1
|
Abdelrady YA, Thabet HS, Sayed AM. The future of metronomic chemotherapy: experimental and computational approaches of drug repurposing. Pharmacol Rep 2025; 77:1-20. [PMID: 39432183 DOI: 10.1007/s43440-024-00662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Metronomic chemotherapy (MC), long-term continuous administration of anticancer drugs, is gaining attention as an alternative to the traditional maximum tolerated dose (MTD) chemotherapy. By combining MC with other treatments, the therapeutic efficacy is enhanced while minimizing toxicity. MC employs multiple mechanisms, making it a versatile approach against various cancers. However, drug resistance limits the long-term effectiveness of MC, necessitating ongoing development of anticancer drugs. Traditional drug discovery is lengthy and costly due to processes like target protein identification, virtual screening, lead optimization, and safety and efficacy evaluations. Drug repurposing (DR), which screens FDA-approved drugs for new uses, is emerging as a cost-effective alternative. Both experimental and computational methods, such as protein binding assays, in vitro cytotoxicity tests, structure-based screening, and several types of association analyses (Similarity-Based, Network-Based, and Target Gene), along with retrospective clinical analyses, are employed for virtual screening. This review covers the mechanisms of MC, its application in various cancers, DR strategies, examples of repurposed drugs, and the associated challenges and future directions.
Collapse
Affiliation(s)
- Yousef A Abdelrady
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Hayam S Thabet
- Microbiology Department, Faculty of Veterinary Medicine, Assiut University, Asyut, 71526, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Egypt
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Horin LJ, Sonnett M, Li B, Mitchison TJ. Diverse microtubule-destabilizing drugs induce equivalent molecular pathway responses in endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.632572. [PMID: 39896568 PMCID: PMC11785092 DOI: 10.1101/2025.01.22.632572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Drugs that modulate microtubule (MT) dynamics are well-characterized at the molecular level, yet the mechanisms linking these molecular effects to their distinct clinical outcomes remain unclear. Several MT-destabilizing drugs, including vinblastine, combretastatin A4, and plinabulin, are widely used, or are under evaluation for cancer treatment. Although all three depolymerize MTs, they do so through distinct biochemical mechanisms. Furthermore, their clinical profiles and therapeutic uses differ considerably. To investigate whether differential modulation of molecular pathways might account for clinical differences, we compared gene expression and signaling pathway responses in human pulmonary microvascular endothelial cells (HPMECs), alongside the MT-stabilizing drug docetaxel and the pro-inflammatory cytokine TNF-α. RNA-sequencing and phosphoproteomics revealed that all three MT destabilizers triggered equivalent molecular responses. The substantial changes in gene expression caused by MT destabilization were completely dependent on Rho family GTPase activation. These findings suggest that the distinct clinical profiles of the destabilizing drugs depend on differences in pharmacokinetics (PK) and tissue distribution rather than molecular actions. The washout rate of the three drugs differed, which likely translates to PK differences. Our data provide insights into how MT destabilization triggers signaling changes, potentially explaining how these drugs induce cell cycle re-entry in quiescent cells and how plinabulin ameliorates chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Lillian J Horin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Boyan Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
3
|
Petrucci GN, Magalhães TR, Dias M, Queiroga FL. Metronomic chemotherapy: bridging theory to clinical application in canine and feline oncology. Front Vet Sci 2024; 11:1397376. [PMID: 38903691 PMCID: PMC11187343 DOI: 10.3389/fvets.2024.1397376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Veterinary oncology has experienced significant evolution over the last few decades, with chemotherapy being currently applied to several neoplasms with therapeutic success. Traditionally, chemotherapy protocols are based on classic cytostatic drugs under the concept of maximum tolerated dose (MTD), which has been associated with a greater risk of toxicity and resistance. Thus, new therapeutic alternatives have emerged, such as metronomic chemotherapy (MC), introducing a new paradigm in cancer treatment. MC consists of administering low doses of chemotherapy drugs continuously over a long period of time, modulating the tumour microenvironment (TME) due to the combination of cytotoxic, antiangiogenic and immunomodulatory effects. This multi-targeted therapy has been described as a treatment option in several canine and feline cancers since 2007, with positive results already published in the literature, particularly in mammary carcinomas and soft tissue sarcomas in dogs. The aim of this review article is to describe the current knowledge about the use of MC in small animal oncology, with emphasis on its mechanisms of action, the most commonly used drugs and clinical outcome.
Collapse
Affiliation(s)
- Gonçalo N. Petrucci
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - Tomás Rodrigues Magalhães
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Márcia Dias
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Guo Y, Wang H, Gerberich JL, Odutola SO, Charlton-Sevcik AK, Li M, Tanpure RP, Tidmore JK, Trawick ML, Pinney KG, Mason RP, Liu L. Imaging-Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265 as a Potential Therapeutic Agent for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13194769. [PMID: 34638255 PMCID: PMC8507561 DOI: 10.3390/cancers13194769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Vascular-disrupting agents promise significant therapeutic efficacy against solid tumors by selectively damaging tumor-associated vasculature. Dynamic BLI and oxygen-enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following administration of KGP265. BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h indicating vascular disruption, which continued over 24 h. Twice-weekly doses of KGP265 caused a significant growth delay in MDA-MB-231 human breast tumor xenografts and 4T1 syngeneic breast tumors growing orthotopically in mice. Abstract The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.
Collapse
Affiliation(s)
- Yihang Guo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha 410013, China
| | - Honghong Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Amanda K. Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Maoping Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| |
Collapse
|
5
|
Gold M, Köhler L, Lanzloth C, Andronache I, Anant S, Dandawate P, Biersack B, Schobert R. Synthesis and bioevaluation of new vascular-targeting and anti-angiogenic thieno[2,3-d]pyrimidin-4(3H)-ones. Eur J Med Chem 2020; 189:112060. [PMID: 31958738 DOI: 10.1016/j.ejmech.2020.112060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/08/2023]
Abstract
A series of forty-six 5,6-annulated 2-arylthieno [2,3-d]pyrimidin-4(3H)-ones were prepared as potentially pleiotropic anticancer drugs with variance in the tubulin-binding trimethoxyphenyl motif at C-2 of a thieno [2,3-d]pyrimidine fragment, enlarged by additional rings of different size and substitution. By assessing their cytotoxicity against various cancer cells, their influence on the polymerization of neat tubulin and the dynamics of microtubule and F-actin cytoskeletons, and their vascular-disrupting and anti-angiogenic activities in vitro and in vivo, structure-activity relations were identified which suggest the 3-iodo-4,5-dimethoxyphenyl substituted thienopyrimidine 2e as a promising anticancer drug candidate for further research. 2020 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Madeleine Gold
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Leonhard Köhler
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Clarissa Lanzloth
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Ion Andronache
- Research Center for Integrated Analysis and Territorial Management, University of Bucharest, 4-12, Regina Elisabeta Avenue, Bucharest, 3rd District, 030018, Romania
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
6
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
7
|
Huh J, Ham SJ, Cho YC, Park B, Kim B, Woo CW, Choi Y, Woo DC, Kim KW. Gadoxetate-enhanced dynamic contrast-enhanced MRI for evaluation of liver function and liver fibrosis in preclinical trials. BMC Med Imaging 2019; 19:89. [PMID: 31729971 PMCID: PMC6858707 DOI: 10.1186/s12880-019-0378-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background To facilitate translational drug development for liver fibrosis, preclinical trials need to be run in parallel with clinical research. Liver function estimation by gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI) is being established in clinical research, but still rarely used in preclinical trials. We aimed to evaluate feasibility of DCE-MRI indices as translatable biomarkers in a liver fibrosis animal model. Methods Liver fibrosis was induced in Sprague-Dawley rats by thioacetamide (200 mg, 150 mg, and saline for the high-dose, low-dose, and control groups, respectively). Subsequently, DCE-MRI was performed to measure: relative liver enhancement at 3-min (RLE-3), RLE-15, initial area-under-the-curve until 3-min (iAUC-3), iAUC-15, and maximum-enhancement (Emax). The correlation coefficients between these MRI indices and the histologic collagen area, indocyanine green retention at 15-min (ICG-R15), and shear wave elastography (SWE) were calculated. Diagnostic performance to diagnose liver fibrosis was also evaluated by receiver-operating-characteristic (ROC) analysis. Results Animal model was successful in that the collagen area of the liver was the largest in the high-dose group, followed by the low-dose group and control group. The correlation between the DCE-MRI indices and collagen area was high for iAUC-15, Emax, iAUC-3, and RLE-3 but moderate for RLE-15 (r, − 0.81, − 0.81, − 0.78, − 0.80, and − 0.51, respectively). The DCE-MRI indices showed moderate correlation with ICG-R15: the highest for iAUC-15, followed by iAUC-3, RLE-3, Emax, and RLE-15 (r, − 0.65, − 0.63, − 0.62, − 0.58, and − 0.56, respectively). The correlation coefficients between DCE-MRI indices and SWE ranged from − 0.59 to − 0.28. The diagnostic accuracy of RLE-3, iAUC-3, iAUC-15, and Emax was 100% (AUROC 1.000), whereas those of RLE-15 and SWE were relatively low (AUROC 0.777, 0.848, respectively). Conclusion Among the gadoxetate-enhanced DCE-MRI indices, iAUC-15 and iAUC-3 might be bidirectional translatable biomarkers between preclinical and clinical research for evaluating histopathologic liver fibrosis and physiologic liver functions in a non-invasive manner.
Collapse
Affiliation(s)
- Jimi Huh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Department of Radiology, Ajou University School of Medicine and Graduate School of Medicine, Ajou University Hospital, Yeongtong-gu, Suwon, 16499, Korea
| | - Su Jung Ham
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Young Chul Cho
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Bumwoo Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea.,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine and Graduate School of Medicine, Ajou University Hospital, Yeongtong-gu, Suwon, 16499, Korea
| | - Chul-Woong Woo
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Yoonseok Choi
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Dong-Cheol Woo
- Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, 138-736, Songpa-gu, Seoul, 05505, Korea. .,Center for Bioimaging of New Drug Development, Asan Institute for Life Sciences, Asan Medical Center, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
8
|
Bachmeyer C, Joly H, Jorest R. Early Myocardial Infarction during Chemotherapy for Testicular Cancer. TUMORI JOURNAL 2018; 86:428-30. [PMID: 11130576 DOI: 10.1177/030089160008600513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A 36-year-old man with testicular cancer had an acute myocardial infarction during the first course of chemotherapy with bleomycin, etoposide and cisplatin. Since the patient had no significant risk factors for coronary heart disease, the infarction was likely to be attributable to the chemotherapy regimen. The physiopathological mechanisms of this causal relationship are discussed here.
Collapse
Affiliation(s)
- C Bachmeyer
- Department of Internal Medicine, H pital Laénnec, Creil, France
| | | | | |
Collapse
|
9
|
Galmarini CM, Martin M, Bouchet BP, Guillen-Navarro MJ, Martínez-Diez M, Martinez-Leal JF, Akhmanova A, Aviles P. Plocabulin, a novel tubulin-binding agent, inhibits angiogenesis by modulation of microtubule dynamics in endothelial cells. BMC Cancer 2018; 18:164. [PMID: 29415678 PMCID: PMC5803861 DOI: 10.1186/s12885-018-4086-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/31/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vascular supply of tumors is one of the main targets for cancer therapy. Here, we investigated if plocabulin (PM060184), a novel marine-derived microtubule-binding agent, presents antiangiogenic and vascular-disrupting activities. METHODS The effects of plocabulin on microtubule network and dynamics were studied on HUVEC endothelial cells. We have also studied its effects on capillary tube structures formation or destabilization in three-dimensional collagen matrices. In vivo experiments were performed on different tumor cell lines. RESULTS In vitro studies show that, at picomolar concentrations, plocabulin inhibits microtubule dynamics in endothelial cells. This subsequently disturbs the microtubule network inducing changes in endothelial cell morphology and causing the collapse of angiogenic vessels, or the suppression of the angiogenic process by inhibiting the migration and invasion abilities of endothelial cells. This rapid collapse of the endothelial tubular network in vitro occurs in a concentration-dependent manner and is observed at concentrations lower than that affecting cell survival. The in vitro findings were confirmed in tumor xenografts where plocabulin treatment induced a large reduction in vascular volume and induction of extensive necrosis in tumors, consistent with antivascular effects. CONCLUSIONS Altogether, these data suggest that an antivascular mechanism is contributing to the antitumor activities of plocabulin.
Collapse
Affiliation(s)
- Carlos M Galmarini
- R&D Area, PharmaMar S.A, Avda. de los Reyes 1, 28770 Colmenar Viejo, Madrid, Spain.
| | - Maud Martin
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Benjamin Pierre Bouchet
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | | | - Marta Martínez-Diez
- R&D Area, PharmaMar S.A, Avda. de los Reyes 1, 28770 Colmenar Viejo, Madrid, Spain
| | | | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Pablo Aviles
- R&D Area, PharmaMar S.A, Avda. de los Reyes 1, 28770 Colmenar Viejo, Madrid, Spain
| |
Collapse
|
10
|
Evaluation of drug mechanism and efficacy of a novel anti-angiogenic agent, TTAC-0001, using multi-modality bioimaging in a mouse breast cancer orthotopic model. PLoS One 2018; 13:e0187063. [PMID: 29370209 PMCID: PMC5784895 DOI: 10.1371/journal.pone.0187063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/12/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose Targeting of vascular endothelial growth factor receptors (VEGFRs) has potential anti-angiogenic effects because VEGFR-2 is the major signaling regulator of VEGF/VEGFR pathways. We aimed to elucidate the drug mechanism and anti-tumor efficacy of TTAC-0001, a novel, fully human anti-VEGFR-2/KDR monoclonal antibody, in mouse orthotopic breast cancer model using multi-modal bioimaging. Materials and methods We used orthotopic xenograft tumor model in which human breast cancer cells (MDA-MB-231) were injected into the right mammary fat pad of Balb/c nude mice. We investigated its biodistribution using serial fluorescence imaging after injecting fluorescent-labelled-drug and mode of action using Matrigel plug angiogenesis assays. The anti-tumor efficacy of drug was assessed using ultrasonography and bioluminescence imaging. Histopathologic analyses, including hematoxylin and eosin staining and immunohistochemistry with anti-CD31 and anti-Ki-67 antibodies, were performed. Each experiment had four groups: control, bevacizumab 10 mg/kg (BVZ-10 group), TTAC-0001 2 mg/kg (TTAC-2 group), and TTAC-0001 10 mg/kg (TTAC-10 group). Results The TTAC-10 group showed good tumor targeting that lasted for at least 6 days and had a good anti-angiogenic effect with decreased hemoglobin content and fewer CD31-positive cells in the Matrigel plug. Compared with BVZ-10 and TTAC-2 groups, the TTAC-10 group showed the strongest anti-tumor efficacy, inhibiting tumor growth as detected by ultrasonography and bioluminescence imaging. The TTAC-10 group also showed the lowest viable tumor and micro-vessel areas and the lowest Ki-67 index in histopathologic analyses. Conclusion We firstly demonstrated that TTAC-0001 effectively inhibited tumor growth and neovascularization in mouse orthotopic breast cancer model. It may provide a future treatment option for breast cancer.
Collapse
|
11
|
Lei X, Chen M, Huang M, Li X, Shi C, Zhang D, Luo L, Zhang Y, Ma N, Chen H, Liang H, Ye W, Zhang D. Desacetylvinblastine Monohydrazide Disrupts Tumor Vessels by Promoting VE-cadherin Internalization. Am J Cancer Res 2018; 8:384-398. [PMID: 29290815 PMCID: PMC5743555 DOI: 10.7150/thno.22222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Vinca alkaloids, the well-known tubulin-binding agents, are widely used for the clinical treatment of malignant tumors. However, little attention has been paid to their vascular disrupting effects, and the underlying mechanisms remain largely unknown. This study aims to investigate the vascular disrupting effect and the underlying mechanisms of vinca alkaloids. Methods: The capillary disruption assay and aortic ring assay were performed to evaluate the in vitro vascular disrupting effect of desacetylvinblastine monohydrazide (DAVLBH), a derivate of vinblastine, and the in vivo vascular disrupting effect was assessed on HepG2 xenograft model using magnetic resonance imaging, hematoxylin and eosin staining and immunohistochemistry. Tubulin polymerization, endothelial cell monolayer permeability, western blotting and immunofluorescence assays were performed to explore the underlying mechanisms of DAVLBH-mediated tumor vascular disruption. Results: DAVLBH has potent vascular disrupting activity both in vitro and in vivo. DAVLBH disrupts tumor vessels in a different manner than classical tubulin-targeting VDAs; it inhibits microtubule polymerization, promotes the internalization of vascular endothelial cadherin (VE-cadherin) and inhibits the recycling of internalized VE-cadherin to the cell membrane, thus increasing endothelial cell permeability and ultimately resulting in vascular disruption. DAVLBH-mediated promotion of VE-cadherin internalization and inhibition of internalized VE-cadherin recycling back to the cell membrane are partly dependent on inhibition of microtubule polymerization, and Src activation is involved in DAVLBH-induced VE-cadherin internalization. Conclusions: This study sheds light on the tumor vascular disrupting effect and underlying mechanisms of vinca alkaloids and provides new insight into the molecular mechanism of tubulin-targeting VDAs.
Collapse
|
12
|
3D microtumors in vitro supported by perfused vascular networks. Sci Rep 2016; 6:31589. [PMID: 27549930 PMCID: PMC4994029 DOI: 10.1038/srep31589] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in developing microphysiological systems that can be used to model both normal and pathological human organs in vitro. This "organs-on-chips" approach aims to capture key structural and physiological characteristics of the target tissue. Here we describe in vitro vascularized microtumors (VMTs). This "tumor-on-a-chip" platform incorporates human tumor and stromal cells that grow in a 3D extracellular matrix and that depend for survival on nutrient delivery through living, perfused microvessels. Both colorectal and breast cancer cells grow vigorously in the platform and respond to standard-of-care therapies, showing reduced growth and/or regression. Vascular-targeting agents with different mechanisms of action can also be distinguished, and we find that drugs targeting only VEGFRs (Apatinib and Vandetanib) are not effective, whereas drugs that target VEGFRs, PDGFR and Tie2 (Linifanib and Cabozantinib) do regress the vasculature. Tumors in the VMT show strong metabolic heterogeneity when imaged using NADH Fluorescent Lifetime Imaging Microscopy and, compared to their surrounding stroma, many show a higher free/bound NADH ratio consistent with their known preference for aerobic glycolysis. The VMT platform provides a unique model for studying vascularized solid tumors in vitro.
Collapse
|
13
|
Porcù E, Salvador A, Primac I, Mitola S, Ronca R, Ravelli C, Bortolozzi R, Vedaldi D, Romagnoli R, Basso G, Viola G. Vascular disrupting activity of combretastatin analogues. Vascul Pharmacol 2016; 83:78-89. [DOI: 10.1016/j.vph.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/11/2016] [Accepted: 05/21/2016] [Indexed: 01/11/2023]
|
14
|
Zhang ZJ, Du RN, He J, Wu XD, Li Y, Li RT, Zhao QS. Vinmajorines C - E, Monoterpenoid Indole Alkaloids fromVinca major. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201500211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Greene LM, Meegan MJ, Zisterer DM. Combretastatins: more than just vascular targeting agents? J Pharmacol Exp Ther 2015; 355:212-27. [PMID: 26354991 DOI: 10.1124/jpet.115.226225] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/25/2015] [Indexed: 01/23/2023] Open
Abstract
Several prodrugs of the naturally occurring combretastatins have undergone extensive clinical evaluation as vascular targeting agents (VTAs). Their increased selectivity toward endothelial cells together with their innate ability to rapidly induce vascular shutdown and inhibit tumor growth at doses up to 10-fold less than the maximum tolerated dose led to the clinical evaluation of combretastatins as VTAs. Tubulin is well established as the molecular target of the combretastatins and the vast majority of its synthetic derivatives. Furthermore, tubulin is a highly validated molecular target of many direct anticancer agents routinely used as front-line chemotherapeutics. The unique vascular targeting properties of the combretastatins have somewhat overshadowed their development as direct anticancer agents and the delineation of the various cell death pathways and anticancer properties associated with such chemotherapeutics. Moreover, the ongoing clinical trial of OXi4503 (combretastatin-A1 diphosphate) together with preliminary preclinical evaluation for the treatment of refractory acute myelogenous leukemia has successfully highlighted both the indirect and direct anticancer properties of combretastatins. In this review, we discuss the development of the combretastatins from nature to the clinic. The various mechanisms underlying combretastatin-induced cell cycle arrest, mitotic catastrophe, cell death, and survival are also reviewed in an attempt to further enhance the clinical prospects of this unique class of VTAs.
Collapse
Affiliation(s)
- Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (L.M.G., D.M.Z.), and School of Pharmacy and Pharmaceutical Sciences, Centre for Synthesis and Chemical Biology (M.J.M.), Trinity College Dublin, Dublin, Ireland
| | - Mary J Meegan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (L.M.G., D.M.Z.), and School of Pharmacy and Pharmaceutical Sciences, Centre for Synthesis and Chemical Biology (M.J.M.), Trinity College Dublin, Dublin, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (L.M.G., D.M.Z.), and School of Pharmacy and Pharmaceutical Sciences, Centre for Synthesis and Chemical Biology (M.J.M.), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
|
17
|
Wang X, Song Y, Su Y, Tian Q, Li B, Quan J, Deng Y. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Deliv 2015; 23:1092-100. [PMID: 26024386 DOI: 10.3109/10717544.2015.1027015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cancer poses a significant threat to human health worldwide, and many therapies have been used for its palliative and curative treatments. Vincristine has been extensively used in chemotherapy. However, there are two major challenges concerning its applications in various tumors: (1) Vincristine's antitumor mechanism is cell-cycle-specific, and the duration of its exposure to tumor cells can significantly affect its antitumor activity and (2) Vincristine is widely bio-distributed and can be rapidly eliminated. One solution to these challenges is the encapsulation of vincristine into liposomes. Vincristine can be loaded into conventional liposomes, but it quickly leak out owing to its high membrane permeability. Numerous approaches have been attempted to overcome this problem. Vincristine has been loaded into PEGylated liposomes to prolong circulation time and improve tumor accumulation. These liposomes indeed prolong circulation time, but the payout characteristic of vincristine is severer, resulting in a compromised outcome rather than a better efficacy compared to conventional sphingomyelin (SM)/cholesterol (Chol) liposomes. In 2012, the USA Food and Drug Administration (FDA) approved SM/Chol liposomal vincristine (Marqibo®) for commercial use. In this review, we mainly focus on the drug's rapid leakage problem and the potentially relevant solutions that can be applied during the development of liposomal vincristine and the reason for conventional liposomal vincristine rather than PEGylated liposomes has access to the market.
Collapse
Affiliation(s)
- Xuling Wang
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Yanzhi Song
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Yuqing Su
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Qingjing Tian
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Boqun Li
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Jingjing Quan
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| | - Yihui Deng
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , P.R. China
| |
Collapse
|
18
|
Abma E, Daminet S, Smets P, Ni Y, de Rooster H. Combretastatin A4-phosphate and its potential in veterinary oncology: a review. Vet Comp Oncol 2015; 15:184-193. [PMID: 25988493 DOI: 10.1111/vco.12150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
Abstract
For many years, research on anticancer therapy has focussed almost exclusively on targeting cancer cells directly, to selectively kill them or restrict their growth. But limited advances in this strategy have led researchers to shift their attention to other potential targets. Active research is now on-going on targeting tumour stroma. Vascular disrupting agents (VDAs) appear a promising class of anticancer drugs that are currently under investigation as a sole or combined therapy in human cancer patients. This article will briefly touch on the history and biology of combretastatin A4-phosphate (CA4P) as a typical example of VDAs and will concentrate on the side effects that can be expected when used in veterinary patients. Particularly, the pathogenesis of these side effects and how they may be prevented and/or treated will be discussed. The purpose of this article is to illustrate the potentials of CA4P as anticancer therapy in veterinary oncology patients.
Collapse
Affiliation(s)
- E Abma
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - S Daminet
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - P Smets
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Y Ni
- Department of Radiology, KU Leuven, Leuven, Belgium
| | - H de Rooster
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
19
|
Katsaounis P, Kotsakis A, Agelaki S, Kontopodis E, Agelidou A, Kentepozidis N, Vamvakas L, Christopoulou A, Karachaliou N, Hatzidaki D, Georgoulias V. Cisplatin in combination with metronomic vinorelbine as front-line treatment in advanced non-small cell lung cancer: a multicenter phase II study of the Hellenic Oncology Research Group (HORG). Cancer Chemother Pharmacol 2015; 75:821-7. [DOI: 10.1007/s00280-015-2707-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 11/30/2022]
|
20
|
Recent developments in tubulin polymerization inhibitors: An overview. Eur J Med Chem 2014; 87:89-124. [DOI: 10.1016/j.ejmech.2014.09.051] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
|
21
|
|
22
|
Said R, Tsimberidou AM. Pharmacokinetic evaluation of vincristine for the treatment of lymphoid malignancies. Expert Opin Drug Metab Toxicol 2014; 10:483-94. [PMID: 24512004 DOI: 10.1517/17425255.2014.885016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Vincristine is a key agent for the treatment of acute lymphoblastic leukemia (ALL) and other lymphoid malignancies. The strong antineoplastic activity of vincristine has been limited by its pharmacological characteristics. AREAS COVERED This paper reviews the role of vincristine in the treatment of lymphoid malignancies. This review summarizes its efficacy and toxicity, and focuses on the pharmacokinetic features of vincristine that affect clinical outcomes. EXPERT OPINION As a single agent, vincristine is associated with brief and incomplete responses, but in combination with other agents, vincristine has dramatically improved the outcomes of lymphoid malignancies such as ALL. Vincristine is a key drug of hyper-fractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone, an intensive chemotherapeutic regimen for the treatment of ALL, and of cyclophosphamid, adriamycin, vincristine and prednisone, which has been used extensively in the treatment of patients with aggressive or indolent lymphomas and Richter syndrome. The strong antileukemic activity of vincristine has been limited by its variable and unpredictable pharmacological characteristics, narrow therapeutic index and neurotoxicity profile. These characteristics prompted the development of liposomal vincristine, which has optimized its clinical application. Liposomal vincristine has promising antileukemic activity, and it is approved by the FDA as a single agent for the treatment of relapsed/refractory Philadelphia chromosome-negative ALL.
Collapse
Affiliation(s)
- Rabih Said
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program) , 1515 Holcombe Blvd., Unit 455, Houston, TX 77030-3722 , USA +1 713 792 4259 ; +1 713 794 3249 ;
| | | |
Collapse
|
23
|
Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 2013; 16:503-24. [DOI: 10.1007/s10456-013-9347-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/19/2013] [Indexed: 12/28/2022]
|
24
|
Zhao DG, Chen J, Du YR, Ma YY, Chen YX, Gao K, Hu BR. Synthesis and Structure–Activity Relationships of N-Methyl-5,6,7-trimethoxylindoles as Novel Antimitotic and Vascular Disrupting Agents. J Med Chem 2013; 56:1467-77. [DOI: 10.1021/jm3014663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Deng-Gao Zhao
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering,
Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - JianJun Chen
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering,
Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Ya-Rong Du
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering,
Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yan-Yan Ma
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering,
Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Ya-Xiong Chen
- Key Laboratory of Heavy Ion
Radiation Biology and Medicine, Institute of Modern Physics, Chinese
Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Kun Gao
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering,
Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Bu-Rong Hu
- Key Laboratory of Heavy Ion
Radiation Biology and Medicine, Institute of Modern Physics, Chinese
Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
25
|
Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 2012; 71:555-64. [PMID: 23212117 PMCID: PMC3579462 DOI: 10.1007/s00280-012-2042-4] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/22/2012] [Indexed: 12/05/2022]
Abstract
Vincristine (VCR) is a mainstay of treatment of hematologic malignancies and solid tumors due to its well-defined mechanism of action, demonstrated anticancer activity and its ability to be combined with other agents. VCR is an M-phase cell cycle-specific anticancer drug with activity that is concentration and exposure duration dependent. The pharmacokinetic profile of standard VCR is described by a bi-exponential elimination pattern with a very fast initial distribution half-life followed by a longer elimination half-life. VCR also has a large volume of distribution, suggesting diffuse distribution and tissue binding. These properties may limit optimal drug exposure and delivery to target tissues as well as clinical utility as a single agent or as an effective component of multi-agent regimens. Vincristine sulfate liposome injection (VSLI), Marqibo®, is a sphingomyelin and cholesterol-based nanoparticle formulation of VCR that was designed to overcome the dosing and pharmacokinetic limitations of standard VCR. VSLI was developed to increase the circulation time, optimize delivery to target tissues and facilitate dose intensification without increasing toxicity. In xenograft studies in mice, VSLI had a higher maximum tolerated dose, superior antitumor activity and delivered higher amounts of active drug to target tissues compared to standard VCR. VSLI recently received accelerated FDA approval for use in adults with advanced, relapsed and refractory Philadelphia chromosome-negative ALL and is in development for untreated adult ALL, pediatric ALL and untreated aggressive NHL. Here, we summarize the nonclinical data for VSLI that support its continued clinical development and recent approval for use in adult ALL.
Collapse
|
26
|
Fournier-Dit-Chabert J, Vinader V, Santos AR, Redondo-Horcajo M, Dreneau A, Basak R, Cosentino L, Marston G, Abdel-Rahman H, Loadman PM, Shnyder SD, Díaz JF, Barasoain I, Falconer RA, Pors K. Synthesis and biological evaluation of colchicine C-ring analogues tethered with aliphatic linkers suitable for prodrug derivatisation. Bioorg Med Chem Lett 2012; 22:7693-6. [DOI: 10.1016/j.bmcl.2012.09.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 01/14/2023]
|
27
|
Anticancer potential of tumor vascular disrupting agents: review of the latest clinical evidence. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.12.98] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Qiao F, Zuo D, Shen X, Qi H, Wang H, Zhang W, Wu Y. DAT-230, a novel microtubule inhibitor, exhibits potent anti-tumor activity by inducing G2/M phase arrest, apoptosis in vitro and perfusion decrease in vivo to HT-1080. Cancer Chemother Pharmacol 2012; 70:259-70. [PMID: 22752214 DOI: 10.1007/s00280-012-1907-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/01/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE The anti-mitotic agent, combretastatin A-4 (CA-4), is the lead compound of a new class of anti-cancer drugs that target tumor vasculature. 2-Methoxy-5-(2-(3, 4, 5-trimethoxyphenyl) thiophen-3-yl) aniline (DAT-230) is a structurally novel CA-4 analog with more stability. We investigated its anti-tumor activity and mechanisms in vitro and in vivo for the first time. METHODS Cytotoxicity was measured by MTT method. Apoptosis, mitochondria membrane potential (ΔΨm) and NO generation were measured by flow cytometry. Intracellular microtubule network was detected by immunofluorescence experiments. Protein expression was analyzed by Western blotting. In vivo, the anti-tumor activity was assessed using fibrosarcoma xenografts subcutaneously established in BALB/c nude mice. Vasculature perfusion was identified using fluorescent DNA-binding compound Hoechst 33342. RESULTS DAT-230 exhibited potent anti-proliferative activity against various cancer cells. DAT-230-treatment in HT-1080 cells resulted in microtubule de-polymerization and G2/M phase arrest preceding apoptosis. Phosphor-cdc2 (thr14/tyr15) reduction, cyclin B1 accumulation and aberrant spindles denoted the cyclin B1-cdc2 complex active and M phase arrest in HT-1080 cells treated with DAT-230. Apoptosis induced by DAT-230 was related with the activation of caspase-9, caspase-3 and PARP cleavage, which were at the downstream of mitochondria. The decrease ratio of Bcl-2/Bax, elevation of NO and disruption of ΔΨm confirmed the causal relationship between DAT-230 and mitochondrial pathway. In vivo, DAT-230 delayed tumor growth, induced tumor perfusion decrease and extensive hemorrhagic-necrosis. CONCLUSIONS DAT-230 is a promising microtubule inhibitor that has great potential for the treatment of fibrosarcoma in vitro and in vivo. Its potential to be a candidate of anti-cancer agent is worth being further investigated.
Collapse
Affiliation(s)
- Foxiao Qiao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Yamazaki Y, Tanaka K, Nicholson B, Deyanat-Yazdi G, Potts B, Yoshida T, Oda A, Kitagawa T, Orikasa S, Kiso Y, Yasui H, Akamatsu M, Chinen T, Usui T, Shinozaki Y, Yakushiji F, Miller BR, Neuteboom S, Palladino M, Kanoh K, Lloyd GK, Hayashi Y. Synthesis and structure-activity relationship study of antimicrotubule agents phenylahistin derivatives with a didehydropiperazine-2,5-dione structure. J Med Chem 2012; 55:1056-71. [PMID: 22185476 DOI: 10.1021/jm2009088] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plinabulin (11, NPI-2358) is a potent microtubule-targeting agent derived from the natural diketopiperazine "phenylahistin" (1) with a colchicine-like tubulin depolymerization activity. Compound 11 was recently developed as VDA and is now under phase II clinical trials as an anticancer drug. To develop more potent antimicrotubule and cytotoxic derivatives based on the didehydro-DKP skeleton, we performed further modification on the tert-butyl or phenyl groups of 11, and evaluated their cytotoxic and tubulin-binding activities. In the SAR study, we developed more potent derivatives 33 with 2,5-difluorophenyl and 50 with a benzophenone in place of the phenyl group. The anti-HuVEC activity of 33 and 50 exhibited a lowest effective concentration of 2 and 1 nM for microtubule depolymerization, respectively. The values of 33 and 50 were 5 and 10 times more potent than that of CA-4, respectively. These derivatives could be a valuable second-generation derivative with both vascular disrupting and cytotoxic activities.
Collapse
Affiliation(s)
- Yuri Yamazaki
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Crielaard BJ, van der Wal S, Lammers T, Le HT, Hennink WE, Schiffelers RM, Storm G, Fens MH. A polymeric colchicinoid prodrug with reduced toxicity and improved efficacy for vascular disruption in cancer therapy. Int J Nanomedicine 2011; 6:2697-703. [PMID: 22114500 PMCID: PMC3218583 DOI: 10.2147/ijn.s24450] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Colchicinoids are very potent tubulin-binding compounds, which interfere with microtubule formation, giving them strong cytotoxic properties, such as cell mitosis inhibition and induction of microcytoskeleton depolymerization. While this makes them promising vascular disrupting agents (VDAs) in cancer therapy, their dose-limiting toxicity has prevented any clinical application for this purpose. Therefore, colchicinoids are considered attractive lead molecules for the development of novel vascular disrupting nanomedicine. In a previous study, a polymeric colchicinoid prodrug that showed favorable hydrolysis characteristics at physiological conditions was developed. In the current study, this polymeric colchicinoid prodrug was evaluated in vitro and in vivo for its toxicity and vascular disrupting potential. Cell viability studies with human umbilical vein endothelial cells, as an in vitro measure for colchicine activity, reflected the degradation kinetics of the prodrug accordingly. Upon intravenous treatment, in vivo, of B16F10 melanoma-bearing mice with colchicine or with the polymeric colchicinoid prodrug, apparent vascular disruption and consequent tumor necrosis was observed for the prodrug but not for free colchicine at an equivalent dose. Moreover, a five-times-higher dose of the prodrug was well tolerated, indicating reduced toxicity. These findings demonstrate that the polymeric colchicinoid prodrug has a substantially improved efficacy/toxicity ratio compared with that of colchicine, making it a promising VDA for cancer therapy.
Collapse
Affiliation(s)
- Bart J Crielaard
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Crielaard BJ, van der Wal S, Le HT, Bode ATL, Lammers T, Hennink WE, Schiffelers RM, Fens MHAM, Storm G. Liposomes as carriers for colchicine-derived prodrugs: vascular disrupting nanomedicines with tailorable drug release kinetics. Eur J Pharm Sci 2011; 45:429-35. [PMID: 21907797 DOI: 10.1016/j.ejps.2011.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
Newly formed tumor vasculature has proven to be an effective target for tumor therapy. A strategy to attack this angiogenic tumor vasculature is to initiate local blood vessel congestion and consequently induce massive tumor cell necrosis. Vascular disrupting agents (VDAs) typically bind to tubulin and consequently disrupt microtubule dynamics. Colchicine and its derivatives (colchicinoids) are very potent tubulin binding compounds but have a narrow therapeutic index, which may be improved by employing a liposomal targeting strategy. However, as a result of their physicochemical properties, colchicinoids are problematic to retain in liposomes, as they are released relatively rapidly upon encapsulation. To overcome this limitation, two hydrolyzable PEGylated derivatives of colchicine were developed for encapsulation into the aqueous core of long-circulating liposomes: a moderately rapid hydrolyzing PEGylated colchicinoid containing a glycolic acid linker (prodrug I), and a slower hydrolyzing PEGylated colchicinoid with a lactic acid linker (prodrug II). Hydrolysis studies at 37°C and pH 7.4 showed that prodrug I possessed relatively rapid conversion characteristics (t(1/2)=5.4 h) whereas prodrug II hydrolyzed much slower (t(1/2)=217 h). Upon encapsulation into liposomes, colchicine was released rapidly, whereas both PEGylated colchicine derivatives were efficiently retained and appeared to be released only after cleavage of the PEG-linker. This study therefore demonstrates that, in contrast to colchicine, these novel PEGylated colchicine-derived prodrugs are retained within the aqueous interior after encapsulation into liposomes, and that the release of the active parent can be controlled by using different biodegradable linkers.
Collapse
Affiliation(s)
- Bart J Crielaard
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 2011; 118:2906-17. [PMID: 21778339 DOI: 10.1182/blood-2011-01-331694] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) in blood vessels under formation are stabilized by the recruitment of pericytes, both in normal tissues and during angiogenesis in pathologic situations, including neoplasia. In the tumor vasculature, besides supporting the functionality of blood flow, pericytes protect ECs from antiangiogenic therapies, and have thus been implicated in clinical resistance to vascular targeting drugs. However, the molecular nature of the crosstalk between pericytes and ECs is largely unchartered. Herein, we identified pericyte-induced survival signals in ECs by isolation of vascular fragments derived from tumors that had been genetically or pharmacologically engineered to be either pericyte-rich or pericyte-poor. Pericytes induced the antiapoptotic protein Bcl-w in tumor ECs both in vivo and in vitro, thereby conveying protection from cytotoxic damage. The pericyte-dependent survival signaling in ECs was consequential to enforcement of an autocrine loop involving VEGF-A expression in ECs. Through molecular and functional studies, we delineated a signal transduction pathway in ECs downstream of integrin α(v) involving activation of NF-κB as the initiating event of the protective crosstalk from pericytes. Our elucidation of pericyte-derived pro-survival signaling in tumor ECs has potentially important implications for clinical development of antiangiogenic drugs, and suggests new therapeutic targets for rational multitargeting of cancer.
Collapse
|
33
|
Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Investig Drugs 2011; 19:1413-25. [PMID: 20964495 DOI: 10.1517/13543784.2010.529128] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Tumor vascular disrupting agents (tumor VDAs) act by selective induction of tumor vascular failure. While their action is distinct from that of antiangiogenic agents, their clinical potential is likely to reside in improving the efficacy of combination therapy. AREAS COVERED IN THIS REVIEW This review describes the preclinical development, clinical trial and mode of action of ASA404, a flavonoid class tumor VDA. This class has a unique dual action, simultaneously disrupting vascular endothelial function and stimulating innate tumor immunity. This review covers the early development of ASA404, through to Phase III trial. WHAT THE READER WILL GAIN The reader will gain insight into the sequence of ASA404-induced changes in tumor tissue. Early events include increased vascular permeability, increased endothelial apoptosis and decreased blood flow, while later effects include the induction of serotonin, tumor necrosis factor, other cytokines and chemokines, and nitric oxide. This cascade of events induces sustained reduction of tumor blood flow, induction of tumor hypoxia and increased inflammatory responses. The reader will also gain an appreciation of how the potentiation of radiation and chemotherapeutic effects by ASA404 in murine tumors shaped the development of combination clinical trials. TAKE HOME MESSAGE Although there are species differences in ASA404 activity, many features of its action in mice translate to human studies. The future of ASA404 as an effective clinical agent will rely on the development of an appreciation of its ability to optimize the complex interaction between tumor vasculature and tumor immunity during therapy.
Collapse
Affiliation(s)
- Bruce C Baguley
- The University of Auckland, Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
34
|
Mason RP, Zhao D, Liu L, Trawick ML, Pinney KG. A perspective on vascular disrupting agents that interact with tubulin: preclinical tumor imaging and biological assessment. Integr Biol (Camb) 2011; 3:375-87. [PMID: 21321746 PMCID: PMC3071431 DOI: 10.1039/c0ib00135j] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment provides a rich source of potential targets for selective therapeutic intervention with properly designed anticancer agents. Significant physiological differences exist between the microvessels that nourish tumors and those that supply healthy tissue. Selective drug-mediated damage of these tortuous and chaotic microvessels starves a tumor of necessary nutrients and oxygen and eventually leads to massive tumor necrosis. Vascular targeting strategies in oncology are divided into two separate groups: angiogenesis inhibiting agents (AIAs) and vascular disrupting agents (VDAs). The mechanisms of action between these two classes of compounds are profoundly distinct. The AIAs inhibit the actual formation of new vessels, while the VDAs damage and/or destroy existing tumor vasculature. One subset of small-molecule VDAs functions by inhibiting the assembly of tubulin into microtubules, thus causing morphology changes to the endothelial cells lining the tumor vasculature, triggered by a cascade of cell signaling events. Ultimately this results in catastrophic damage to the vessels feeding the tumor. The rapid emergence and subsequent development of the VDA field over the past decade has led to the establishment of a synergistic combination of preclinical state-of-the-art tumor imaging and biological evaluation strategies that are often indicative of future clinical efficacy for a given VDA. This review focuses on an integration of the appropriate biochemical and biological tools necessary to assess (preclinically) new small-molecule, tubulin active VDAs for their potential to be clinically effective anticancer agents.
Collapse
Affiliation(s)
- Ralph P. Mason
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Dawen Zhao
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Li Liu
- Department of Radiology, 5323 Harry Hines Boulevard, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-9058 USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, One Bear Place #97348, Baylor University, Waco, Texas 76798-7348, USA
| |
Collapse
|
35
|
Preclinical Efficacy of Vascular Disrupting Agents in Non–Small-Cell Lung Cancer. Clin Lung Cancer 2011; 12:81-6. [DOI: 10.1016/j.cllc.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 11/21/2022]
|
36
|
Li SP, Taylor NJ, Makris A, Ah-See MLW, Beresford MJ, Stirling JJ, d'Arcy JA, Collins DJ, Padhani AR. Primary Human Breast Adenocarcinoma: Imaging and Histologic Correlates of Intrinsic Susceptibility-weighted MR Imaging before and during Chemotherapy. Radiology 2010; 257:643-52. [PMID: 20858850 DOI: 10.1148/radiol.10100421] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sonia P Li
- Academic Oncology Unit, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood, Middlesex HA6 2RN, England.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
ABT-751, a novel tubulin-binding agent, decreases tumor perfusion and disrupts tumor vasculature. Anticancer Drugs 2010; 20:483-92. [PMID: 19398903 DOI: 10.1097/cad.0b013e32832c0acf] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABT-751 is an orally bioavailable tubulin-binding agent that is currently under clinical development for cancer treatment. In preclinical studies, ABT-751 showed antitumor activity against a broad spectrum of tumor lines including those resistant to conventional chemotherapies. In this study, we investigated the antivascular properties of ABT-751 in a rat subcutaneous tumor model using dynamic contrast-enhanced magnetic resonance imaging. A single dose of ABT-751 (30 mg/kg, intravenously) induced a rapid, transient reduction in tumor perfusion. After 1 h, tumor perfusion decreased by 57% before recovering to near pretreatment levels within 6 h. In contrast, ABT-751 produced little change in muscle perfusion at either time point. To further elucidate mechanisms of drug action at the cellular level, we examined the effects of ABT-751 on endothelial cells using an in-vitro assay. ABT-751, at concentrations corresponding to plasma levels achieved in vivo, caused endothelial cell retraction and significant loss of microtubules within 1 h. The severity of these morphological changes was dose-dependent but reversible within 6 h after the discontinuation of the drug. Taken together, these results show that ABT-751 is a tubulin-binding agent with antivascular properties. Microtubule disruption and morphological changes in vascular endothelial cells may be responsible, at least in part, for the dysfunction of tumor blood vessels after ABT-751 treatment.
Collapse
|
39
|
Albertsson P, Lennernäs B, Norrby K. Dose effects of continuous vinblastine chemotherapy on mammalian angiogenesis mediated by VEGF-A. Acta Oncol 2009; 47:293-300. [PMID: 18210302 DOI: 10.1080/02841860701558781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Low-dose continuous or metronomic chemotherapy with several agents can exert significant antiangiogenic effects, as shown in preclinical studies. Therapy of this kind is generally well tolerated compared with conventional chemotherapy with high, temporally spaced out bolus doses. A critical point emerges when the effects on angiogenesis of low-toxic metronomic doses of chemotherapeutics in preclinical studies are to be transferred to clinical protocols, as there is a risk that a virtually non-toxic dose might also be ineffective; clearly, dose-effect data are important. We therefore sought to investigate whether a dose-dependent response exists in metronomic vinblastine chemotherapy. The surrogate tumor-free rat mesentery model, allowing the study of antiangiogenic effects per se, was used. Following systemically administered metronomic chemotherapy, it closely reflects the indirectly assessed antiangiogenic and growth-retarding effects in a syngenic cancer model. VEGF-A, which is a central proangiogenic factor in most tumors, was administered i.p. to induce angiogenesis in the mesenteric test tissue and, using morphometry, the angiogenesis-modulating effects of vinblastine were assessed in terms of objective quantitative variables. We report that continuous vinblastine treatment with an apparently non-toxic dose (1.0 mg/kg/week or 0.143 mg/kg/day) for 10 days, and a dose that substantially inhibited the physiologic body-weight gain (2.0 mg/kg/week or 0.286 mg/kg/day) for 6 days, demonstrates a dose-response relationship; the high dose significantly suppresses angiogenesis. To our knowledge, no previous study has reported on a dose-dependent antiangiogenic effect by continuous or metronomic vinblastine treatment in a mammalian in vivo model.
Collapse
|
40
|
Stempak D, Seely D, Baruchel S. Metronomic Dosing of Chemotherapy: Applications in Pediatric Oncology. Cancer Invest 2009; 24:432-43. [PMID: 16777697 DOI: 10.1080/07357900600705599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Pediatric cancer has a better outcome profile than adult cancers. However, refractory disease and the potential for long-term morbidity resulting from the use of conventional therapies necessitate the development of novel treatments for this population. Recent advances in oncology include the use of low dose metronomic (LDM) chemotherapy. The promise of this novel therapeutic approach includes reduced toxicity and the potential for efficacy predominantly through an antiangiogenic effect. The clinical benefit may be realized especially when combined with other antiangiogenic agents and/or conventional maximally tolerated doses of chemotherapy. In this article, we review the evidence for the use of LDM chemotherapy with a focus on pediatric cancer. Included are some of the possible risks attributable to this therapy in a pediatric setting and some of the hurdles to overcome in order to conduct good clinical research. Emphasis is placed on the development of proper surrogate markers to monitor antiangiogenic therapy in order to both optimize the dosing schedule for LDM chemotherapy and to provide a way of tracking therapeutic efficacy.
Collapse
Affiliation(s)
- Diana Stempak
- Division of Hematology/Oncology, Hospital for Sick Children, Ontario, Canada
| | | | | |
Collapse
|
41
|
Abstract
Microtubule-binding drugs (MBD) are widely used in cancer chemotherapy and also have clinically relevant antiangiogenic and vascular-disrupting properties. These antivascular actions are due in part to direct effects on endothelial cells, and all MBDs (both microtubule-stabilizing and microtubule-destabilizing) inhibit endothelial cell proliferation, migration, and tube formation in vitro, actions that are thought to correspond to therapeutic antiangiogenic actions. In addition, the microtubule-destabilizing agents cause prominent changes in endothelial cell morphology, an action associated with rapid vascular collapse in vivo. The effects on endothelial cells occur in vitro at low drug concentrations, which do not affect microtubule gross morphology, do not cause microtubule bundling or microtubule loss and do not induce cell cycle arrest, apoptosis, or cell death. Rather, it has been hypothesized that, at low concentrations, MBDs produce more subtle effects on microtubule dynamics, block critical cell signaling pathways, and prevent the microtubules from properly interacting with transient subcellular assemblies (focal adhesions and adherens junctions) whose subsequent stabilization and/or maturation are required for cell motility and cell-cell interactions. This review will focus on recent studies to define the molecular mechanisms for the antivascular actions of the MBDs, information that could be useful in the identification or design of agents whose actions more selectively target the tumor vasculature.
Collapse
Affiliation(s)
- Edward L Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York 10467, USA.
| |
Collapse
|
42
|
Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL. Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J Am Chem Soc 2009; 131:4904-16. [PMID: 19292450 PMCID: PMC2727944 DOI: 10.1021/ja809842b] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Full details of the development of a direct coupling of catharanthine with vindoline to provide vinblastine are described along with key mechanistic and labeling studies. Following an Fe(III)-promoted coupling reaction initiated by generation of a presumed catharanthine radical cation that undergoes a subsequent oxidative fragmentation and diastereoselective coupling with vindoline, addition of the resulting reaction mixture to an Fe(III)-NaBH(4)/air solution leads to oxidation of the C15'-C20' double bond and reduction of the intermediate iminium ion directly providing vinblastine (40-43%) and leurosidine (20-23%), its naturally occurring C20' alcohol isomer. The yield of coupled products, which exclusively possess the natural C16' stereochemistry, approaches or exceeds 80% and the combined yield of the isomeric C20' alcohols is >60%. Preliminary studies of Fe(III)-NaBH(4)/air oxidation reaction illustrate a generalizable trisubstituted olefin scope, identify alternatives to O(2) trap at the oxidized carbon, provide a unique entry into C20' functionalized vinblastines, and afford initial insights into the observed C20' diastereoselectivity. The first disclosure of the use of exo-catharanthine proceeding through Delta(19',20')-anhydrovinblastine in such coupling reactions is also detailed with identical stereochemical consequences. Incorporating either a catharanthine N-methyl group or a vindoline N-formyl group precludes Fe(III)-promoted coupling, whereas the removal of the potentially key C16 methoxy group of vindoline does not adversely impact the coupling efficiency. Extension of these studies provided a total synthesis of vincristine (2) via N-desmethylvinblastine (36, also a natural product), 16-desmethoxyvinblastine (44) and 4-desacetoxy-16-desmethoxyvinblastine (47) both of which we can now suggest are likely natural products produced by C. roseus, desacetylvinblastine (62) and 4-desacetoxyvinblastine (59), as well as a series of key analogues bearing systematic modifications in the vindoline subunit. Their biological evaluation provided additional insights into the key functionality within the vindoline subunit contributing to the activity and sets the foundation on which further, more deep-seated changes in the structures of 1 and 2 will be explored in future studies.
Collapse
Affiliation(s)
- Hayato Ishikawa
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - David A. Colby
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Shigeki Seto
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Porino Va
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Annie Tam
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Hiroyuki Kakei
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Thomas J. Rayl
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Inkyu Hwang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
43
|
Zhang Q, Kang X, Yang B, Wang J, Yang F. Antiangiogenic effect of capecitabine combined with ginsenoside Rg3 on breast cancer in mice. Cancer Biother Radiopharm 2009; 23:647-53. [PMID: 18999937 DOI: 10.1089/cbr.2008.0532] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Capecitabine is a novel fluoropyrimidine carbamate, which has a broader spectrum of antitumor activity than other fluoropyrimidines, such as 5-FU, DFUR, or UFT; it has proved effective over a wide dose range. Recent research has suggested that frequent administration of lower doses of certain chemotherapeutic drugs might enhance their antiangiogenic effect. The present study investigated the antiangiogenic effect of capecitabine on breast cancer. In order to augment its efficacy, we combined capecitabine chemotherapy with ginsenoside Rg3. Our results indicate that a metronomic regimen of capecitabine inhibited angiogenesis in breast cancer, and its antiangiogenic effects may be further enhanced by the concurrent administration of ginsenoside Rg3. As an antiangiogenic method, this regimen presented better antitumor effects, less toxicity, and reduced susceptibility to drug resistance.
Collapse
Affiliation(s)
- Qingyuan Zhang
- Department of Medical Oncology, Tumor Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Vinflunine (VFL) is a third-generation bifluorinated semi-synthetic vinca alkaloid obtained by superacidic chemistry from its parent compound, vinorelbine. As with the other vinca alkaloids, the main antineoplastic effects of VFL arise from its interaction with tubulin, the major component of microtubules in mitotic spindles. In contrast to other vinca alkaloids, VFL shows some distinctive properties in terms of tubulin binding, possibly explaining its superior antitumor activity in vitro and in vivo compared with vinorelbine as well as its excellent safety profile. In transitional cell carcinoma (TCC), two single-agent phase II trials were performed testing VFL in platinum-pretreated patients, showing moderate response rates and promising disease control rates. Therefore, the first phase III trial in modern times for second-line TCC of the urothelium was designed in order to further investigate the activity of VFL. First results were presented at the 2008 ASCO conference. VFL appears to be a possible treatment option for patients with TCC progressing after first-line platinum-containing chemotherapy.
Collapse
Affiliation(s)
- Mark Bachner
- 3rd Medical Department - Center for Oncology and Hematology, Kaiser Franz Josef-Spital der Stadt Wien, and Ludwig Boltzmann-Institute for Applied Cancer Research Vienna (LBI-ACR VIEnna), Cluster Translational Oncology, Kaiser Franz Josef-Spital der Stadt Wien, and Applied Cancer Research - Institution for Translational Research Vienna (ACR-ITR VIEnna)/CEADDP, Vienna, Austria.
| | | |
Collapse
|
45
|
Tozer GM, Kanthou C, Lewis G, Prise VE, Vojnovic B, Hill SA. Tumour vascular disrupting agents: combating treatment resistance. Br J Radiol 2008; 81 Spec No 1:S12-20. [PMID: 18819993 DOI: 10.1259/bjr/36205483] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A large group of tubulin-binding microtubule-depolymerizing agents act as tumour vascular disrupting agents (VDAs). Several members of this group are now in clinical trials in combination with conventional anticancer drugs and radiotherapy. Here we briefly update on the development of tubulin-binding combretastatins as VDAs, summarize what is known of their mechanisms of action and address issues relating to treatment resistance, using disodium combretastatin A-4 3-O-phosphate (CA-4-P) as an example. Characteristically, VDAs cause a rapid shutdown of blood flow to tumour tissue with much less effect in normal tissues. However, the tumour rim is relatively resistant to treatment. Hypoxia (or hypoxia reoxygenation) induces upregulation of genes associated with angiogenesis and drug resistance. It may be possible to take advantage of treatment-induced hypoxia by combining with drugs that are activated under hypoxic conditions. In summary, VDAs provide a novel approach to cancer treatment, which should effectively complement standard treatments, if treatment resistance is addressed by judicious combination treatment strategies.
Collapse
Affiliation(s)
- G M Tozer
- University of Sheffield, Academic Unit of Surgical Oncology, K Floor, School of Medicine & Biomedical Sciences, Beech Hill Road, Sheffield S10 2RX, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Toffoli S, Michiels C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 2008; 275:2991-3002. [PMID: 18445039 DOI: 10.1111/j.1742-4658.2008.06454.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid tumours are complex structures in which the interdependent relationship between tumour and endothelial cells modulates tumour development and metastasis dissemination. The tumour microenvironment plays an important role in this cell interplay, and changes in its features have a major impact on tumour growth as well as on anticancer therapy responsiveness. Different studies have shown irregular blood flow in tumours, which is responsible for hypoxia and reoxygenation phases, also called intermittent hypoxia. Intermittent hypoxia induces transient changes, the impact of which has been underestimated for a long time. Recent in vitro and in vivo studies have shown that intermittent hypoxia could positively modulate tumour development, inducing tumour growth, angiogenic processes, chemoresistance, and radioresistance. In this article, we review the effects of intermittent hypoxia on tumour and endothelial cells as well as its impacts on tumour development.
Collapse
Affiliation(s)
- S Toffoli
- Laboratory of Biochemistry and Cellular Biology (URBC), University of Namur-FUNDP, 61 rue de Bruxelles, Namur, Belgium
| | | |
Collapse
|
47
|
Microtubule-targeted drugs inhibit VEGF receptor-2 expression by both transcriptional and post-transcriptional mechanisms. J Invest Dermatol 2008; 128:2084-91. [PMID: 18323785 DOI: 10.1038/jid.2008.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytoskeletal polymers control a wide range of cellular functions, including proliferation, migration, and gene expression. As changes in endothelial cell shape and motility are required to form vascular networks, we hypothesized that disassembly of actin filaments or microtubules may impact endothelial vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2) expression as a critical determinant of angiogenesis. We therefore investigated the effect of actin filament- and microtubule-disrupting agents on VEGFR1 and VEGFR2 expression by endothelial cells. Microtubule (MT) disassembly greatly inhibited endothelial VEGFR2 expression, whereas VEGFR1 expression levels remained largely unchanged. These suppressive effects were neither conveyed by increased VEGFR2 shedding nor by shortened protein half-life, suggesting that transcriptional mechanisms account for the observed effects. In line with this conclusion, MT disruption significantly suppressed endothelial VEGFR2 mRNA accumulation. The treatment considerably decreased transcriptional activity of 5'-deletional VEGFR2 promoter gene constructs. MT disruption-mediated repression was conveyed by a GC-rich region harboring two consensus Sp1-binding sites. Electrophoretic mobility-shift assay analysis demonstrated that constitutive Sp1-dependent DNA binding is decreased by MT disassembly. In addition, we provide evidence for additional post-transcriptional regulatory mechanisms, as the VEGFR2 mRNA half-life is significantly reduced by MT-disrupting agents. Hence, both inhibition of the rate of gene transcription and increased mRNA turnover represent critical molecular mechanisms by which MT disruption inhibits VEGFR2 expression.
Collapse
|
48
|
Laquente B, Lacasa C, Ginestà MM, Casanovas O, Figueras A, Galán M, Ribas IG, Germà JR, Capellà G, Viñals F. Antiangiogenic effect of gemcitabine following metronomic administration in a pancreas cancer model. Mol Cancer Ther 2008; 7:638-47. [PMID: 18347150 DOI: 10.1158/1535-7163.mct-07-2122] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gemcitabine shows a marked antitumor effect as a result of its cytotoxic action toward proliferative cells. In this article, we aim to investigate the potential antitumor and antiangiogenic effect of gemcitabine following a metronomic schedule that involves the regular administration of cytotoxic drugs at doses lower than standard treatment. In vitro results showed that human endothelial cells are more sensitive to gemcitabine (IC(50) 3 nmol/L) than pancreatic tumor cells (IC(50) 20 nmol/L). For in vivo studies, we used an orthotopic implantation model of human pancreatic carcinoma in nude mice. Gemcitabine was administered i.p. following a low-dose schedule (1 mg/kg/d for a month) and compared with the conventional schedule (100 mg/kg days 0, 3, 6, and 9 postimplantation). Metronomic treatment effect on established tumor was equivalent to standard administration. The measure of CD31 endothelial marked area allowed us to show an in vivo antiangiogenic effect of this drug that was further enhanced by using metronomic administration. This effect correlated with an induction of thrombospondin-1, a natural inhibitor of angiogenesis. Our results allow us to hypothesize that, in addition to a direct antiproliferative or cytotoxic antiendothelial cell effect, a secondary effect involving thrombospondin-1 induction might provide an explanation for the specificity of the effects of metronomic gemcitabine treatment.
Collapse
Affiliation(s)
- Berta Laquente
- Laboratori de Recerca Translacional, Institut Català d'Oncologia-IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Andreopoulou E, Muggia F. Pharmacodynamics of Tubulin and Tubulin-Binding Agents: Extending Their Potential Beyond Taxanes. Clin Breast Cancer 2008; 8 Suppl 2:S54-60. [DOI: 10.3816/cbc.2008.s.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Surrogates for Clinical Development. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|