1
|
Ancu O, Mickute M, Guess ND, Hurren NM, Burd NA, Mackenzie RW. Does high dietary protein intake contribute to the increased risk of developing prediabetes and type 2 diabetes? Appl Physiol Nutr Metab 2020; 46:1-9. [PMID: 32755490 DOI: 10.1139/apnm-2020-0396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a complex metabolic disorder implicated in the development of many chronic diseases. While it is generally accepted that body mass loss should be the primary approach for the management of insulin resistance-related disorders in overweight and obese individuals, there is no consensus among researchers regarding optimal protein intake during dietary restriction. Recently, it has been suggested that increased plasma branched-chain amino acids concentrations are associated with the development of insulin resistance and type 2 diabetes. The exact mechanism by which excessive amino acid availability may contribute to insulin resistance has not been fully investigated. However, it has been hypothesised that mammalian target of rapamycin (mTOR) complex 1 hyperactivation in the presence of amino acid overload contributes to reduced insulin-stimulated glucose uptake because of insulin receptor substrate (IRS) degradation and reduced Akt-AS160 activity. In addition, the long-term effects of high-protein diets on insulin sensitivity during both weight-stable and weight-loss conditions require more research. This review focusses on the effects of high-protein diets on insulin sensitivity and discusses the potential mechanisms by which dietary amino acids can affect insulin signalling. Novelty: Excess amino acids may over-activate mTOR, resulting in desensitisation of IRS-1 and reduced insulin-mediated glucose uptake.
Collapse
Affiliation(s)
- Oana Ancu
- Department of Life Sciences, University of Roehampton, London SW15 4DJ, UK
| | - Monika Mickute
- Diabetes Research Centre, University of Leicester and the NIHR Leicester Biomedical Research Centre, Leicester, LE17RH, UK
| | - Nicola D Guess
- Department of Nutritional Sciences, King's College London, London, WC2R2LS, UK
| | - Nicholas M Hurren
- Department of Life Sciences, University of Roehampton, London SW15 4DJ, UK
| | - Nicholas A Burd
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61820, USA
| | | |
Collapse
|
2
|
Hellmuth C, Kirchberg FF, Lass N, Harder U, Peissner W, Koletzko B, Reinehr T. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children. J Diabetes Res 2016; 2016:2108909. [PMID: 26881241 PMCID: PMC4736430 DOI: 10.1155/2016/2108909] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/28/2015] [Accepted: 09/06/2015] [Indexed: 12/18/2022] Open
Abstract
In obese children, hyperinsulinaemia induces adverse metabolic consequences related to the risk of cardiovascular and other disorders. Branched-chain amino acids (BCAA) and acylcarnitines (Carn), involved in amino acid (AA) degradation, were linked to obesity-associated insulin resistance, but these associations yet have not been studied longitudinally in obese children. We studied 80 obese children before and after a one-year lifestyle intervention programme inducing substantial weight loss >0.5 BMI standard deviation scores in 40 children and no weight loss in another 40 children. At baseline and after the 1-year intervention, we assessed insulin resistance (HOMA index), fasting glucose, HbA1c, 2 h glucose in an oral glucose tolerance test, AA, and Carn. BMI adjusted metabolite levels were associated with clinical markers at baseline and after intervention, and changes with the intervention period were evaluated. Only tyrosine was significantly associated with HOMA (p < 0.05) at baseline and end and with change during the intervention (p < 0.05). In contrast, ratios depicting BCAA metabolism were negatively associated with HOMA at baseline (p < 0.05), but not in the longitudinal profiling. Stratified analysis revealed that the children with substantial weight loss drove this association. We conclude that tyrosine alterations in association with insulin resistance precede alteration in BCAA metabolism. This trial is registered with ClinicalTrials.gov Identifier NCT00435734.
Collapse
Affiliation(s)
- Christian Hellmuth
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany
| | - Franca Fabiana Kirchberg
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany
| | - Nina Lass
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten-Herdecke, Dr. Friedrich Steiner Strasse 5, 45711 Datteln, Germany
| | - Ulrike Harder
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany
| | - Wolfgang Peissner
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Lindwurmstraße 4, 80337 Munich, Germany
- *Berthold Koletzko:
| | - Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents, University of Witten-Herdecke, Dr. Friedrich Steiner Strasse 5, 45711 Datteln, Germany
| |
Collapse
|
3
|
Everman S, Mandarino LJ, Carroll CC, Katsanos CS. Effects of acute exposure to increased plasma branched-chain amino acid concentrations on insulin-mediated plasma glucose turnover in healthy young subjects. PLoS One 2015; 10:e0120049. [PMID: 25781654 PMCID: PMC4363593 DOI: 10.1371/journal.pone.0120049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/02/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity. OBJECTIVE To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans. METHODS Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion. RESULTS Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile - 3rd quartile)] between Control and BCAA in either the 40U ([199 (167-278) vs. 186 (94-308)] or 80 U ([491 (414-548) vs. 478 (409-857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P < 0.05) with no differences between Control and BCAA in either of the experiments (P > 0.05). CONCLUSION Short-term exposure of young healthy subjects to increased plasma BCAA concentrations does not alter the insulin sensitivity of glucose metabolism.
Collapse
Affiliation(s)
- Sarah Everman
- Center for Metabolic and Vascular Biology, Arizona State University/Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
| | - Lawrence J. Mandarino
- Center for Metabolic and Vascular Biology, Arizona State University/Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
- School of Life Sciences, Arizona State University,Tempe, Arizona, United States of America
| | - Chad C. Carroll
- Department of Physiology, Midwestern University, Glendale, Arizona, United States of America
| | - Christos S. Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University/Mayo Clinic in Arizona, Scottsdale, Arizona, United States of America
- School of Life Sciences, Arizona State University,Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
4
|
Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr 2011; 2:445-56. [PMID: 22332087 PMCID: PMC3226382 DOI: 10.3945/an.111.000737] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dysregulation of insulin action is most often considered in the context of impaired glucose homeostasis, with the defining feature of diabetes mellitus being elevated blood glucose concentration. Complications arising from the hyperglycemia accompanying frank diabetes are well known and epidemiological studies point to higher risk toward development of metabolic disease in persons with impaired glucose tolerance. Although the central role of proper blood sugar control in maintaining metabolic health is well established, recent developments have begun to shed light on associations between compromised insulin action [obesity, prediabetes, and type 2 diabetes mellitus (T2DM)] and altered intermediary metabolism of fats and amino acids. For amino acids, changes in blood concentrations of select essential amino acids and their derivatives, in particular BCAA, sulfur amino acids, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, often before the onset of clinically diagnosed T2DM. This review provides an overview of these changes and places recent observations from metabolomics research into the context of historical reports in the areas of biochemistry and nutritional biology. Based on this synthesis, a model is proposed that links the FFA-rich environment of obesity/insulin resistance and T2DM with diminution of BCAA catabolic enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue redox balance (NADH/NAD+).
Collapse
|
5
|
Abstract
Metabolomics--the nontargeted measurement of all metabolites produced by the body--is beginning to show promise in both biomarker discovery and, in the form of pharmacometabolomics, in aiding the choice of therapy for patients with specific diseases. In its two basic forms (pattern recognition and metabolite identification), this developing field has been used to discover potential biomarkers in several renal diseases, including acute kidney injury (attributable to a variety of causes), autosomal dominant polycystic kidney disease and kidney cancer. NMR and gas chromatography or liquid chromatography, together with mass spectrometry, are generally used to separate and identify metabolites. Many hurdles need to be overcome in this field, such as achieving consistency in collection of biofluid samples, controlling for batch effects during the analysis and applying the most appropriate statistical analysis to extract the maximum amount of biological information from the data obtained. Pathway and network analyses have both been applied to metabolomic analysis, which vastly extends its clinical relevance and effects. In addition, pharmacometabolomics analyses, in which a metabolomic signature can be associated with a given therapeutic effect, are beginning to appear in the literature, which will lead to personalized therapies. Thus, metabolomics holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in kidney disease.
Collapse
|
6
|
Abstract
Metabolomics--the nontargeted measurement of all metabolites produced by the body--is beginning to show promise in both biomarker discovery and, in the form of pharmacometabolomics, in aiding the choice of therapy for patients with specific diseases. In its two basic forms (pattern recognition and metabolite identification), this developing field has been used to discover potential biomarkers in several renal diseases, including acute kidney injury (attributable to a variety of causes), autosomal dominant polycystic kidney disease and kidney cancer. NMR and gas chromatography or liquid chromatography, together with mass spectrometry, are generally used to separate and identify metabolites. Many hurdles need to be overcome in this field, such as achieving consistency in collection of biofluid samples, controlling for batch effects during the analysis and applying the most appropriate statistical analysis to extract the maximum amount of biological information from the data obtained. Pathway and network analyses have both been applied to metabolomic analysis, which vastly extends its clinical relevance and effects. In addition, pharmacometabolomics analyses, in which a metabolomic signature can be associated with a given therapeutic effect, are beginning to appear in the literature, which will lead to personalized therapies. Thus, metabolomics holds promise for early diagnosis, increased choice of therapy and the identification of new metabolic pathways that could potentially be targeted in kidney disease.
Collapse
|
7
|
Li J, Wijffels G, Yu Y, Nielsen LK, Niemeyer DO, Fisher AD, Ferguson DM, Schirra HJ. Altered Fatty Acid Metabolism in Long Duration Road Transport: An NMR-based Metabonomics Study in Sheep. J Proteome Res 2011; 10:1073-87. [DOI: 10.1021/pr100862t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juan Li
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Gene Wijffels
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Yihua Yu
- Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P.R. China
| | - Lars K. Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Dominic O. Niemeyer
- CSIRO Livestock Industries, F.M. McMaster Laboratory, Locked Bag 1, Armidale, NSW 2350, Australia
| | - Andrew D. Fisher
- CSIRO Livestock Industries, F.M. McMaster Laboratory, Locked Bag 1, Armidale, NSW 2350, Australia
| | - Drewe M. Ferguson
- CSIRO Livestock Industries, F.M. McMaster Laboratory, Locked Bag 1, Armidale, NSW 2350, Australia
| | - Horst Joachim Schirra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 76, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One 2010; 5:e15234. [PMID: 21170321 PMCID: PMC3000813 DOI: 10.1371/journal.pone.0015234] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/31/2010] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery.
Collapse
Affiliation(s)
- Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, United States of America
| | | | | | | | | | | |
Collapse
|
9
|
Doisaki M, Katano Y, Nakano I, Hirooka Y, Itoh A, Ishigami M, Hayashi K, Goto H, Fujita Y, Kadota Y, Kitaura Y, Bajotto G, Kazama S, Tamura T, Tamura N, Feng GG, Ishikawa N, Shimomura Y. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase kinase in a rat model for type 2 diabetes mellitus at different stages of the disease. Biochem Biophys Res Commun 2010; 393:303-7. [PMID: 20138840 DOI: 10.1016/j.bbrc.2010.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 01/01/2023]
Abstract
Branched-chain alpha-keto acid dehydrogenase (BCKDH) kinase (BDK) is responsible for the regulation of BCKDH complex, which is the rate-limiting enzyme in the catabolism of branched-chain amino acids (BCAAs). In the present study, we investigated the expression and activity of hepatic BDK in spontaneous type 2 diabetes using hyperinsulinemic Zucker diabetic fatty rats aged 9weeks and hyperglycemic, but not hyperinsulinemic rats aged 18weeks. The abundance of hepatic BDK mRNA and total BDK protein did not correlate with changes in serum insulin concentrations. On the other hand, the amount of BDK bound to the complex and its kinase activity were correlated with alterations in serum insulin levels, suggesting that hyperinsulinemia upregulates hepatic BDK. The activity of BDK inversely corresponded with the BCKDH complex activity, which was suppressed in hyperinsulinemic rats. These results suggest that insulin regulates BCAA catabolism in type 2 diabetic rats by modulating the hepatic BDK activity.
Collapse
Affiliation(s)
- Masao Doisaki
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Belabed L, Senon G, Blanc MC, Paillard A, Cynober L, Darquy S. The equivocal metabolic response to endotoxaemia in type 2 diabetic and obese ZDF rats. Diabetologia 2006; 49:1349-59. [PMID: 16622684 DOI: 10.1007/s00125-006-0233-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 02/01/2006] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS The metabolic and endocrine disturbances associated with obesity and type 2 diabetes may impair the normal metabolic response to injury. Our objective was to investigate amino acid metabolism in endotoxaemic type 2 diabetic obese rats. MATERIALS AND METHODS A metabolic study was performed over 4 days using male Zucker diabetic fatty (ZDF) rats (fa/fa) and lean littermates (fa/+) divided into three groups: ad libitum-fed groups which underwent no treatment, lipopolysaccharide (LPS)-treated groups receiving E. coli LPS by i.p. injection, and pair-fed groups to the respective LPS groups. We evaluated the effect of endotoxaemia on body weight, food intake and tissue weights. Nitrogen loss and muscular proteolysis were measured daily by determination of urinary 3-methylhistidine (3-MH) excretion. Plasma, intestine and muscle amino acid levels were measured. RESULTS The data showed that ad libitum-fed ZDF rats had lower plasma arginine and glutamine levels than ad libitum-fed control rats. Compared with control rats, the LPS-treated ZDF rats presented lower thymic involution, a lower 3-MH:creatinine ratio and higher cumulative nitrogen balance. CONCLUSIONS/INTERPRETATION Against our working hypothesis, ZDF rats did not show an impaired metabolic response, and even appeared to be less sensitive to the stress.
Collapse
Affiliation(s)
- L Belabed
- Laboratory of Biological Nutrition, EA 2498, Paris Descartes University, Paris, France.
| | | | | | | | | | | |
Collapse
|