An SS, Carreño C, Marti DN, Schaller J, Albericio F, Llinas M. Lysine-50 is a likely site for anchoring the plasminogen N-terminal peptide to lysine-binding kringles.
Protein Sci 1998;
7:1960-9. [PMID:
9761476 PMCID:
PMC2144165 DOI:
10.1002/pro.5560070911]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interactions between the kringle 4 (K4) domain of human plasminogen (Pgn) and segments of the N-terminal Glu1-Lys77 peptide (NTP) have been investigated via 1H-NMR at 500 MHz. NTP peptide stretches devoid of Lys residues but carrying an internal Arg residue show negligible affinity toward K4 (equilibrium association constant Ka < 0.05 mM(-1)). In contrast, while most fragments containing an internal Lys residue exhibit affinities comparable to that shown by the blocked Lys derivative Nalpha-acetyl-L-lysine-methyl ester (Ka approximately 0.2 mM(-1), peptides encompassing Lys50O consistently show higher Ka values. Among the investigated linear peptides, Nalpha-acetyl-Ala-Phe-Tyr-His-Ser-Ser-Lys5O-Glu-Gln-NH2 (AcAFYHSK5OEQ-NH2) exhibits the strongest interaction with K4 (Ka approximately 1.4 mM(-1)), followed by AcYHSK50EQ-NH2 (Ka approximately 0.9 mM(-1)). Relative to the wild-type sequence, mutated hexapeptides exhibit lesser affinity for K4. When a Lys50 --> Ser mutation was introduced (==> AcYHSS50EQ-NH2), binding was abolished. The Ile27-lle56 construct (L-NTP) contains the Lys50 site within a loop constrained by two cystine bridges. The propensity of recombinant Pgn K1 (rK1) and K2 (rK2) modules, and of Pgn fragments encompassing the intact K4 and K5 domains, for binding L-NTP, was investigated. We find that L-NTP interacts with rK1, rK2, K4, and K5-all lysine-binding kringles-in a fashion that closely mimics what has been observed for the Glul-HSer57 N-terminal fragment of Pgn (CB-NTP). Thus, both the constellation of kringle lysine binding site (LBS) aromatic residues that are perturbed upon complexation of L-NTP and magnitudes of kringle-L-NTP binding affinities (rK1, Ka approximately 4.3 mM(-1); rK2, Ka approximately 3.7 mM(-1; K4, Ka approximately 6.4 mM(1); and K5, Ka approximately 2.1 mM(-1)) are essentially the same as for the corresponding kringle-CB-NTP pairs. Molecular modeling studies suggest that the Glu39-Lys50 stretch in NTP generates an area that complements, both topologically and electrostatically, the solvent-exposed kringle LBS surface.
Collapse