1
|
Hood MN, Ayompe E, Holmes-Hampton GP, Korotcov A, Wuddie K, Aschenake Z, Ahmed AE, Creavalle M, Knollmann-Ritschel B. Preliminary Promising Findings for Manganese Chloride as a Novel Radiation Countermeasure Against Acute Radiation Syndrome. Mil Med 2024; 189:598-607. [PMID: 39160887 DOI: 10.1093/milmed/usae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. MATERIALS AND METHODS All animal procedures were approved by the Institutional Animal Care and Use Committee. Male and female B6D2F1J mice, 10 to 11 weeks old, were used for neurotoxicity studies and temporal effects of Mn. Four groups were evaluated: (1) vehicle injection, (2) dose of 4.5 mg/kg for 3 days, (3) dose of 13.5 mg/kg, and (4) sham. Irradiated mice were exposed to 9.5 Gy whole body Co60 γ-radiation. MRI was performed with a high dose of manganese chloride (MnCl2) (150 mg/kg) to assess the distribution of the MnCl2. RESULTS The mice have promising survival curves (highest survival-13.5 mg/kg dose over 3 days of MnCl2 at 80% [87% female, 73% male] P = 0.0004). The complete blood count (CBC) results demonstrated a typical hematopoietic response in all of the irradiated groups, followed by mildly accelerated recovery by day 28 in the treated groups. No difference between groups was measured by Rota Rod, DigiGait, and Y-maze. Histologic evaluation of the bone marrow sections in the group given 13.5 mg/kg dose over 3 days had the best return to cellularity at 80%. MRI showed a systemic distribution of MnCl2. DISCUSSION The preliminary data suggest that a dose of 13.5 mg/kg of MnCl2 given over 3 days prior to exposure of radiation may have a protective benefit while not exhibiting the neurobehavioral problems. A countermeasure that can prophylactically protect emergency personnel entering an area contaminated with high levels of radiation is needed, especially in light that nuclear accidents are a continued global threat. There is a need for a protective agent with easy long-term storage, easy to transport, easy to administer, and low cost. Histologic evaluation supports the promising effect of MnCl2 in protecting tissue, especially the bone marrow using the dose given over 3 days (4.5 mg/kg per day) of MnCl2. CONCLUSIONS Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
Collapse
Affiliation(s)
- Maureen N Hood
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emmanuel Ayompe
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandru Korotcov
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zemenu Aschenake
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marqus Creavalle
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
2
|
Stability constants and molecular modeling of Cu(II)/AcO and Cu(II)/diclofenac complexes in ethanol. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Mediated kinetic medium effect in the reaction of bis-3,5-di-iso-propylsalicylatozinc(II) with tert-butylperoxyl radicals. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Sedrakyan GZ, Evans FE, Minasyan SH, Tavadyan LA, Wangila GW, Walker RB, Sorenson JRJ. NMR and FTIR studies of coordinate-bonding and intramolecular and intermolecular hydrogen bonding in zinc(II)(3,5-diisopropylsalicylate)2. J COORD CHEM 2010. [DOI: 10.1080/00958970802087086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gegham Z. Sedrakyan
- a Institute of Chemical Physics , National Academy of Sciences , Republic of Armenia, 5/2, P. Sevak Street, Yerevan 0014, Armenia
| | - Frederick E. Evans
- b Division of Chemistry , National Center for Toxicological Research , Jefferson, Arkansas, 72079, USA
| | - Seyran H. Minasyan
- a Institute of Chemical Physics , National Academy of Sciences , Republic of Armenia, 5/2, P. Sevak Street, Yerevan 0014, Armenia
| | - Levon A. Tavadyan
- a Institute of Chemical Physics , National Academy of Sciences , Republic of Armenia, 5/2, P. Sevak Street, Yerevan 0014, Armenia
| | - Grant W. Wangila
- c Department of Chemistry and Physics , University of Arkansas at Pine Bluff , 1200 North University Avenue, Pine Bluff, Arkansas 71601, USA
| | - Richard B. Walker
- c Department of Chemistry and Physics , University of Arkansas at Pine Bluff , 1200 North University Avenue, Pine Bluff, Arkansas 71601, USA
| | - John R. J. Sorenson
- c Department of Chemistry and Physics , University of Arkansas at Pine Bluff , 1200 North University Avenue, Pine Bluff, Arkansas 71601, USA
| |
Collapse
|
5
|
Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8139-44. [PMID: 20583841 PMCID: PMC4075968 DOI: 10.1021/jf1005935] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A thorough study was done to test the reactivity of the Folin-Ciocalteu (F-C) reagent toward various compound classes. Over 80 compounds were tested. Compound classes included phenols, thiols, vitamins, amino acids, proteins, nucleotide bases, unsaturated fatty acids, carbohydrates, organic acids, inorganic ions, metal complexes, aldehydes, and ketones. All phenols, proteins, and thiols tested were reactive toward the reagent. Many vitamin derivatives were also reactive, as were the inorganic ions Fe(+2), Mn(2+), I(-), and SO(3)(2-). Other compounds showing reactivity included the nucleotide base guanine and the trioses glyceraldehyde and dihydroxyacetone. Copper complexation enhanced the reactivity of salicylate derivatives toward the reagent, whereas zinc complexation did not. Several amino acids and sugars that were reported to be reactive toward the F-C reagent in earlier studies were found not to be reactive in this study, at least in the concentrations used. Reaction kinetics of each compound with the F-C reagent were also measured. Most compounds tested showed a biphasic kinetic pattern with half-lives under 1 min. Trolox and ascorbic acid displayed a rapid monophasic pattern in which the reaction reached end point within 1 min. In summary, this study has shown that the F-C reagent is significantly reactive toward other compounds besides phenols. As other investigators have suggested, the F-C assay should be seen as a measure of total antioxidant capacity rather than phenolic content. Because phenolics are the most abundant antioxidants in most plants, it gives a rough approximation of total phenolic content in most cases.
Collapse
Affiliation(s)
- Jace D Everette
- Department of Chemistry and Physics, University of Arkansas, Pine Bluff, AR 71601, USA
| | | | | | | | | | | |
Collapse
|
6
|
Lemoine P, Viossat B, Dung NH, Tomas A, Morgant G, Greenaway FT, Sorenson JRJ. Synthesis, crystal structures, and anti-convulsant activities of ternary [ZnII(3,5-diisopropylsalicylate)2], [ZnII(salicylate)2] and [ZnII(aspirinate)2] complexes. J Inorg Biochem 2004; 98:1734-49. [PMID: 15522401 DOI: 10.1016/j.jinorgbio.2004.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/16/2004] [Accepted: 07/21/2004] [Indexed: 11/18/2022]
Abstract
Following observations that bis(3,5-diisopropylsalicylato)diaquazinc(II), [Zn(II)(3,5-DIPS)(2)(H(2)O)(2)], had anti-convulsant activity, bis(acetylsalicylate)diaquazinc(II), [Zn(II)(aspirinate)(2)(H(2)O)(2)], and the Zn(II) ternary 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neocuproine, NC) or dimethyl sulfoxide (DMSO) complexes of Zn(II)3,5-diisopropylsalicylate, salicylate, and acetylsalicylate were synthesized and spectroscopically characterized. Anti-convulsant and Rotorod toxicity activities of these complexes were determined to examine their anti-convulsant and undesirable central nervous stimulant or depressant activities of these Zn(II) non-steroidal anti-inflammatory agent complexes. Bis(3,5-diisopropylsalicylato)-1,10-phenanthorlinezinc(II), [Zn(II)(3,5-DIPS)(2)(phen)], (1) has one bidentate phen ligand and two mono-deprotonated 3,5-DIPS ligands. One of the carboxylates bonds in an asymmetric chelating mode. The Zn(II) atom exhibits a distorted bicapped rectangular pyramidal environment N(2)O(2)OO (4+1+1 *). In the neocuproine complex, bis(3,5-diisopropylsalicylato)-2,9-dimethyl-1,10-phenanthorlinezinc(II), [Zn(II)(3,5-DIPS)(2)(NC)] (2), the Zn(II) atom has a much more distorted bicapped rectangular pyramidal environment, N(2)O(2)O(2) (4+2 *), compared to 1. The two carboxylate ligands exhibit the same asymmetric coordinating mode with longer metalloelement-oxygen bond distances compared to 1. The space group of [Zn(II)(aspirinate)(2)(H(2)O)(2)] (3), which has been reported as Cc is corrected to C2/c. The zinc atom exhibits a (4+2 *) bicapped square pyramidal environment. While the two ternary phenanthroline-containing complexes, 1 and 2, evidenced weak protection against maximal electroshock (MES)- and subcutaneous Metrazol (scMET) induced seizures, [Zn(II)(3,5-DIPS)(2)(DMSO)(2)], [Zn(II)(aspirinate)(2)(H(2)O)(2)], and bis(salicylato)-1,10-phenanthorlinezinc(II), [Zn(II)(salicylate)(2)(phen)], were found to be particularly useful in protecting against MES and scMET seizures and [Zn(II)(aspirinate)(2)(H(2)O)(2)] and [Zn(II)(salicylate)(2)(phen)] were found to have activity in protecting against Psychomotor seizures, without causing Rotorod toxicity. Activities of these and other Zn(II) complexes of non-steroidal anti-inflammatory agents are consistent with the well-known anti-inflammatory responses of Zn(II)-dependent enzymes. There was also some evidence of Rotorod toxicity consistent with a mechanism of action involving sedative-hypnotic activity of recognized anti-epilepticdrugs.
Collapse
Affiliation(s)
- Pascale Lemoine
- Laboratoire de Cristallographie et RMN biologiques, UMR CNRS 8015, Université René Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Anti-oxidant and pro-oxidant reactivities of copper(II), manganese(II) and iron(III) 3,5-di-i-propylsalicylate chelates during peroxidation of alkylbenzenes. TRANSIT METAL CHEM 2004. [DOI: 10.1007/s11243-004-8775-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Viossat B, Daran JC, Savouret G, Morgant G, Greenaway FT, Dung NH, Pham-Tran VA, Sorenson JRJ. Low-temperature (180 K) crystal structure, electron paramagnetic resonance spectroscopy, and propitious anticonvulsant activities of CuII2(aspirinate)4(DMF)2 and other CuII2(aspirinate)4 chelates. J Inorg Biochem 2003; 96:375-85. [PMID: 12888273 DOI: 10.1016/s0162-0134(03)00153-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this research was to characterize by X-ray crystallography the ternary dimethylformamide (DMF) Cu(II) complex of acetylsalicylic acid (aspirin), in an effort to compare the structure-activity relationships for the anticonvulsant activity of this and other Cu(II)aspirinate chelates. The ternary DMF Cu(II) complex of aspirin was synthesized and crystals grown from a DMF solution were characterized by single crystal X-ray diffraction. This crystalline material was analyzed for anticonvulsant activity in the Maximal Electroshock (MES) Grand Mal and subcutaneous Metrazol (scMET) Petit Mal models of seizure used to detect anticonvulsant activity. The ternary DMF complex was found to be a monomolecular binuclear complex, tetrakis-mu-(acetylsalicylato)bis(dimethylformamido)dicopper(II) [Cu(II)(2)(aspirinate)(4)(DMF)(2)] with the following parameters: monoclinic, space group P2(1)/n, a=12.259 (1), b=10.228 (1), c=16.987 (1) A, beta=92.07 (1) degrees; V=2128.5 (3) A(3); Z=2. The structure was determined at 180 K from 2903 unique reflections (I>1sigma(I)) to the final values of R=0.030 and wR=0.033 using F. This binuclear complex contains four acetylsalicylate bridging ligands which are related to each other in a two by two symmetry center. The four nearest O atoms around each Cu atom form a closely square planar arrangement with the square pyramidal coordination completed by the dimethylformamide oxygen atom occupying an apical position at a distance of 2.154 (1) A. Each Cu atom is displaced towards the DMF ligand by 0.187 A from the plane of the four O atoms. Electron paramagnetic resonance (EPR) spectra of [Cu(II)(2)(aspirinate)(4)(DMF)(2)] crystals show a strong antiferromagnetic coupling of the copper atoms, similar to that observed with other binuclear copper(II)salicylate compounds. Studies used to detect anticonvulsant activity revealed that [Cu(II)(2)(aspirinate)(4)(DMF)(2)] was an effective anticonvulsant in the MES model of seizure but ineffective against scMET-induced seizures. The monomolecular ternary binuclear [Cu(II)(2)(aspirinate)(4)(DMF)(2)] complex is more effective in inhibiting MES-induced seizures than other binuclear or mononuclear Cu(II) chelates of aspirin including: binuclear polymeric [Cu(II)(2)(aspirinate)(4)], [Cu(II)(2)(aspirinate)(4)(H(2)O)], which is anticipated to be less polymeric, and monomolecular ternary [Cu(II)(2)(aspirinate)(4)(DMSO)(2)] and [Cu(II)(aspirinate)(2)(Pyr)(2)]. These and other chelates appear to be more effective in the scMET model of seizure than [Cu(II)(2)(aspirinate)(4)(DMF)(2)]. These structure-activity relationships support the potential efficacy of Cu chelates of aspirin in treating epilepsies.
Collapse
Affiliation(s)
- Bernard Viossat
- Laboratoire de Chimie Générale, Faculté de Médecine et de Pharmacie, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abou-Seif MAM, El-Naggar MM, El-Far M, Ramadan M, Salah N. Prevention of biochemical changes in gamma-irradiated rats by some metal complexes. Clin Chem Lab Med 2003; 41:926-33. [PMID: 12940520 DOI: 10.1515/cclm.2003.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The formation of superoxide partially accounts for the well-known oxygen enhancement of radiation-induced biochemical changes and cell damage. Radioprotective effects of copper (II), manganese (IV) or vanadium (IV) complexes, of superoxide dismutase-mimetic activity, on body weight, survival rate and some biochemical parameters in pre-treated irradiated, untreated irradiated and treated non-irradiated female albino rats have been studied 24 h after whole body gamma-irradiation at a dose level of 6 Gy. Survival time, body weight, red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin (Hb) concentration, percentage of hematocrit (Hct%), reduced glutathione (GSH), serum total protein, albumin, globulin (G), blood urea, creatinine and cholesterol were estimated, as well as the activities of blood superoxide dismutase (SOD), glutamate-oxaloacetic (GOT) and glutamate-pyruvic (GPT) transaminases, and alkaline phosphatase were assessed. A significant decline was shown in body weight, survival rate, the mean values of RBC and WBC counts, Hb and Hct percentages, and GSH concentration, as well as blood SOD activity, in whole body gamma-irradiated rats compared with the control non-irradiated rat group. The mean activity values of alkaline phosphatase, GOT and GPT, as well as the average values of blood urea, creatinine, total cholesterol, total protein and globulin were significantly elevated, while the average values of albumin and the albumin/globulin ratio were decreased in gamma-irradiated rats compared with the corresponding values of the normal control rat group. Pretreatment of rats with either manganese or vanadium complexes resulted in a significant increase in survival rate and body weight over that of the non-treated irradiated rat group. Pretreatment of rats with copper (II), manganese (IV) or vanadium (IV) complexes caused a significant increase in RBC and WBC counts, Hb concentration, HCt (%), GSH content and SOD activity in blood when compared to the irradiated rat group without treatment. The administration of copper (II), manganese (IV) or vanadium (IV) complexes prior to irradiation exposure resulted in a significant decrease in GOT and GPT activities in addition to blood urea, creatinine, cholesterol, globulin and total protein contents, while each complex exhibited a significant increase in plasma alkaline phosphatase, albumin, and the albumin/globulin ratio compared to the untreated irradiated rat group. Administration of vanadium (IV), manganese (IV) or copper (II) complexes in non-irradiated rats caused a significant increase in SOD activity without changing other biochemical parameters compared with the corresponding values of the normal control rat group. We conclude that these metallo-elements, particularly manganese (IV) and vanadium (IV) complexes of 2-methylaminopyridine, have radiation protection and radiation recovery. Furthermore, these metal complexes offer a new approach to overcome the pathological effects of ionizing radiation and suggest their use as a physiological approach to preventing or perhaps predominantly facilitating recovery from radiation injury.
Collapse
Affiliation(s)
- Mosaad A M Abou-Seif
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
10
|
Tavadyan LA, Tonikyan HG, Minasyan SH, Harutyunyan LA, Greenaway FT, Williams S, Gray-Kaufman RA, Sorenson JR. Anti-tert-butylperoxyl radical reactivities of copper(II), manganase(II), and iron(III) 3,5-diisopropylsalicylate chelates. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(01)00657-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Farid Khan M, . MFK, . GMK. Effect of Tetrakis-μ-3,5-di-isopropylsalicylatodiaquodicopper (II) and Sodium
Gold (I) Thiomalate (Myocrisin) on the Metabolism of Plasma Thiol in the
Rheumatoid Arthritis Patients and Volunteer Human Blood. JOURNAL OF MEDICAL SCIENCES 2001. [DOI: 10.3923/jms.2001.235.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Morgant G, Viossat B, Daran JC, Roch-Arveiller M, Giroud JP, Nguyen HD, Sorenson JR. Crystal structure of 180 degree K of bis-3, 5-diisopropylsalicylatobisdimethylsulfoxidozinc(II) and the inhibition of seizures and polymorphonuclear leukocyte chemiluminescence. J Inorg Biochem 1998; 70:137-43. [PMID: 9666572 DOI: 10.1016/s0162-0134(98)10009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoxide (DMSO) formed a ternary complex when mixed with a Zn-3, 5-diisopropylsalicylate complex of unknown structure. The structure of this new ternary complex was characterized in an initial effort to understand the nature of this compound. Since the original complex is known to have anticonvulsant activity, the new ternary complex was also examined for anticonvulsant activity. The original complex was examined for inhibition of the polymorphonuclear leukocyte (PMNL) respiratory burst in an effort to mechanistically account for zinc complex mediated anticonvulsant activity. Dissolving the structurally unknown complex in DMSO gave crystals of a characterizable complex with an empirical formula C30H46O8S2Zn. Crystallographic data: P 1, Z = 2, a = 8.06(1), b = 12.452(2), c = 17.951(2) A, alpha = 74.42(l), beta = 77.07(1), gamma = 89.50(1) degree. The structure was refined to R = 0.03, RW = 0.04 for 3815 independent reflections with I > 2 sigma(I). This complex is mononuclear, with two 3,5-diisopropylsalicylate ligands and two bonded DMSO ligands, Zn(II)(3,5-DIPS)2(DMSO)2, Zn(II) is coordinate covalently bonded to four O atoms in a strongly distorted tetrahedral arrangement. Each DMSO ligates via its sulfoxide O atom while each 3,5-diisopropylsalicylate ligand is monodentate The non-ligating carbonyl O atom of each 3,5-DIPS is free except for an intramolecular hydrogen bond from the hydroxy group of the same ligand. Both 3,5-DIPS acid and Zn(II)(3,5-DIPS)2(DMSO)2 were examined for anticonvulsant activity in the Maximal Electroshock (MES) and Metrazol (MET) models of seizures and found to prevent both types of seizures. The Zn complex was qualitatively and quantitatively more effective than treatment with the free ligand. The influence of a Zn 3,5-DIPS complex and of the ligand 3,5-DIPS on PMNL oxidative metabolism was also studied to help understand the mechanism of anticonvulsant activity of these compounds. A dose-related and significant decrease in chemiluminescent (CL) response to opsonized Zymosan was observed, and the Zn complex was significantly more effective than the free ligand. It is concluded that mononuclear Zn complexes have anticonvulsant activity in Grand Mal and Petit Mal models of seizure possibly due to inhibition of the synthesis of superoxide or down-regulation of Nitric Oxide Synthase in activated phagocytic cells of the central nervous system.
Collapse
Affiliation(s)
- G Morgant
- Laboratoire de Cristallochimie Bioinorganique, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Elnimr T, Abdel-Rahim SM. Effect of gamma-radiation on some elements in certain organs of albino rats. Biol Trace Elem Res 1998; 62:25-30. [PMID: 9630421 DOI: 10.1007/bf02820018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Energy-dispersive X-ray fluorescence (EDXRF) was used to determine the concentrations of Ca, Cl, Fe, Ni, P, K, Se, S, and Zn in heart, lung, liver, spleen, and kidney of adult albino rats 2 mo after they were subject to a single gamma gamma-radiation dose from 60Co at 5 gy. In female rats, K levels were significantly higher and the Ca levels significantly lower for the irradiated animals when compared to age-matched nonirradiated controls. Significant differences between irradiated and nonirradiated tissues were observed for other elements, although no sex-related differences could be found. Tissue damage and disturbances of biological functions were observed as a result of gamma-irradiation.
Collapse
Affiliation(s)
- T Elnimr
- Radioanalysis Research Laboratory, Tanta University, Egypt
| | | |
Collapse
|
14
|
Irving HJ, Wear MA, Simmons H, Tipton LG, Tipton JB, Maddox KM, Willingham WM, Sorenson JRJ. An examination of the radioprotective and radiorecovery activities of Fe(III)(3,5-diisopropylsalicylate)3 and Mn(III)2(II)(μ3-O))(3,5-diisopropylsalicylate)6. Inflammopharmacology 1996. [DOI: 10.1007/bf02755784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Baquial JG, Sorenson JR. Down-regulation of NADPH-diaphorase (nitric oxide synthase) may account for the pharmacological activities of Cu(II)2 (3,5-diisopropylsalicylate)4. J Inorg Biochem 1995; 60:133-48. [PMID: 8530918 DOI: 10.1016/0162-0134(95)00008-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purposes of this work were to develop an enzyme system as an in vitro model of the NADPH-dependent component of nitric oxide synthase (NOS) and examine the plausible down-regulation of this system and brain NOS by copper (II)2(3,5-diisopropylsalicylate)4[Cu(II)2(3,5-DIPS)4] as a mechanism accounting for its analgesic, anticonvulsant, and other pharmacological activities. Porcine heart diaphorase (PHD) was found to oxidize 114 microM NADPH with the corresponding reduction of an equivalent amount of 2,6-dichlorophenolindophenol (DCPIP). Addition of Cu(II)2(3,5-DIPS)4 to the reaction mixture decreased the reduction of DCPIP without substantially affecting the oxidation of NADPH. The IC50 for Cu(II)2(3,5-DIPS)4 in inhibiting the reduction of DCPIP was 1.5 microM. Mechanistically, this inhibition of DCPIP reduction was found to be due to the ability of Cu(II)2(3,5-DIPS)4 to serve as a catalytic electron acceptor for reduced PHD, which was enhanced by the presence of a large concentration of DCPIP and inhibited by a large concentration of NADPH. Oxidation of NADPH by PHD in the absence of DCPIP was linearly related to the concentration of Cu(II)2(3,5-DIPS)4 through the concentration range of 5-25 microM Cu(II)2(3,5-DIPS)4 with 50% recovery of NADPH oxidation by PHD at a concentration of 16 microM Cu(II)2(3,5-DIPS)4. Whole rat brain tissue sections incubated in medium containing an NADPH-generating system and nitroblue tetrazolium chloride (NBT) were less intensely stained when Cu(II)2(3,5-DIPS)4 was added to the medium. It is concluded that Cu(II)2(3,5-DIPS)4 serves as an electron acceptor in down-regulating PHD reduction of DCPIP and in down-regulating NOS in brain tissue sections. A decrease in NO synthesis in animal models of seizure, pain, and other disease states with Cu(II)2(3,5-DIPS)4 may account for the anticonvulsant, analgesic, and other pharmacological activities of this complex.
Collapse
Affiliation(s)
- J G Baquial
- Department of Medicinal Chemistry, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|
16
|
Henderson TD, Henderson RD, Irving HJ, Willingham WM, Sorenson JRJ. Radiorecovery and prophylactic-treatment efficacies of manganese(III)2(II)(μ3-O)(μ-3,5-diisopropylsalicylate)6 in γ-irradiated mice. Inflammopharmacology 1995. [DOI: 10.1007/bf02659121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Irving HJ, Henderson TD, Henderson RD, L.Williams E, Willingham WM, Sorenson JRJ. Comparison of the radiorecovery activity of copper(II)2(3,5-diisopropylsalicylate)4 and copper(II) (chloride)2. Inflammopharmacology 1995. [DOI: 10.1007/bf02659122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|