1
|
Faraoni P, Sereni E, Gnerucci A, Cialdai F, Monici M, Ranaldi F. Glyoxylate cycle activity in Pinus pinea seeds during germination in altered gravity conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:389-394. [PMID: 30959447 DOI: 10.1016/j.plaphy.2019.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
This work inserts in the research field regarding the effects of altered gravity conditions on biological plant processes. Pinus pinea seeds germination was studied in simulated microgravity (2x10-3g) and hypergravity (20g) conditions. The effects of simulated gravity were evaluated monitoring the levels of the key enzymes, involved in the main metabolic pathway during germination process of lipid-rich seeds (oilseeds): isocitrate lyase and malate synthase for glyoxylate cycle, 3-hydroxyacyl-CoA dehydrogenase for beta-oxidation, isocitrate dehydrogenase for Krebs cycle, pyruvate kinase for glycolysis and glucose 6 phosphate dehydrogenase for pentose phosphate shunt. The simulated micro and hypergravity conditions were obtained by a Random Position Machine and a Hyperfuge, respectively. Results show that the levels of some tested enzymes, at different lag times of the germination process, have the same trend of controls (g = 1), but with significant differences from quantitative point of view. They are higher in microgravity conditions and lower in hypergravity ones, suggesting that, from a biochemical point of view, the germination process results accelerated in microgravity conditions and delayed in hypergravity ones. These biochemical results show a good correlation with morphological ones, obtained with the measurement of the length of the seeds sprouting radicle. These results give promising indications regarding the possibility to grow plant with lipid-rich seeds in spatial environment, to obtain food sources for astronauts during long term space missions and to reconstitute new atmosphere.
Collapse
Affiliation(s)
- Paola Faraoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, I-50139, Florence, Italy.
| | - Elettra Sereni
- ASAcampus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy
| | - Alessio Gnerucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, I-50139, Florence, Italy
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini 6, I-50139, Florence, Italy
| | - Francesco Ranaldi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, I-50139, Florence, Italy
| |
Collapse
|
2
|
Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space. Life (Basel) 2014; 4:205-16. [PMID: 25370193 PMCID: PMC4187158 DOI: 10.3390/life4020205] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/18/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022] Open
Abstract
The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.
Collapse
|
3
|
Miyamoto K, Yamasaki T, Uheda E, Ueda J. Analysis of apical hook formation in Alaska pea with a 3-D clinostat and agravitropic mutant ageotropum. FRONTIERS IN PLANT SCIENCE 2014; 5:137. [PMID: 24782877 PMCID: PMC3986542 DOI: 10.3389/fpls.2014.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/22/2014] [Indexed: 05/10/2023]
Abstract
The formation of the apical hook in dicotyledonous seedlings is believed to be effected by gravity in the dark. However, this notion is mostly based on experiments with the hook formed on the hypocotyl, and no detailed studies are available with the developmental manners of the hook, particularly of the epicotyl hook. The present study aims at clarifying the dynamics of hook formation including the possible involvement of gravity. Time-course studies with normal Alaska pea (Pisum sativum L., cv. Alaska) and an agravitropic pea mutant, ageotropum, under the 1-g conditions and on a 3-D clinostat revealed that (1) the apical hook of the epicotyl forms by the development of the arc-shaped plumule of the embryo existing in the non-germinated seed. The process of formation consists of two stages: development and partial opening, which are controlled by some intrinsic property of the plumule, but not gravity. Approximately when the epicotyl emerges from the seed coat, the hook is established in both pea varieties. In Alaska the established hook is sustained or enhanced by gravity, resulting in a delay of hook opening compared with on a clinostat, which might give an incorrect idea that gravity causes hook formation. (2) During the hook development and opening processes the original plumular arc holds its orientation unchanged to be an established hook, which, therefore, is at the same side of the epicotyl axis as the cotyledons. This is true for both Alaska and ageotropum under 1-g conditions as well as on the clinostat, supporting finding (1). (3) Application of auxin polar transport inhibitors, hydroxyfluorenecarboxylic acid, naphthylphthalamic acid, and triiodobenzoic acid, suppressed the curvature of hook by equal extents in Alaska as well as ageotropum, suggesting that the hook development involves auxin polar transport probably asymmetrically distributed across the plumular axis by some intrinsic property of the plumule not directly related with gravity action.
Collapse
Affiliation(s)
- Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture UniversitySakai, Osaka, Japan
- *Correspondence: Kensuke Miyamoto, Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan e-mail:
| | | | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture UniversitySakai, Osaka, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture UniversitySakai, Osaka, Japan
| |
Collapse
|
4
|
Ueda J, Miyamoto K, Uheda E, Oka M, Yano S, Higashibata A, Ishioka N. Close relationships between polar auxin transport and graviresponse in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:43-49. [PMID: 24128007 DOI: 10.1111/plb.12101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Gravitational force on Earth is one of the major environmental factors affecting plant growth and development. Spacecraft and the International Space Station (ISS), and a three-dimensional (3-D) clinostat have been available to clarify the effects of gravistimulation on plant growth and development in space and on ground conditions, respectively. Under a stimulus-free environment such as space conditions, plants show a growth and developmental habit designated as 'automorphosis' or 'automorphogenesis'. Recent studies in hormonal physiology, together with space and molecular biology, have demonstrated the close relationships between automorphosis and polar auxin transport. Reduced polar auxin transport in space conditions, or induced by the application of polar auxin transport inhibitors, substantially induced automorphosis or automorphosis-like growth and development, indicating that polar auxin transport is responsible for graviresponse in plants. This concise review covers graviresponse in plants and automorphosis observed in space conditions, and polar auxin transport related to graviresponse in etiolated Alaska and ageotropum pea seedlings. Molecular aspects of polar auxin transport clarified in recent studies are also described.
Collapse
Affiliation(s)
- J Ueda
- Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Qi B, Zheng H. Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:380-92. [PMID: 23889705 DOI: 10.1111/tpj.12295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 05/20/2023]
Abstract
The KNOTTED1 homeobox (KNOX) family transcription factors are essential for stem cell establishment and maintenance and regulate various aspects of development in all green plants. Expression patterns of the KNOX genes in the roots of plants have been reported, but their role in development remains unclear. Here we show how the KNAT1 gene is specifically involved in root skewing in Arabidopsis. The roots of two mutant alleles of KNAT1 (bp-1 and bp-5) exhibited exaggerated skewing to the right of gravity when grown on both vertical and tilted agar medium surfaces. This skewing phenotype was enhanced by treatments with low concentrations of propyzamide, and required auxin transport. The KNAT1 mutation substantially decreased basipetal auxin transport and increased auxin accumulation in the roots. Using a PIN2-GFP reporter and western blot analysis, we found that this alteration in auxin transport was accompanied by a decrease in PIN2 levels in the root tip. Decreased PIN2 expression in the mutant roots was not accompanied by reduced mRNA levels, suggesting that the KNAT1 mutations affected PIN2 expression at the posttranscriptional level. In vivo visualization of intracellular vacuolar targeting indicated that vacuolar degradation of PIN2-GFP was significantly promoted in the root tips of the bp allelic mutants. Together, these results demonstrate that KNAT1 negatively modulates root skewing, possibly by regulating auxin transport.
Collapse
Affiliation(s)
- Bin Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
6
|
Hasenstein KH, John S, Scherp P, Povinelli D, Mopper S. Analysis of magnetic gradients to study gravitropism. AMERICAN JOURNAL OF BOTANY 2013; 100:249-55. [PMID: 23174915 DOI: 10.3732/ajb.1200304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
PREMISE OF THE STUDY Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. METHODS The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. RESULTS The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. CONCLUSIONS Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Collapse
Affiliation(s)
- Karl H Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-2451, USA.
| | | | | | | | | |
Collapse
|
7
|
Soh H, Auh C, Soh WY, Han K, Kim D, Lee S, Rhee Y. Gene expression changes in Arabidopsis seedlings during short- to long-term exposure to 3-D clinorotation. PLANTA 2011; 234:255-70. [PMID: 21416242 DOI: 10.1007/s00425-011-1395-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/23/2011] [Indexed: 05/11/2023]
Abstract
Seedlings of Arabidopsis thaliana (cv. Columbia) were used to evaluate dynamic transcriptional-level genome responses to simulated microgravity condition created by 3-D clinorotation. The DNA chip data analysis showed that the plant may respond to simulated microgravity by dynamic induction (up- and down-regulations) of the responsive genes in the genome. The qRT-PCR results on the investigated genes showed that the expression patterns of the genes (molecular response) were generally similar to the physiological response patterns detected in stress-challenged plants. Expression patterns were categorized into short or continual up- or down-regulated patterns, as well as stochastic changes from short- to long-term simulated microgravity stress. The induced genes are then assumed to establish a new molecular plasticity to the newly adjusted genome status in the basic milieu of maintaining homeostasis during the process of adaptation to simulated microgravity.
Collapse
Affiliation(s)
- Hyuncheol Soh
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Wei N, Tan C, Qi B, Zhang Y, Xu G, Zheng H. Changes in gravitational forces induce the modification of Arabidopsis thaliana silique pedicel positioning. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3875-84. [PMID: 20603285 PMCID: PMC2935865 DOI: 10.1093/jxb/erq200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The laterals of both shoots and roots often maintain a particular angle with respect to the gravity vector, and this angle can change during organ development and in response to environmental stimuli. However, the cellular and molecular mechanisms of the lateral organ gravitropic response are still poorly understood. Here it is demonstrated that the young siliques of Arabidopsis thalinana plants subjected to 3-D clinostat rotation exhibited automorphogenesis with increased growth angles between pedicels and the main stem. In addition, the 3-D clinostat rotation treatment significantly influenced the development of vascular bundles in the pedicel and caused an enlargement of gap cells at the branch point site together with a decrease in KNAT1 expression. Comparisons performed between normal and empty siliques revealed that only the pedicels of siliques with normally developing seeds could change their growth angle under the 3-D clinostat rotational condition, while the pedicels of the empty siliques lost the ability to respond to the altered gravity environment. These results indicate that the response of siliques to altered gravity depends on the normal development of seeds, and may be mediated by vascular bundle cells in the pedicel and gap cells at branch point sites.
Collapse
|
9
|
Loesberg WA, Walboomers XF, van Loon JJWA, Jansen JA. Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography. ACTA ACUST UNITED AC 2008; 65:116-29. [DOI: 10.1002/cm.20248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Miyamoto K, Hoshino T, Yamashita M, Ueda J. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport. PHYSIOLOGIA PLANTARUM 2005; 123:467-74. [PMID: 15844285 DOI: 10.1111/j.1399-3054.2005.00472.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under microgravity conditions in space show automorphosis: bending of epicotyls, inhibition of hook formation and changes in root growth direction. In order to determine the mechanisms of microgravity conditions that induce automorphosis, we used a three-dimensional clinostat and obtained the successful induction of automorphosis-like growth of etiolated pea seedlings. Kinetic studies revealed that epicotyls bent at their basal region towards the clockwise direction far from the cotyledons from the vertical line (0 degrees) at approximately 40 degrees in seedlings grown both at 1 g and in the clinostat within 48 h after watering. Thereafter, epicotyls retained this orientation during growth in the clinostat, whereas those at 1 g changed their growth direction against the gravity vector and exhibited a negative gravitropic response. On the other hand, the plumular hook that had already formed in the embryo axis tended to open continuously by growth at the inner basal portion of the elbow; thus, the plumular hook angle initially increased; this was followed by equal growth on the convex and concave sides at 1 g, resulting in normal hook formation; in contrast, hook formation was inhibited on the clinostat. The automorphosis-like growth and development of etiolated pea seedlings was induced by auxin polar transport inhibitors (9-hydroxyfluorene-9-carboxylic acid, N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid), but not by anti-auxin (p-chlorophenoxyisobutyric acid) at 1 g. An ethylene biosynthesis inhibitor, 1-aminooxyacetic acid, inhibited hook formation at 1 g, and ethylene production of etiolated seedlings was suppressed on the clinostat. Clinorotation on the clinostat strongly reduced the activity of auxin polar transport of epicotyls in etiolated pea seedlings, similar to that observed in space experiments (Ueda J, Miyamoto K, Yuda T, Hoshino T, Fujii S, Mukai C, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K (1999) Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment. J Plant Res 112: 487492). These results suggest that clinorotation on a three-dimensional clinostat is a valuable tool for simulating microgravity conditions, and that automorphosis of etiolated pea seedlings is induced by the inhibition of auxin polar transport and ethylene biosynthesis.
Collapse
Affiliation(s)
- Kensuke Miyamoto
- College of Integrated Arts & Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | |
Collapse
|
11
|
Saito M, Soshi S, Fujii K. Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res 2003; 18:1695-705. [PMID: 12968680 DOI: 10.1359/jbmr.2003.18.9.1695] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We attempted to study the effects of microgravity (by clinostat) and hypergravity (using centrifugation) on collagen metabolism using murine MC3T3-E1 osteoblasts, especially focusing on collagen cross-link formation. We found that altered gravitational load affected the post-translational modification of collagen, particularly the collagen maturation pathway, through altered expression of enzymes involved in cross-link formation. INTRODUCTION Gravitational loading plays important roles in the stimulation of differentiated osteoblast function and in the maintenance of skeletal tissues, whereas microgravity seems to result in osteopenia caused by impaired osteoblast differentiation. The aim of our study was to clarify the effects of altered gravitational environments on collagen metabolism, particularly the relationship between post-translational collagen quality and enzymes involved in cross-link formation, using murine osteoblastic MC3T3-E1 cells. MATERIALS AND METHODS Cells were cultured under vector-averaged microgravity (1 x 10(-3) g) using a clinostat or under conventional centrifugation techniques to generate hypergravity (20 g and 40 g) for 72 h. We then examined the expression patterns of lysyl oxidase and the two lysyl hydroxylase isoforms telopeptidyl lysyl hydroxylase (TLH; procollagen-lysine, 2-oxyglutarate, 5-dioxigenase 2 [PLOD2]) and helical lysyl hydroxylase (HLH; [PLOD1]) by quantitative real time polymerase chain reaction (PCR) analysis. Quantitative analysis of reducible immature (dihydroxylysinonorleucine, hydroxylysinonorleucine, and lysinonorleucine) and nonreducible mature (pyridinoline and deoxypyridinoline) cross-links, and maturation rate analysis of immature to mature cross-links by conventional metabolic labeling using tritium lysine were also performed. RESULTS Hypergravity upregulated both TLH mRNA expression and enzyme activity compared with stationary cultures, whereas microgravity stimulated both HLH mRNA expression and enzyme activity. These results were consistent with increased relative occupancy rates of telopeptidyl hydroxylysine-derived cross-links and helical hydroxylysine-derived forms observed under hypergravity and microgravity, respectively. Hypergravity stimulated not only lysyl oxidase mRNA expression but also increased enzyme activity and the sum of immature and mature cross-links. Furthermore, the conversion rate of immature cross-links to mature compounds was markedly increased under hypergravity but decreased under microgravity. CONCLUSION Altered gravitational loading may affect the post-translational modification of collagen through altered expression of enzymes involved in cross-link formation. These observations may be important in elucidating the mechanisms of osteopenia during space flight.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
12
|
Ueda J, Miyamoto K. [Graviresponse in higher plants and its regulation in molecular bases: relevance to growth and development, and auxin polar transport in etiolated pea seedlings]. UCHU SEIBUTSU KAGAKU 2003; 17:116-25. [PMID: 14555809 DOI: 10.2187/bss.17.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.
Collapse
Affiliation(s)
- Junichi Ueda
- College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | |
Collapse
|
13
|
Hoson T, Soga K. New aspects of gravity responses in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 229:209-44. [PMID: 14669957 DOI: 10.1016/s0074-7696(03)29005-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants show two distinct responses to gravity: gravity-dependent morphogenesis (gravimorphogenesis) and gravity resistance. In gravitropism, a typical mechanism of gravimorphogenesis, gravity is utilized as a signal to establish an appropriate form. The response has been studied in a gravity-free environment, where plant seedlings were found to perform spontaneous morphogenesis, termed automorphogenesis. Automorphogenesis consists of a change in growth direction and spontaneous curvature in dorsiventral directions. The spontaneous curvature is caused by a difference in the capacity of the cell wall to expand between the dorsal and the ventral sides of organs, which originates from the inherent structural anisotropy. Gravity resistance is a response that enables the plant to develop against the gravitational force. To resist the force, the plant constructs a tough body by increasing the cell wall rigidity that suppresses growth. The mechanical properties of the cell wall are changed by modification of the cell wall metabolism and cell wall environment, especially pH. In gravitropism, gravity is perceived by amyloplasts in statocytes, whereas gravity resistance may be mediated by mechanoreceptors on the plasma membrane.
Collapse
Affiliation(s)
- Takayuki Hoson
- Department of Biology, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | |
Collapse
|
14
|
Miyamoto K, Yuda T, Shimazu T, Ueda J. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:1017-1022. [PMID: 11596632 DOI: 10.1016/s0273-1177(01)00177-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 degrees C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 micromolar) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.
Collapse
Affiliation(s)
- K Miyamoto
- College of Integrated Arts and Sciences, Osaka Prefecture University, Osaka, Japan
| | | | | | | |
Collapse
|
15
|
Hoson T, Saiki M, Kamisaka S, Yamashita M. Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:933-40. [PMID: 11596636 DOI: 10.1016/s0273-1177(01)00157-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions.
Collapse
Affiliation(s)
- T Hoson
- Department of Biology, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
16
|
Shimazu T, Yuda T, Miyamoto K, Yamashita M, Ueda J. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:995-1000. [PMID: 11596646 DOI: 10.1016/s0273-1177(01)00165-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.
Collapse
Affiliation(s)
- T Shimazu
- College of Integrated Arts and Sciences, Osaka Prefecture University, Osaka, Japan
| | | | | | | | | |
Collapse
|
17
|
Ueda J, Miyamoto K, Yuda T, Hoshino T, Sato K, Fujii S, Kamigaichi S, Izumi R, Ishioka N, Aizawa S, Yoshizaki I, Shimazu T, Fukui K. STS-95 space experiment for plant growth and development, and auxin polar transport. UCHU SEIBUTSU KAGAKU 2000; 14:47-57. [PMID: 11543421 DOI: 10.2187/bss.14.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The principal objective of the space experiment, BRIC-AUX on STS-95, was the integrated analysis of the growth and development of etiolated pea and maize seedlings in space, and the effect of microgravity conditions in space on auxin polar transport in the segments. Microgravity conditions in space strongly affected the growth and development of etiolated pea and maize seedlings. Etiolated pea and maize seedlings were leaned and curved during space flight, respectively. Finally the growth inhibition of these seedlings was also observed. Roots of some pea seedlings grew toward the aerial space of Plant Growth Chamber. Extensibilities of cell walls of the third internode of etiolated pea epicotyls and the top region of etiolated maize coleoptiles which were germinated and grown under microgravity conditions in space were significantly low. Activities of auxin polar transport in the second internode segments of etiolated pea seedlings and coleoptile segments of etiolated maize seedlings were significantly inhibited and extremely promoted, respectively, under microgravity conditions in space. These results strongly suggest that auxin polar transport as well as the growth and development of plants is controlled under gravity on the earth.
Collapse
Affiliation(s)
- J Ueda
- College of Integrated Arts and Sciences, Osaka Prefecture University, Sakai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shimazu T, Miyamoto K, Hoson T, Kamisaka S, Ueda J. Suitable experimental design for determination of auxin polar transport in space using a spacecraft. UCHU SEIBUTSU KAGAKU 2000; 14:9-13. [PMID: 11543152 DOI: 10.2187/bss.14.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is necessary to establish a suitable experimental design for the determination of auxin (indole-3-acetic acid: IAA) polar transport in space using a spacecraft in concerning with the role of gravity. Problems in space experiments are as follows: I) Selection of suitable plant species; II) Preservation of integrity of plant segments for activities of auxin polar transport; III) Stop of auxin polar transport of the segments after the transport experiment in space. Segments of etiolated pea epicotyls and etiolated maize coleoptiles showed relatively high activities of auxin polar transport among dicotyledonous and monocotyledonous plants tested, respectively. The activities decreased dramatically when the segments were pre-stored at 25 degrees C only for 1 day. On the other hand, the storage at low temperature (5 degrees C) in the presence of antioxidants or chelating agents, especially EGTA, maintained relatively high activities of auxin polar transport in pea epicotyl segments. Low temperature (5 degrees C) substantially inhibited the activity of auxin polar transport. Based on the results in this study, a suitable experimental design for the space experiment of auxin polar transport using a spacecraft is also proposed.
Collapse
Affiliation(s)
- T Shimazu
- College of Integrated Arts and Sciences, Osaka Prefecture University, Japan
| | | | | | | | | |
Collapse
|
19
|
Hemmersbach R, Volkmann D, Hader DP. Graviorientation in protists and plants. JOURNAL OF PLANT PHYSIOLOGY 1999; 154:1-15. [PMID: 11542656 DOI: 10.1016/s0176-1617(99)80311-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gravitaxis, gravikinesis, and gravitropism are different graviresponses found in protists and plants. The phenomena have been intensively studied under variable stimulations ranging from microgravity to hypergravity. A huge amount of information is now available, e.g. about the time course of these events, their adaptation capacity, thresholds, and interaction between gravity and other environmental stimuli. There is growing evidence that a pure physical mechanism can be excluded for orientation of protists in the gravity field. Similarly, a physiological signal transduction chain has been postulated in plants. Current investigations focus on the question whether gravity is perceived by intracellular gravireceptors (e.g. the Muller organelle of the ciliate Loxodes, barium sulfate vacuoles in Chara rhizoids or starch statoliths in higher plants) or whether the whole cell acts as a sedimenting body exerting pressure on the lower membrane. Behavioral studies in density adjusted media, effects of inhibitors of mechano-sensitive ion channels or manipulations of the proposed gravireceptor structures revealed that both mechanisms have been developed in protists and plants. The threshold values for graviresponses indicate that even 10% of the normal gravitational field can be detected, which demands a focusing and amplifying system such as the cytoskeleton and second messengers.
Collapse
Affiliation(s)
- R Hemmersbach
- Institute of Aerospace Medicine, DLR (German Aerospace Center), Koln Germany
| | | | | |
Collapse
|
20
|
Miyamoto K, Oka M, Yamamoto R, Masuda Y, Hoson T, Kamisaka S, Ueda J. Auxin polar transport in Arabidopsis under simulated microgravity conditions--relevance to growth and development. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1999; 23:2033-2036. [PMID: 11710387 DOI: 10.1016/s0273-1177(99)00344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.
Collapse
Affiliation(s)
- K Miyamoto
- College of Integrated Arts & Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Hoson T, Kamisaka S, Yamashita M, Masuda Y. Automorphosis of higher plants on a 3-D clinostat. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 1998; 21:1229-1238. [PMID: 11541377 DOI: 10.1016/s0273-1177(97)00640-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
On a three-dimensional (3-D) clinostat, various plant organs developed statocytes capable of responding to the gravity vector. The graviresponse of primary roots of garden cress and maize grown on the clinostat was the same as the control roots, whereas that of maize coleoptiles was reduced. When maize seedlings were grown in the presence of 10(-4) M gibberellic acid and kinetin, the graviresponse of both roots and shoots was suppressed. The corresponding suppression of amyloplast development was observed in the clinostatted and the hormone-treated seedlings. Maize roots and shoots showed spontaneous curvatures in different portions on the 3-D clinostat. The hormone treatment did not significantly influence such an automorphic curvature. When the root cap was removed, maize roots did not curve gravitropically. However, the removal suppressed the automorphic curvatures only slightly. On the other hand, the removal of coleoptile tip did not influence its graviresponse, whereas the spontaneous curvature of decapitated coleoptiles on the clinostat was strongly suppressed. Also, cytochalasin B differently affected the gravitropic and the automorphic curvatures of maize roots and shoots. From these results it is concluded that the graviperception and the early processes of signal transmission are unnecessary for automorphoses under simulated microgravity conditions. Moreover, the results support the view that the amyloplasts act as statoliths probably via an interaction with microfilaments.
Collapse
Affiliation(s)
- T Hoson
- Department of Biology, Osaka City University, Japan
| | | | | | | |
Collapse
|
22
|
Ishii Y, Hoson T, Kamisaka S, Miyamoto K, Ueda J, Mantani S, Fujii S, Masuda Y, Yamamoto R. Plant growth processes in Arabidopsis under microgravity conditions simulated by a clinostat. UCHU SEIBUTSU KAGAKU 1996; 10:3-7. [PMID: 11540339 DOI: 10.2187/bss.10.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The life cycle of Arabidopsis plants was examined by growing them on a horizontal clinostat. Seeds on agar media were allowed to germinate and seedlings were grown under a simulated microgravity on a horizontal clinostat. Clinorotation (3 rpm) did not appear to interfere with germination of plant seeds and development of cotyledons and leaves. Stress relaxation parameters of the cell wall, the minimum relaxation time and the relaxation rate did not appear to be affected by clinostat rotation. On the other hand, the length of inflorescences was reduced to 61-62% by clinostat rotation. Rotation was found to inhibit the polar transport of auxin, although inflorescence growth and auxin transport were not completely inhibited. From these facts, it is possible that the life cycle in Arabidopsis plants could be accomplished in space, although growth phenomena involving auxin transport and its action may be disturbed. Plants may have a capacity to grow in space and we may be able to cultivate crops in space.
Collapse
Affiliation(s)
- Y Ishii
- Laboratory of Biology and Chemistry, Tezukayama College, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|