gonadotropin-Releasing Hormone/biosynthesis
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Mice
- Neurons/metabolism
- Neurons/physiology
- Neurosecretory Systems/cytology
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/physiology
- Receptors, Adrenergic, alpha/biosynthesis
- Receptors, Adrenergic, alpha/genetics
- Receptors, Adrenergic, alpha/physiology
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Kisspeptin-1
Collapse
Affiliation(s)
- Jessica S Jacobi
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Clarke IJ, Scott CJ, Pereira A, Pompolo S. The role of noradrenaline in the generation of the preovulatory LH surge in the ewe. Domest Anim Endocrinol 2006; 30:260-75. [PMID: 16139986 DOI: 10.1016/j.domaniend.2005.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/20/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an alpha(1)-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50microg) was injected (i.m.) and Doxazosin (100nmol/h) or vehicle was infused into the third ventricle 2-26h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-beta-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Vic. 3168, Australia.
| | | | | | | |
Collapse
|
9
|
Abstract
The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
10
|
Turi GF, Liposits Z, Moenter SM, Fekete C, Hrabovszky E. Origin of neuropeptide Y-containing afferents to gonadotropin-releasing hormone neurons in male mice. Endocrinology 2003; 144:4967-74. [PMID: 12960087 DOI: 10.1210/en.2003-0470] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The origin of neuropeptide Y (NPY) afferents to GnRH neurons was investigated in male mice. Neonatal lesioning of the hypothalamic arcuate nuclei (ARC) with monosodium glutamate markedly reduced the number of NPY fibers in the preoptic area as well as the frequency of their contacts with perikarya and proximal dendrites of GnRH neurons. Dual-label immunofluorescence studies to determine the precise contribution of the ARC to the innervation of GnRH neurons by NPY axons were carried out on transgenic mice in which enhanced green fluorescent protein was expressed under the control of the GnRH promoter (GnRH-enhanced green fluorescent protein mice). The combined application of red Cy3 and blue AMCA fluorochromogenes established that 49.1 +/- 7.3% of NPY axons apposed to green GnRH neurons also contained agouti-related protein (AGRP), a selective marker for NPY axons arising from the ARC. Immunoelectronmicroscopic analysis detected symmetric synapses between AGRP fibers and GnRH-immunoreactive perikarya. Additional triple-fluorescence experiments revealed the presence of dopamine-beta-hydroxylase immunoreactivity within 25.4 +/- 3.3% of NPY afferents to GnRH neurons. This enzyme marker enabled the selective labeling of NPY pathways ascending from noradrenergic/adrenergic cell populations of the brain stem, thus defining a second important source for NPY-containing fibers regulating GnRH cells. The absence of both topographic markers (AGRP and dopamine-beta-hydroxylase) within 26% of NPY contacts suggests that additional sources of NPY fibers to GnRH neurons exist. Future studies will address distinct functions of the two identified NPY systems in the afferent neuronal regulation of the GnRH system.
Collapse
Affiliation(s)
- Gergely F Turi
- Department of Endocrine and Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | | | | | | | | |
Collapse
|
11
|
Kreda SM, Sumner M, Fillo S, Ribeiro CM, Luo GX, Xie W, Daniel KW, Shears S, Collins S, Wetsel WC. alpha(1)-adrenergic receptors mediate LH-releasing hormone secretion through phospholipases C and A(2) in immortalized hypothalamic neurons. Endocrinology 2001; 142:4839-51. [PMID: 11606452 DOI: 10.1210/endo.142.11.8506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Norepinephrine has long been known to stimulate the pulsatile and preovulatory release of LH-releasing hormone (LHRH). In vivo and in vitro studies indicate that these effects are mediated primarily through alpha(1)-adrenergic receptors (alpha(1)-ARs). With the immortalized hypothalamic LHRH neurons, we have found that alpha(1)-adrenergic agents directly stimulate the secretion of LHRH in a dose-dependent manner. Ligand binding and RNA studies demonstrate that the GT1 cells contain both alpha(1A)- and alpha(1B)-ARs. Competition binding experiments show that approximately 75% of the binding is due to alpha(1B)-ARs; the remainder is made up of alpha(1A)-ARs. Receptor activation leads to stimulation of PLC. PLC beta 1 and PLC beta 3 are expressed in GT1 neurons, and these PLCs are probably responsible for the release of diacylglycerol and IP as well as the increase in intracellular calcium. The mobilization of cytoplasmic calcium is sufficient to stimulate cytosolic PLA(2) (cPLA(2)) and release arachidonic acid. A dissection of the contributions of the phospholipases to LHRH secretion suggests that cPLA(2) acts downstream of PLC and that it significantly augments the PLC-stimulated LHRH secretory response. Inasmuch as the alpha(1)-ARs are known to play a critical role in LHRH physiology, we propose that both PLC and cPLA(2) are critical in regulating and amplifying LHRH release.
Collapse
Affiliation(s)
- S M Kreda
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gore AC, Oung T, Yung S, Flagg RA, Woller MJ. Neuroendocrine mechanisms for reproductive senescence in the female rat: gonadotropin-releasing hormone neurons. Endocrine 2000; 13:315-23. [PMID: 11216643 DOI: 10.1385/endo:13:3:315] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Revised: 06/06/2000] [Accepted: 06/23/2000] [Indexed: 11/11/2022]
Abstract
Reproductive aging in female rats is characterized by profound alterations in the neuroendocrine axis. The preovulatory luteinizing hormone (LH) surge is attenuated, and preovulatory expression of the immediate early gene fos in gonadotropin-releasing hormone (GnRH) neurons is substantially reduced in middle-aged compared with young rats. We tested the hypothesis that alterations in GnRH gene expression may be correlated with the attenuation of the LH surge and may be a possible mechanism involved in neuroendocrine senescent changes. Sprague-Dawley rats ages 4 to 5 mo (young), 12-14 mo (middle-aged), or 25 to 26 mo (old) were killed at 10:00 AM or 3:00 PM on proestrus, the day of the LH surge, or diestrus I in cycling rats, and on persistent estrus or persistent diestrus in acyclic rats. RNase protection assays of GnRH mRNA and GnRH primary transcript were performed. GnRH mRNA levels increased significantly with age, whereas GnRH primary transcript levels, an index of GnRH gene transcription, decreased in old compared to young and middle-aged rats. This latter result suggests that an age-related change in GnRH mRNA levels occurs independently of a change in gene transcription, indicating a potential posttranscriptional mechanism. On proestrus, GnRH mRNA levels increased significantly from 10:00 AM to 3:00 PM in young rats. This was in contrast to proestrous middle-aged rats, in which this afternoon increase in GnRH mRNA levels was not observed. Thus, the normal afternoon increase in GnRH mRNA levels on proestrus is disrupted by middle age and may represent a substrate for the attenuation of the preovulatory GnRH/LH surge that occurs in rats of this age, prior to reproductive failure.
Collapse
Affiliation(s)
- A C Gore
- Kastor Neurobiology of Aging Laboratories, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
13
|
Eyigor O, Jennes L. Kainate receptor subunit-positive gonadotropin-releasing hormone neurons express c-Fos during the steroid-induced luteinizing hormone surge in the female rat. Endocrinology 2000; 141:779-86. [PMID: 10650960 DOI: 10.1210/endo.141.2.7299] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the preovulatory and estradiol-progesterone-induced GnRH-LH surge, a subpopulation of GnRH neurons transiently expresses the transcription factor c-fos, which is a useful marker of cell activation. To further characterize this subpopulation of GnRH neurons, multiple immunohistochemical procedures were applied to visualize GnRH, c-Fos, KA2, GluR5, GluR6, and GluR7 receptor subunits during different phases of the estrogen-progesterone-induced LH surge. The results show that the LH surge begins at 1400 h and peaks at 1600 h before returning to baseline late in the evening. At 1400 h, about 50% of the GnRH neurons contained c-Fos, and this percentage remained high at 65% at 1600 and 2000 h. During the surge, 50% of the c-Fos-positive GnRH neurons contained KA2 receptor subunit protein at 1400 h, 65% of the c-Fos-positive GnRH neurons expressed the KA2 subunit at 1600 h, and 50% of the c-Fos-positive GnRH neurons expressed the KA2 subunit at 2000 h. As KA2 subunits require other kainate-preferring subunits to form functional receptor channels, we examined GnRH neurons for the presence of GluR5, GluR6, and GluR7 messenger RNA (mRNA) and protein. The results show that the KA2-containing GnRH neurons also contain GluR5 receptor subunit mRNA and protein, and that these GnRH neurons are c-Fos positive during the steroid-induced LH surge. To determine whether administration of kainate is sufficient to induce c-Fos in GnRH neurons, steroid-primed animals received iv injections of subseizure-inducing amounts of kainic acid and were processed for immunohistochemistry and in situ hybridization. The results show that kainic acid causes a significant increase in circulating LH; however, it does not induce c-Fos in GnRH neurons, nor does it cause an increase in GnRH mRNA. Together, the results suggest that a large subset of GnRH neurons expresses KA2 as well as GluR5 receptor subunits, which would allow the formation of functional glutamate receptor channels, and that this subset of GnRH neurons is activated during the steroid-induced LH surge.
Collapse
Affiliation(s)
- O Eyigor
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington 40536, USA
| | | |
Collapse
|
14
|
Miller MM, Bennett HP, Billiar RB, Franklin KB, Joshi D. Estrogen, the ovary, and neutotransmitters: factors associated with aging. Exp Gerontol 1998; 33:729-57. [PMID: 9951619 DOI: 10.1016/s0531-5565(98)00018-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our studies in the C57BL/6J mouse have been designed to examine the interactions of aging and the ovary, and their mutual effects on neuroendocrine function. In the pituitary, ovarian status and not age determines responsiveness to gonadotropin hormone releasing hormone (GnRH), but estrogen (E2) is an important mediator in CNS changes, and removal of the ovary (OVX) is deleterious to the neuroendocrine hypothalamus. OVX for just six days in young animals results in synaptic loss between noradrenergic terminals and gonadotropin hormone releasing hormone (GnRH) neurons. Long-term OVX, hypothesized to protect against neuroendocrine aging, fails to guard against any studied age-related changes. Some age-related changes occur as early as midlife. Although neuron number remains constant at middle age, opiatergic neurons undergo significant functional changes by producing opiate antagonist peptides. This change appears to be caused by alterations in the prohormone convertases, which cleave propeptide to peptide. Altered peptides may trigger the loss of reproductive capacity. The midlife shift in opiate peptide production is a component of natural developmental processes that begin in the neonate and continue through old age. In the cholinergic system, E2 mediates numbers of cholinergic receptors, cholinergic neurons, and cholinergic-modulated memory systems in both young and old animals. Regardless of age, ovarian steroids, if present at physiologic levels, are beneficial to the neuroendocrine CNS, and long-term deprivation from ovarian-produced factors is deleterious in the systems we have examined. Our studies have shown that deprivation from ovarian steroid hormones in the female appears to be a major factor in the health of the CNS and in events associated with aging.
Collapse
Affiliation(s)
- M M Miller
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
15
|
Hosny S, Jennes L. Identification of alpha1B adrenergic receptor protein in gonadotropin releasing hormone neurones of the female rat. J Neuroendocrinol 1998; 10:687-92. [PMID: 9744486 DOI: 10.1046/j.1365-2826.1998.00256.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noradrenaline is an important neurotransmitter which regulates GnRH release from the median eminence in the female rat during both basal GnRH secretion and the preovulatory or steroid hormone-induced GnRH-mediated LH surge. However, it is not clear at which sites in the brain this predominantly stimulatory influence is exerted nor is it known which adrenergic receptor subtype(s) mediate(s) the effects of noradrenaline. In order to determine if the GnRH neurones in the septum-diagonal band-preoptic area and/or their axon terminals in the median eminence are direct targets for noradrenaline, immunohistochemical triple-labelling studies were conducted to localize simultaneously GnRH peptide, dopamine-beta-hydroxylase and alpha1B adrenergic receptor protein. The results show that about 80% of all GnRH neurones examined contained patches of immunoreactive alpha1B adrenergic receptor protein at or near the plasma membrane and that some of these alpha1B adrenergic receptors were adjacent to dopamine-beta-hydroxylase containing axons. The GnRH neurones which did not contain alpha1B adrenergic receptors were preferentially located in the rostral portion of the septum and diagonal band while all GnRH neurones in the caudal septum, diagonal band and in the preoptic area expressed alpha1B adrenergic receptors. In the median eminence, a few alpha1B adrenergic receptor patches were seen in the external layer and these receptors were only rarely observed to be associated with GnRH containing axon terminals. The results suggest that the effects of noradrenaline on GnRH release are, at least in part, mediated by the activation of alpha1B adrenergic receptors which are located on most GnRH perikarya while the median eminence is not a likely site at which GnRH release is regulated by alpha1B adrenergic receptors.
Collapse
Affiliation(s)
- S Hosny
- Department of Histology, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | | |
Collapse
|