1
|
Lesne E, Cavell BE, Freire-Martin I, Persaud R, Alexander F, Taylor S, Matheson M, van Els CACM, Gorringe A. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front Microbiol 2020; 11:2108. [PMID: 32983069 PMCID: PMC7481377 DOI: 10.3389/fmicb.2020.02108] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite high vaccination coverage, Bordetella pertussis the causative agent of whooping cough is still a health concern worldwide. A resurgence of pertussis cases has been reported, particularly in countries using acellular vaccines with waning immunity and pathogen adaptation thought to be responsible. A better understanding of protective immune responses is needed for the development of improved vaccines. In our study, B. pertussis strain B1917 variants presenting a single gene deletion were generated to analyze the role of vaccine components or candidate vaccine antigens as targets for bactericidal antibodies generated after acellular vaccination or natural infection. Our results show that acellular vaccination generates bactericidal antibodies that are only directed against pertactin. Serum bactericidal assay performed with convalescent samples show that disease induces bactericidal antibodies against Prn but against other antigen(s) as well. Four candidate vaccine antigens (CyaA, Vag8, BrkA, and TcfA) have been studied but were not targets for complement-mediated bactericidal antibodies after natural infection. We confirm that Vag8 and BrkA are involved in complement resistance and would be targeted by blocking antibodies. Our study suggests that the emergence and the widespread circulation of Prn-deficient strains is driven by acellular vaccination and the generation of bactericidal antibodies targeting Prn.
Collapse
Affiliation(s)
- Elodie Lesne
- Public Health England, Porton Down, United Kingdom
| | | | | | - Ruby Persaud
- Public Health England, Porton Down, United Kingdom
| | | | | | | | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | |
Collapse
|
2
|
Hoonakker M, Arciniega J, Hendriksen C. Safety testing of acellular pertussis vaccines: Use of animals and 3Rs alternatives. Hum Vaccin Immunother 2018; 13:2522-2530. [PMID: 28857652 PMCID: PMC5703371 DOI: 10.1080/21645515.2017.1349585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current test of acellular Bordetella pertussis (aP) vaccines for residual pertussis toxin (PTx) is the Histamine Sensitization test (HIST), based on the empirical finding that PTx sensitizes mice to histamine. Although HIST has ensured the safety of aP vaccines for years, it is criticized for the limited understanding of how it works, its technical difficulty, and for animal welfare reasons. To estimate the number of mice used worldwide for HIST, we surveyed major aP manufacturers and organizations performing, requiring, or recommending the test. The survey revealed marked regional differences in regulatory guidelines, including the number of animals used for a single test. Based on information provided by the parties surveyed, we estimated the worldwide number of mice used for testing to be 65,000 per year: ∼48,000 by manufacturers and ∼17,000 by national control laboratories, although the latter number is more affected by uncertainty, due to confidentiality policies. These animals covered the release of approximately 850 final lots and 250 in-process lots of aP vaccines yearly. Although there are several approaches for HIST refinement and reduction, we discuss why the efforts needed for validation and implementation of these interim alternatives may not be worthwhile, when there are several in vitro alternatives in various stages of development, some already fairly advanced. Upon implementation, one or more of these replacement alternatives can substantially reduce the number of animals currently used for the HIST, although careful evaluation of each alternative's mechanism and its suitable validation will be necessary in the path to implementation.
Collapse
Affiliation(s)
- Marieke Hoonakker
- a Institute for Translational Vaccinology (Intravacc) , Bilthoven , The Netherlands
| | - Juan Arciniega
- b United States Food and Drug Administration Center for Biologics Evaluation and Research, Silver Spring , MD , USA
| | - Coenraad Hendriksen
- a Institute for Translational Vaccinology (Intravacc) , Bilthoven , The Netherlands
| |
Collapse
|
3
|
Gasperini G, Biagini M, Arato V, Gianfaldoni C, Vadi A, Norais N, Bensi G, Delany I, Pizza M, Aricò B, Leuzzi R. Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Mol Cell Proteomics 2018; 17:205-215. [PMID: 29203497 PMCID: PMC5795387 DOI: 10.1074/mcp.ra117.000045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
Despite high vaccination coverage world-wide, whooping cough, a highly contagious disease caused by Bordetella pertussis, is recently increasing in occurrence suggesting that novel vaccine formulations targeted at the prevention of colonization and transmission should be investigated. To identify new candidates for inclusion in the acellular formulation, we used spontaneously released outer membrane vesicles (OMV)1 as a potential source of key adhesins. The enrichment of Bvg+ OMV with adhesins and the ability of anti-OMV serum to inhibit the adhesion of B. pertussis to lung epithelial cells in vitro were demonstrated. We employed a proteomic approach to identify the differentially expressed proteins in OMV purified from bacteria in the Bvg+ and Bvg- virulence phases, thus comparing the outer membrane protein pattern of this pathogen in its virulent or avirulent state. Six of the most abundant outer membrane proteins were selected as candidates to be evaluated for their adhesive properties and vaccine potential. We generated E. coli strains singularly expressing the selected proteins and assessed their ability to adhere to lung epithelial cells in vitro Four out of the selected proteins conferred adhesive ability to E. coli Three of the candidates were specifically detected by anti-OMV mouse serum suggesting that these proteins are immunogenic antigens able to elicit an antibody response when displayed on the OMV. Anti-OMV serum was able to inhibit only BrkA-expressing E. coli adhesion to lung epithelial cells. Finally, stand-alone immunization of mice with recombinant BrkA resulted in significant protection against infection of the lower respiratory tract after challenge with B. pertussis Taken together, these data support the inclusion of BrkA and possibly further adhesins to the current acellular pertussis vaccines to improve the impact of vaccination on the bacterial clearance.
Collapse
|
4
|
Hoonakker ME, Verhagen LM, Pupo E, de Haan A, Metz B, Hendriksen CFM, Han WGH, Sloots A. Vaccine-Mediated Activation of Human TLR4 Is Affected by Modulation of Culture Conditions during Whole-Cell Pertussis Vaccine Preparation. PLoS One 2016; 11:e0161428. [PMID: 27548265 PMCID: PMC4993483 DOI: 10.1371/journal.pone.0161428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/05/2016] [Indexed: 12/01/2022] Open
Abstract
The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including such parameters to assess consistency of newly produced vaccines could bring in vitro testing of vaccine quality a step closer.
Collapse
Affiliation(s)
- Marieke E. Hoonakker
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Lisa M. Verhagen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Alex de Haan
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Bernard Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Coenraad F. M. Hendriksen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wanda G. H. Han
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arjen Sloots
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
5
|
de Gouw D, Jonge MID, Hermans PWM, Wessels HJCT, Zomer A, Berends A, Pratt C, Berbers GA, Mooi FR, Diavatopoulos DA. Proteomics-identified Bvg-activated autotransporters protect against bordetella pertussis in a mouse model. PLoS One 2014; 9:e105011. [PMID: 25133400 PMCID: PMC4136822 DOI: 10.1371/journal.pone.0105011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022] Open
Abstract
Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation. Pathogen adaptations involve antigenic divergence with vaccine strains, the emergence of strains which show enhanced in vitro expression of a number of virulence-associated genes and of strains that do not express pertactin, an important aP component. Clearly, the identification of more effective B. pertussis vaccine antigens is of utmost importance. To identify novel antigens, we used proteomics to identify B. pertussis proteins regulated by the master virulence regulatory system BvgAS in vitro. Five candidates proteins were selected and it was confirmed that they were also expressed in the lungs of naïve mice seven days after infection. The five proteins were expressed in recombinant form, adjuvanted with alum and used to immunize mice as stand-alone antigens. Subsequent respiratory challenge showed that immunization with the autotransporters Vag8 and SphB1 significantly reduced bacterial load in the lungs. Whilst these antigens induced strong opsonizing antibody responses, we found that none of the tested alum-adjuvanted vaccines - including a three-component aP - reduced bacterial load in the nasopharynx, suggesting that alternative immunological responses may be required for efficient bacterial clearance from the nasopharynx.
Collapse
Affiliation(s)
- Daan de Gouw
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marien I. de. Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hans J. C. T. Wessels
- Nijmegen Centre for Mitochondrial Disorders, Department of Laboratory Medicine, Radboud Proteomics Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert Zomer
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alinda Berends
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Catherine Pratt
- Public Health England, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, United Kingdom
| | - Guy A. Berbers
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Frits R. Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dimitri A. Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Contribution of Bordetella bronchiseptica filamentous hemagglutinin and pertactin to respiratory disease in swine. Infect Immun 2009; 77:2136-46. [PMID: 19237531 DOI: 10.1128/iai.01379-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica are based on isolates derived from hosts other than pigs. Two well-studied virulence factors implicated in the adhesion process are filamentous hemagglutinin (FHA) and pertactin (PRN). We hypothesized that both FHA and PRN would serve critical roles in the adhesion process and be necessary for colonization of the swine respiratory tract. To investigate the role of FHA and PRN in Bordetella pathogenesis in swine, we constructed mutants containing an in-frame deletion of the FHA or the PRN structural gene in a virulent B. bronchiseptica swine isolate. Both mutants were compared to the wild-type swine isolate for their ability to colonize and cause disease in swine. Colonization of the FHA mutant was lower than that of the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, the PRN mutant caused similar disease severity relative to the wild type; however, colonization of the PRN mutant was reduced relative to the wild type during early and late infection and induced higher anti-Bordetella antibody titers. Together, our results indicate that despite inducing different pathologies and antibody responses, both FHA and PRN are necessary for optimal colonization of the swine respiratory tract.
Collapse
|
7
|
Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 2003; 47:1367-83. [PMID: 12603741 DOI: 10.1046/j.1365-2958.2003.03377.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autotransporter secretion represents a unique mechanism that Gram-negative bacteria employ to deliver proteins to their cell surface. BrkA is a Bordetella pertussis autotransporter protein that mediates serum resistance and contributes to adherence of the bacterium to host cells. BrkA is a 103 kDa protein that is cleaved to form a 73 kDa alpha-domain and a 30 kDa beta domain. The alpha domain, also referred to as the passenger domain, is responsible for the effector functions of the protein, whereas the beta domain serves as a transporter. In an effort to characterize BrkA secretion, we have shown that BrkA has a 42 amino acid signal peptide for transit across the cytoplasmic membrane, and a translocation unit made up of a short linker region fused to the beta-domain to ferry the passenger domain to the bacterial surface through a channel formed by the beta-domain. In this report, we provide genetic, biochemical and structural evidence demonstrating that a region within the BrkA passenger (Glu601-Ala692) is necessary for folding the passenger. This region is not required for surface display in the outer membrane protease OmpT-deficient Escherichia coli strain UT5600. However, a BrkA mutant protein bearing a deletion in this region is susceptible to digestion when expressed in E. coli strains expressing OmpT suggesting that the region is required to maintain a stable structure. The instability of the deletion mutant can be rescued by surface expressing Glu601-Ala692in trans suggesting that this region is acting as an intramolecular chaperone to effect folding of the passenger concurrent with or following translocation across the outer membrane.
Collapse
Affiliation(s)
- David C Oliver
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd., Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
8
|
Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W, Willems RJ. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 1998; 66:670-5. [PMID: 9453625 PMCID: PMC107955 DOI: 10.1128/iai.66.2.670-675.1998] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Bordetella pertussis proteins P.69 (also designated pertactin) and pertussis toxin are important virulence factors and have been shown to confer protective immunity in animals and humans. Both proteins are used in the new generation of acellular pertussis vaccines (ACVs), and it is therefore important to study the degree of antigenic variation in these proteins. Sequence analysis of the genes for P.69 and the pertussis toxin S1 subunit, using strains collected from Dutch patients in the period 1949 to 1996, revealed three P.69 and three S1 variants which show differences in amino acid sequence. Polymorphism in P.69 was confined to a region comprised of repeats and located proximal to the RGD motif involved in adherence to host tissues. Variation in S1 was observed in two regions previously identified as T-cell epitopes. P.69 and S1 variants, identical to those included in the Dutch whole-cell pertussis vaccine (WCV), were found in 100% of the strains from the 1950s, the period when the WCV was introduced in The Netherlands. However, nonvaccine types of P.69 and S1 gradually replaced the vaccine types in later years and were found in approximately 90% strains from 1990 to 1996. These results suggest that vaccination has selected for strains which are antigenically distinct from vaccine strains. Analysis of strains from vaccinated and nonvaccinated individuals indicated that the WCV protects better against strains with the vaccine type P.69 than against strains with non-vaccine types (P = 0.024). ACVs contain P.69 and S1 types which are found in only 10% of recent Dutch B. pertussis isolates, implying that they do not have an optimal composition. Our findings cast a new light on the reemergence of pertussis in highly vaccinated populations and may have major implications for the long-term efficacy of both WCVs and ACVs.
Collapse
Affiliation(s)
- F R Mooi
- Research Laboratory for Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Robbins JB, Schneerson R, Bryla DA, Trollfors B, Taranger J, Lagergård T. Immunity to Pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4615-5355-7_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Anderson R, Dougan G, Roberts M. Delivery of the Pertactin/P.69 polypeptide of Bordetella pertussis using an attenuated Salmonella typhimurium vaccine strain: expression levels and immune response. Vaccine 1996; 14:1384-90. [PMID: 9004450 DOI: 10.1016/s0264-410x(96)00036-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pertactin/P.69, a surface-associated polypeptide antigen of Bordetella pertussis, was expressed in a Salmonella typhimurium aroA aroD vaccine strain, BRD509, using different expression systems, and the immune response in mice against these constructs was compared. Initially, Pertactin/P.69 was expressed on the surface of BRD509 from a single copy of the gene encoding the antigen localized on the Salmonella chromosome. As previously shown, secretory and humoral antibody responses could not be detected following multiple immunization with this strain (BRD640). However, a strong anti-Pertactin/P.69 proliferative response was observed in murine splenocytes following a single oral dose with BRD640. The stimulated splenocytes secreted interferon-gamma but not interleukin-5, indicating that BRD640 induced a Th1 type T-helper response against Pertactin/P.69. We wished to construct a vaccine strain that might induce secretory and humoral responses against Pertactin/P.69 as well as a cell-mediated immune response. Consequently, Pertactin/P.69 was expressed at high levels in the cytoplasm of BRD509 under the control of the inducible nirB promoter from a ColE1-based replicon. Anti-Pertactin/P.69 immune responses were not observed following immunization of BALB/c mice with this strain (BRD975). Priming of the immune system against Pertactin/P.69 was, however, observed following oral immunization with BRD975 and boosting subcutaneously with purified Pertactin/P.69 antigen. The major anti-Pertactin/P.69 IgG subclass detected in boosted mice was IgG2a; thus, as BRD640, BRD975 appeared to induce a Th1 type T-helper response against Pertactin/P.69.
Collapse
Affiliation(s)
- R Anderson
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
11
|
Halperin SA, Eastwood B, Barreto L, Mills E, Blatter M, Reisinger K, Bader G, Keyserling H, Roberts EA, Guasparini R. Safety and immunogenicity of two acellular pertussis vaccines with different pertussis toxoid and filamentous hemagglutinin content in infants 2-6 months old. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 1995; 27:279-87. [PMID: 8539554 DOI: 10.3109/00365549509019022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The optimal composition and antigen content of acellular pertussis vaccines is not known. Two vaccines with different quantities of pertussis toxoid (10 and 20 micrograms) and filamentous hemagglutinin (5 and 20 micrograms) and identical 69 kD protein (3 micrograms) and fimbriae 2 and 3 (5 micrograms) combined with diphtheria and tetanus toxoids were compared in a randomized, double-blind study in 2,050 infants undergoing their primary immunization series at 8 centers in the US and Canada. A 6:1 increased antigen to lower antigen allocation was used; 96% of infants received 3 doses and completed the study. A 'clinically significant' local reaction was reported in 3-6% of participants after each dose. Erythema was the most common reaction occurring in 3-5% of infants after the second or third dose. A clinically significant systemic adverse reaction was reported in 28-34% of vaccinees (or vaccinated children) after each dose; fever (7-18%) and fussiness (12-17%) were most common. There were no differences in adverse events between the 2 vaccine formulations. Antibody responses were measured in 292 infants at 1 center. At 7 months, geometric mean anti-filamentous hemagglutinin antibody titers were higher in recipients of the higher antigen content vaccine (p < 0.001) whereas recipients of the lower antigen content formulation had higher anti-fimbriae antibody (p < 0.001) and agglutinin titers (p < 0.05). No differences were detected in anti-pertussis toxin or other antibody responses between the formulations. We conclude that increasing the antigen content of the acellular pertussis vaccine had a variable effect on antibody response but was not associated with increased adverse reactions.
Collapse
Affiliation(s)
- S A Halperin
- Department of Pediatrics, Dalhousie University, Halifax, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Charles I, Rodgers B, Musgrave S, Peakman TC, Chubb A, Fairweather N, Dougan G, Roberts M. Expression of P.69/pertactin from Bordetella pertussis in a baculovirus/insect cell expression system: protective properties of the recombinant protein. Res Microbiol 1993; 144:681-90. [PMID: 8190994 DOI: 10.1016/0923-2508(93)90032-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The surface antigen P.69/pertactin of Bordetella pertussis has been expressed using the polyhedron promoter of baculovirus in cultured insect cells. Either full-length or truncated prn DNA was used to express P.69 pertactin. The full-length gene gave rise to low levels of P.93 precursor protein, some of which was processed to P.69. The shortened prn expressed P.69 pertactin directly at levels up to 3.5 mg per litre. P.69 vaccinated animals were protected against aerosol challenge with virulent B. pertussis bacteria.
Collapse
Affiliation(s)
- I Charles
- Department of Cell Biology and Biotechnology, Wellcome Research Laboratories, Beckenham, Kent, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Robinson A, Melling J. Envelope structure and the development of new vaccines. THE JOURNAL OF APPLIED BACTERIOLOGY 1993; 74 Suppl:43S-51S. [PMID: 8349534 DOI: 10.1111/j.1365-2672.1993.tb04341.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Robinson
- Division of Biologics, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire, UK
| | | |
Collapse
|
14
|
Roberts M, Cropley I, Chatfield S, Dougan G. Protection of mice against respiratory Bordetella pertussis infection by intranasal immunization with P.69 and FHA. Vaccine 1993; 11:866-72. [PMID: 8356847 DOI: 10.1016/0264-410x(93)90363-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intranasal immunization of adult female Balb/c mice with the Bordetella pertussis antigens FHA or P.69, greatly enhanced their ability to clear B. pertussis from their lungs following aerosol challenge compared with ovalbumin-immunized controls. Low numbers of lymphocytes secreting antibodies (IgG, IgA and IgM) against the immunizing antigens could be isolated from the lungs of immunized mice. Following aerosol challenge with B. pertussis there was a large increase in the numbers of FHA or P.69-specific antibody-secreting cells in the lungs of mice immunized with these antigens. Intranasal immunization, particularly with FHA, also primed mice to develop a systemic serum anti-pertussis antibody response subsequent to challenge. However, pulmonary clearance of B. pertussis correlated most closely with the local antibody response. A strong anti-FHA response was demonstrated in the lungs of mice that received a booster dose of FHA 9 months after their previous exposure to FHA, demonstrating that long immunological memory can develop in the murine respiratory tract following direct application of pertussis antigens to the respiratory tract mucosa.
Collapse
Affiliation(s)
- M Roberts
- Vaccine Research Unit, Medeva Group Research, London, UK
| | | | | | | |
Collapse
|
15
|
Petersen JW, Ibsen PH, Hasløv K, Heron I. Proliferative responses and gamma interferon and tumor necrosis factor production by lymphocytes isolated from tracheobroncheal lymph nodes and spleen of mice aerosol infected with Bordetella pertussis. Infect Immun 1992; 60:4563-70. [PMID: 1398968 PMCID: PMC258203 DOI: 10.1128/iai.60.11.4563-4570.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A group of mice was aerosol infected with live, virulent Bordetella pertussis bacteria. During a period of 7 weeks following the infection, with intervals of 1 week, lymphocytes were isolated from the tracheobroncheal lymph nodes (TBL) and the spleens (SPL) of the infected mice. The in vitro proliferative responses as well as the gamma interferon and tumor necrosis factor production levels of the isolated lymphocytes in response to stimulation with whole killed B. pertussis bacteria were measured as parameters for cell-mediated immunity (CMI). The course of the infection was monitored by counting of CFU in the lungs of the mice. Moreover, antibody responses in serum against a range of B. pertussis antigens were assessed. The results showed that a vigorous proliferative response of the TBL and SPL to stimulation with whole killed B. pertussis bacteria was induced by the infection. The proliferative response of the TBL was significantly higher than the response of the SPL. The proliferative responses were maximal 3 to 4 weeks after the infection and were paralleled by in vitro gamma interferon and tumor necrosis factor production upon specific stimulation. The development of the CMI was observed simultaneously with the clearance of the infection from the lungs. Antibody responses became measurable in the sera only after the infection was cleared. A specific CMI against pertussis toxin, the filamentous hemagglutinin, the 69-kDa outer membrane protein, and the agglutinogens 2 and 3, antigens which are under consideration for inclusion in future acellular pertussis vaccines, was successfully demonstrated in mice 3 weeks after the infection.
Collapse
Affiliation(s)
- J W Petersen
- Bacterial Vaccine Department Statens Seruminstitut, Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Strugnell R, Dougan G, Chatfield S, Charles I, Fairweather N, Tite J, Li JL, Beesley J, Roberts M. Characterization of a Salmonella typhimurium aro vaccine strain expressing the P.69 antigen of Bordetella pertussis. Infect Immun 1992; 60:3994-4002. [PMID: 1398911 PMCID: PMC257428 DOI: 10.1128/iai.60.10.3994-4002.1992] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The P.69 Bordetella pertussis protective antigen was expressed by use of the trc promoter from the chromosome of a Salmonella typhimurium aro vaccine strain, BRD509, by integrating the prn gene, encoding the 93-kDa precursor of this protein, into the aroC locus. P.69 was detected on the cell surface of the S. typhimurium strain (BRD640) by agglutination and immunoelectron microscopy. BALB/c mice immunized orally or intravenously with BRD640 showed a significant level of protection against an aerosol challenge with virulent B. pertussis, compared with control animals. No anti-P.69 antibodies in the serum or anti-P.69 antibody-secreting cells in the lungs were detected in BRD640-vaccinated animals, although cells isolated from spleens showed a P.69-dependent cell proliferative response. In contrast, low levels of anti-P.69 antibodies in the serum and anti-P.69 antibody-secreting cells in the lungs were detected in immunized mice following a B. pertussis challenge.
Collapse
Affiliation(s)
- R Strugnell
- Department of Cell Biology, Wellcome Research Laboratories, Langley Court, Beckenham, Kent, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|