1
|
Chen MW, Ren X, Song X, Qian N, Ma Y, Yu W, Yang L, Min W, Zare RN, Dai Y. Transition-State-Dependent Spontaneous Generation of Reactive Oxygen Species by Aβ Assemblies Encodes a Self-Regulated Positive Feedback Loop for Aggregate Formation. J Am Chem Soc 2025. [PMID: 39999421 DOI: 10.1021/jacs.4c15532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Amyloid-β (Aβ) peptides exhibit distinct biological activities across multiple physical length scales, including monomers, oligomers, and fibrils. The transition from Aβ monomers to pathological aggregates correlates with the emergence of chemical toxicity, which plays a critical role in the progression of neurodegenerative disorders. However, the relationship between the physical state of Aβ assemblies and their chemical toxicity remains poorly understood. Here, we show that Aβ assemblies can spontaneously generate reactive oxygen species (ROS) through transition-state-specific inherent nonenzymatic redox activity. During the transition from initial monomers to intermediate oligomers or condensates to final fibrils, interfacial electrochemical environments emerge and vary at the liquid-liquid and liquid-solid interfaces. Determined by the vibrational Stark effect using electronic pre-resonance stimulated Raman scattering microscopy, the interfacial field of such assemblies is on the order of 10 MV/cm. Interfacial activity, which depends on the Aβ transition state, can modulate the spontaneous oxidation of hydroxide anions, which leads to the formation of hydroxyl radicals. Interestingly, this redox activity modifies the chemical composition of Aβ and establishes a self-regulated positive feedback loop that accelerates aggregation and promotes fibril formation, which represents a new functioning mechanism of Aβ aggregation beyond physical cross-linking. Leveraging this mechanistic insight, we identified small molecules capable of disrupting the feedback loop by scavenging hydroxyl radicals or perturbing the interface, thereby inhibiting fibril formation. Our findings provide a nonenzymatic model of neurotoxicity and reveal the critical role of physical interfaces in modulating the chemical dynamics of biomolecular assemblies. These results offer a novel framework for therapeutic intervention in Alzheimer's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael W Chen
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaokang Ren
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yuefeng Ma
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wen Yu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Leshan Yang
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yifan Dai
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Khan I, Ullah S, Ullah S, Ali N, Huma Z, Yaşar S, Khan S, Haq RU, Khan A, Khan I. Antidepressant effects of SY-2476: A caffeine derivative's role in A1/A2 A gene expression modulation in corticosterone-induced depressed rats. Neurosci Lett 2025; 845:138059. [PMID: 39581341 DOI: 10.1016/j.neulet.2024.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Depression is a pervasive mood disorder that continues to challenge researchers and clinicians worldwide. Caffeine and its derivatives have been studied for their neuroprotective and antidepressant effect. Current study aimed to explore the potential antidepressant effect of a caffeine derivative, Sy-2476 [4-(1, 3, 7-trimethyl-2, 6-dioxo-2, 3, 6, 7-tetrahydro-1H-purin-8-yl) benzo nitrile], in corticosterone-induced rat model of depression. Depression-like behaviour in rats was induced by administering 20 mg/kg hydrocortisone s.c for 21 days. Behavioural studies evaluated the potential antidepressant effect of caffeine derivative Sy-2476, its effect on cortisol levels, modulation of A1/A2A receptors mRNA expression and antioxidant assays. Treatment of rats with Sy-2476 exhibited robust antidepressant-like effects in corticosterone-exposed rats by increasing sucrose preference (p = 0.0002) while reducing immobility time (p = 0.0118) in the forced swim test. Sy-2476 also reduced lipid peroxidation and increased the level of antioxidant enzymes, including glutathione, catalase, and superoxide dismutase. Moreover, Sy-2476 significantly lowered cortisol levels (p = 0.0019) and up-regulated mRNA expression of A1 (p = 0.0001) and A2A receptors (p = 0.0016) compared to the corticosterone-only treated group. In conclusion, Sy-2476 showed an antidepressant effect primarily by suppressing serum cortisol levels, modulating the expression of adenosine receptors, and exhibiting antioxidant properties.
Collapse
Affiliation(s)
- Irfan Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Saif Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Shakir Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan; Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Niaz Ali
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Zilli Huma
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44210, Turkey.
| | - Siraj Khan
- Department of Pharmacy, Quaid e Azam University, Islamabad, Pakistan
| | - Rizwan Ul Haq
- Abbottabad University Science and Technology, Pakistan
| | - Amjad Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Imran Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan.
| |
Collapse
|
3
|
Chen CJ, Williams ER. Are Hydroxyl Radicals Spontaneously Generated in Unactivated Water Droplets? Angew Chem Int Ed Engl 2024; 63:e202407433. [PMID: 39242353 DOI: 10.1002/anie.202407433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions at m/z 36 attributed to OH⋅-H3O+ or (H2O-OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2-20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface-to-volume ratios span ~100-fold range. No ions at m/z 36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime.
Collapse
Affiliation(s)
- Casey J Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Atri S, Loni E, Dyrcikova Z, Zazimal F, Caplovicova M, Dvoranova D, Plesch G, Kabatova M, Brigante M, Naguib M, Monfort O. Tailored MXene-derived nano-heterostructure oxides for peroxymonosulfate activation in the treatment of municipal wastewaters. NANOSCALE 2024; 16:18430-18443. [PMID: 39258969 DOI: 10.1039/d4nr02819h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Nowadays, in the field of environmental protection, a huge effort is focused on efficient and sustainable processes to treat wastewaters. The current study emphasizes the photocatalytic performance of TiNbOx, a nano-heterostructure material derived from the oxidation of (Ti0.75Nb0.25)2CTx MXene. The TiNbOx nano-heterostructure exhibited remarkable performance in the degradation of caffeine (CAF) and sulfamethoxazole (SMX) under UVA irradiation in the presence of peroxymonosulfate (PMS). Under optimal conditions, 0.2 g L-1 of TiNbOx, 0.5 mM PMS and 50 μM concentration of pollutants and natural pH of deionized water, we observed a complete degradation of SMX and 91% degradation of CAF. Scavenging studies provided evidence for the involvement of ˙OH and SO4˙- in the degradation of the pollutants, which was also supported by indirect techniques of electron paramagnetic resonance (EPR) spectroscopy. The degradation pathway of the pollutants was analyzed by liquid chromatography-mass spectrometry (LC-MS) and several mechanisms were suggested including hydroxylation and isoxazole ring-opening reactions. In addition, X-ray photoelectron spectroscopy (XPS) supported the proposed degradation mechanism. The reusability test underscored the high stability and efficiency of TiNbOx. Moreover, the significance of this research was emphasized by conducting degradation studies in tap water (TW) and tertiary effluents of the wastewater (WW) treatment plant in Bratislava. Under optimal conditions, 49% and 30% CAF were degraded in TW and WW, respectively, after 12 hours of reaction. For SMX, 68% and 67% degradations were obtained in TW and WW, respectively.
Collapse
Affiliation(s)
- Shalu Atri
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, SK-842 15 Bratislava, Slovak Republic.
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Elham Loni
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Zuzana Dyrcikova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
| | - Frantisek Zazimal
- Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Kotlarska 267/2, 611 37 Brno, CZ-602 00, Czech Republic
| | - Maria Caplovicova
- STU Center for Nanodiagnostics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Vazovova 5, SK-81243 Bratislava, Slovak Republic
| | - Dana Dvoranova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
| | - Gustav Plesch
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, SK-842 15 Bratislava, Slovak Republic.
| | - Miroslava Kabatova
- Bratislavská vodárenská spoločnosť a.s., Prešovská 48, 826 46 Bratislava, Slovak Republic
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, F-63000, France
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| | - Olivier Monfort
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, SK-842 15 Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Endesfelder S. Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models-A Narrative Review. Antioxidants (Basel) 2024; 13:1076. [PMID: 39334735 PMCID: PMC11429035 DOI: 10.3390/antiox13091076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
6
|
Kye H, Nam SH, Kim E, Koo J, Shin Y, Lee J, Hwang TM. Application of tryptophan-like fluorescence index to quantify the trace organic compounds removal in wastewater ozonation. CHEMOSPHERE 2024; 363:142862. [PMID: 39029713 DOI: 10.1016/j.chemosphere.2024.142862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The effectiveness of ozonation, one of the techniques known for destroying organic contaminants from wastewater, depends on the composition of the wastewater matrix. The required ozone (O3) dose is determined based on the target compounds during ozonation. Hydroxyl radicals are quantified using a probe compound. The para-chlorobenzoic acid (pCBA) is typically used as a probe compound to measure hydroxyl radicals. However, real-time measurement is impossible, as the analysis process consumes time and resources. This study aimed to evaluate the spectroscopic characteristics of various organic substances in wastewater ozonation through fluorescence excitation-emission matrix and parallel factor analysis. The study also demonstrated that real-time analyzable tryptophan-like fluorescence (TLF) can be used as a hydroxyl radical index. Importantly, the correlation between para-chlorobenzoic acid and TLF was derived, and the results showed a high correlation (R2 = 0.91), confirming the reliability of our findings. Seven trace organic compounds, classified based on their reactivity with O3 and hydroxyl radicals, were selected as target compounds and treated with O3. The TLF index was used as a model factor for the removal rate of the target compounds. The experimental and model values matched when the O3 dose was below 1.0 g O3/g DOC (RMSE: 0.0445-0.0895).
Collapse
Affiliation(s)
- Homin Kye
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Sook-Hyun Nam
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Eunju Kim
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Jaewuk Koo
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Yonghyun Shin
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Juwon Lee
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biochemical Engineering, Western University London, Ontario, Canada
| | - Tae-Mun Hwang
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea.
| |
Collapse
|
7
|
Bernardo MF, Enes A, Rezende EF, Okuyama AR, Alves RC, de Andrade M, Macedo ACG, de Barros MP, Candow DG, Forbes SC, Souza-Junior TP. Caffeine Does Not Alter Performance, Perceptual Responses, and Oxidative Stress After Short Sprint Interval Training. Int J Sport Nutr Exerc Metab 2024; 34:179-187. [PMID: 38266627 DOI: 10.1123/ijsnem.2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Despite the abundance of research investigating the efficacy of caffeine supplementation on exercise performance, the physiological and biochemical responses to caffeine supplementation during intermittent activities are less evident. This study investigated the acute effects of caffeine supplementation on measures of exercise performance, ratings of perceived exertion, and biomarkers of oxidative stress induced by an acute bout of sprint interval training. In a randomized crossover design, 12 healthy males (age: 26 ± 4 years, height: 177.5 ± 6 cm, body mass: 80.7 ± 7.6 kg) ingested 6 mg/kg of caffeine or placebo 60 min prior to performing sprint interval training (12 × 6 s "all-out sprints" interspersed by 60 s of rest). Performance scores and ratings of perceived exertion were assessed after every sprint. Blood samples were collected before supplementation, prior to and following each sprint, and 5 and 60 min after the last sprint. Caffeine had no effect on any performance measures, ratings of perceived exertion, or biomarkers of oxidative stress (p > .05). In conclusion, caffeine supplementation does not improve performance or decrease oxidative stress after an acute bout of sprint interval training.
Collapse
Affiliation(s)
- Mauro F Bernardo
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alysson Enes
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Elisangela F Rezende
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandre R Okuyama
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ragami C Alves
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Murilo de Andrade
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ana Carolina G Macedo
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| | - Marcelo Paes de Barros
- Institute of Physical Activity and Sports Science (ICAFE), Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Tácito P Souza-Junior
- Metabolism, Nutrition and Strength Training Research Group, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Sabry BA, Badr AN, Mohammed DM, Desoukey MA, Farouk A. Validating the protective role of orange and tangerine peel extracts foramending food safety against microorganisms' contamination using molecular docking. Heliyon 2024; 10:e27737. [PMID: 38509881 PMCID: PMC10950677 DOI: 10.1016/j.heliyon.2024.e27737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/02/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Latest studies indicated that agro-food wastes are considered renewable sources of bioactive compounds. This investigation aimed to utilize natural extracts of citrus peels as antimicrobial and anti-aflatoxigenic agents for food safety. The bioactivity of two citrus peels was assessed by total phenolic, flavonoids, and antioxidant activity. Nanoemulsions were manufactured using high-speed homogenization. The mean particle size of the nanoemulsions ranged from 29.41 to 66.41 nm with a polydispersity index of 0.11-0.16. The zeta potential values ranged from -14.27 to -26.74 mV, indicating stability between 81.44% and 99.26%. The orange peel extract showed the highest contents of total phenolic and flavonoids compared to the other extracts and nanoemulsions (39.54 mg GAE/g and 79.54 mg CE/100 g, respectively), which agreed with its potential antioxidant activity performed by DPPH free radical-scavenging and ABTS assays. Chlorogenic, caffeic, ferulic, and catechin were the dominant phenolic acids in the extracts and nanoemulsions, while quercitrin, rutin, and hesperidin were the most abundant flavonoids. Limonene was the major volatile component in both oils; however, it was reduced dramatically from 92.52% to 76.62% in orange peel oil and from 91.79 to 79.12% in tangerine peel oil. Consistent with the differences in phenolics, flavonoids, and volatiles between orange and tangerine peel extracts, the antibacterial properties of orange extracts had more potential than tangerine ones. Gram-positive bacteria were more affected by all the examined extracts than Gram-negative ones. The antifungal activity of orange extract and nanoemulsion on seven fungal strains from Aspergillus spp had more potential than tangerine extracts. Additionally, using a simulated media, the orange peel extract and its nanoemulsion had a more anti-aflatoxigenic influence. Molecular docking confirmed the high inhibitory action of flavonoids, especially hesperidin, on the polyketide synthase (-9.3 kcal/mol) and cytochrome P450 monooxygenase (-10.1 kcal/mol) key enzymes of the aflatoxin biosynthetic mechanism.
Collapse
Affiliation(s)
- Bassem A. Sabry
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa A. Desoukey
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
9
|
Koo JW, Lee J, Nam SH, Kye H, Kim E, Kim H, Lee Y, Hwang TM. Evaluation of the prediction of micropollutant elimination during bromide ion-containing industrial wastewater ozonation using the R OH, O3 value. CHEMOSPHERE 2023; 338:139450. [PMID: 37451645 DOI: 10.1016/j.chemosphere.2023.139450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The composition of the wastewater matrix influences the oxidation potential of ozonation, a technique widely recognized efficient removal of micropollutants. Here, we developed a chemical kinetic model to determine the ozone dose required to minimize bromate production in wastewater containing bromine ions while achieving target removal rates. In wastewater ozonation, ozone decomposition comprises instantaneous ozone consumption and subsequent decomposition at first-order reaction rates. Under the injection condition of 1.5 g O3/g dissolved organic carbon (DOC), the instantaneous ozone demand was 62.7% of the injection concentration, and it increased proportionally with increasing injected ozone concentration. Ozone and hydroxyl radical exposures were proportional to the initial ozone dose, while hydroxyl radical exposure was proportional to ozone exposure, and the deviation was relatively high at 1.0-1.5 g O3/g DOC. The calculated hydroxyl radical exposure was 3.0 × 10-10 to 5.3 × 10-10 M s. Ozone and hydroxyl radicals are highly correlated with the ratio of ozone dose to organic matter concentration. Therefore, a trace substance removal rate evaluation model combined with the ROH, O3 model and a bromate generation model were also considered. For ibuprofen, the ozone dose for achieving the target removal rate of 80% while maintaining the bromate concentration below 50 μg L-1 was suitable in the operating range of 0.86 g O3/g DOC or more. The proposed method provides a practical operation strategy to calculate the appropriate ozone dose condition from the target compound removal rate prediction and bromate generation models considering the ratio of ozone dose to organic matter concentration in the incoming wastewater.
Collapse
Affiliation(s)
- Jae-Wuk Koo
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, South Korea
| | - Juwon Lee
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, South Korea
| | - Sook-Hyun Nam
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, South Korea
| | - Homin Kye
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, South Korea
| | - Eunju Kim
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, South Korea
| | - Hyunjin Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju, 61005, South Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju, 61005, South Korea
| | - Tae-Mun Hwang
- Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-Ro, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, South Korea.
| |
Collapse
|
10
|
Protective Effects of Early Caffeine Administration in Hyperoxia-Induced Neurotoxicity in the Juvenile Rat. Antioxidants (Basel) 2023; 12:antiox12020295. [PMID: 36829854 PMCID: PMC9952771 DOI: 10.3390/antiox12020295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
High-risk preterm infants are affected by a higher incidence of cognitive developmental deficits due to the unavoidable risk factor of oxygen toxicity. Caffeine is known to have a protective effect in preventing bronchopulmonary dysplasia associated with improved neurologic outcomes, although very early initiation of therapy is controversial. In this study, we used newborn rats in an oxygen injury model to test the hypothesis that near-birth caffeine administration modulates neuronal maturation and differentiation in the hippocampus of the developing brain. For this purpose, newborn Wistar rats were exposed to 21% or 80% oxygen on the day of birth for 3 or 5 days and treated with vehicle or caffeine (10 mg/kg/48 h). Postnatal exposure to 80% oxygen resulted in a drastic reduction of associated neuronal mediators for radial glia, mitotic/postmitotic neurons, and impaired cell-cycle regulation, predominantly persistent even after recovery to room air until postnatal day 15. Systemic caffeine administration significantly counteracted the effects of oxygen insult on neuronal maturation in the hippocampus. Interestingly, under normoxia, caffeine inhibited the transcription of neuronal mediators of maturing and mature neurons. The early administration of caffeine modulated hyperoxia-induced decreased neurogenesis in the hippocampus and showed neuroprotective properties in the neonatal rat oxygen toxicity model.
Collapse
|
11
|
Ali HS, Badr AN, Alsulami T, Shehata MG, Youssef MM. Quality Attributes of Sesame Butter (Tahini) Fortified with Lyophilized Powder of Edible Mushroom ( Agaricus blazei). Foods 2022; 11:foods11223691. [PMID: 36429283 PMCID: PMC9689749 DOI: 10.3390/foods11223691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Sesame butter (tahini) is a common appetizer and food additive in the Mediterranean basin. Pathogenic strains and mycotoxin content are the most hazardous issues in the final product. This investigation aimed to enhance the quality and safety properties of tahini products against microbial hazards and mycotoxins. Local samples of tahini were evaluated for natural contamination, including mycotoxin level determinations. Agaricus blazei was utilized as a bioactive source and evaluated for the bioactive content of laccase, B-glucan, antioxidant activity, and phenolic content, as well as antimicrobial and antioxidant potency. Two fortification ratios (0.5% and 1.0%) were chosen to apply Agaricus in tahini sesame as a model. Chemical composition, color attributes, sensory properties, emulsion, and oxidative stability were evaluated for the fortified samples versus the control. The results reflected increments of protein (22.91 ± 0.64% to 29.34 ± 0.96%), fiber content (3.09 ± 0.05% to 6.27 ± 0.06%), emulsion stability (84.9 ± 1.24% to 95.41 ± 0.56%), oxidative stability, and bioactive group content. The fortification process is reflected by the absence of Salmonella, Listeria, and E. coli bacteria from contaminated samples after 30 days of storage. The water activity for 1.0% fortification (0.154 ± 0.001) was recorded as lower than the control sample (0.192 ± 0.002). Moreover, the degradation of aflatoxins and zearalenone content was recorded during storage. The degradation ratio reached 68% and 97.2% for 0.5% and 1.0% fortifications, respectively, while zearalenone degradation recorded a decline of 26.7% and 33.7%, respectively, for the same fortification ratios. These results recommended 1.0% lyophilized mushroom fortification as a quality and ameliorative safety treatment for tahini products.
Collapse
Affiliation(s)
- Hatem Salama Ali
- Food Technology Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence: ; Tel.: +20-100-032-764-0
| | - Tawfiq Alsulami
- Food Science and Nutrition Department, Food and Agriculture Science College, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohamed Gamal Shehata
- Food Science Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| | - Mohamed Mahmoud Youssef
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
12
|
Łęcki T, Hamad H, Zarębska K, Wierzyńska E, Skompska M. Mechanistic insight into photochemical and photoelectrochemical degradation of organic pollutants with the use of BiVO4 and BiVO4/Co-Pi. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kondeva-Burdina M, Mitkov J, Valkova I, Peikova L, Georgieva M, Zlatkov A. Quantitative Structure-Neurotoxicity Assessment and In Vitro Evaluation of Neuroprotective and MAO-B Inhibitory Activities of Series N'-substituted 3-(1,3,7-trimethyl-xanthin-8-ylthio)propanehydrazides. Molecules 2022; 27:molecules27165321. [PMID: 36014559 PMCID: PMC9414684 DOI: 10.3390/molecules27165321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The neurotoxic, neuroprotective and MAO-B inhibitory effects of series N'-substituted 3-(1,3,7-trimethyl-xanthin-8-ylthio)propanehydrazides are evaluated. The results indicate compounds N'-(2,3-dimethoxybenzylidene)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)propanehydrazide (6k) and N'-(2-hydroxybenzylidene)-3-(1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-ylthio)propanehydrazide (6l) as most perspective. The performed QSTR analysis identified that the decreased lipophilicity and smaller dipole moments of the molecules are the structural features ensuring lower neurotoxicity. The obtained results may be used as initial information in the further design of (xanthinyl-8-ylthio)propanhydrazides with potential hMAOB inhibitory effect and pronounced neuroprotection.
Collapse
Affiliation(s)
- Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
- Correspondence:
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Iva Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Lily Peikova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| |
Collapse
|
14
|
Jiang EY, Wen TY. Indoor ozone removal and deposition using unactivated solid and liquid coffee. PLoS One 2022; 17:e0273188. [PMID: 35972972 PMCID: PMC9380939 DOI: 10.1371/journal.pone.0273188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Managing indoor ozone levels is important because ozone is a hazardous pollutant that has adverse effects on human health. Coffee is a popular daily beverage, and thus, coffee beans and spent coffee grounds are common in many places such as offices, homes, aircraft, cafeterias, and such. The most common material used to remove ozone is activated carbon which can be made from coffee beans or spent coffee grounds with proper activation processes. This paper presents a novel idea: to remove ozone at the level of an indoor environment using unactivated coffee products. This paper examines the ozone removal efficiency and the ozone deposition velocity at 130 ppb ozone for two types of coffee: solid coffee (powder) and liquid coffee (beverage). The activated carbon, the deionized water, and the seawater are also included for comparison and validation purposes. The tests show that the fine coffee powder has a removal efficiency of 58.5% and a deposition velocity of 0.62 cm/s. The liquid coffee has a removal efficiency of 34.4% and a deposition velocity of 0.23 cm/s. The chemical inspections indicate that the oxidation reactions with the carbohydrates in solid coffee and the metal/mineral elements in liquid coffee are responsible for ozone removal. These results have confirmed that ozone removal via coffee is effective, controlling indoor air quality by coffee products is thus becoming possible.
Collapse
Affiliation(s)
- En-Ying Jiang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tsrong-Yi Wen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
- High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
15
|
Xing D, Meng Y, Yuan X, Jin S, Song X, Zare RN, Zhang X. Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets. Angew Chem Int Ed Engl 2022; 61:e202207587. [DOI: 10.1002/anie.202207587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Dong Xing
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| | - Yifan Meng
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Xu Yuan
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| | - Shuihui Jin
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| | - Xiaowei Song
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Richard N. Zare
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Xinxing Zhang
- College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
16
|
Magenis ML, Damiani AP, Franca IB, de Marcos PS, Effting PS, Muller AP, de Bem Silveira G, Borges Correa MEA, Medeiros EB, Silveira PCL, Budni J, Boeck CR, de Andrade VM. Behavioral, genetic and biochemical changes in the brain of the offspring of female mice treated with caffeine during pregnancy and lactation. Reprod Toxicol 2022; 112:119-135. [PMID: 35868513 DOI: 10.1016/j.reprotox.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
The intrauterine environment is a critical location for exposure to exogenous and endogenous factors that trigger metabolic changes through fetal programming. Among the external factors, chemical compounds stand out, which include caffeine, since its consumption is common among women, including during pregnancy. Thereby, the aim of the present study was to evaluate the behavioral, genetic, and biochemical parameters in the offspring of female mice treated with caffeine during pregnancy and lactation. Swiss female mice (60 days old) received tap water or caffeine at 0.3 or 1.0 mg/mL during copulation (7 days), pregnancy (21 days) and lactation (21 days). After the end of the lactation period, the offspring were divided into groups (water, caffeine 0.3 or 1.0 mg/mL) with 20 animals (10 animals aged 30 days and 10 animals aged 60 days per group per sex). Initially, the offspring were submitted to behavioral tasks and then euthanized for genetic and biochemical analysis in the brain (cortex, striatum, and hippocampus). Behavioral changes in memory, depression, and anxiety were observed in the offspring: 30-day-old female offspring at 1.0 mg /mL dose presented anxiogenic behavior and male offspring the 0.3 mg/mL dose at 30 days of age did not alter long-term memory. Furthermore, an increase in DNA damage and oxidative stress in the brain were observed in the offspring of both sexes. Furthermore, there were changes in Ape-1, BAX, and Bcl-2 in the female offspring hippocampus at 30 days of life. Thus, with this study, we can suggest genotoxicity, oxidative stress, and behavioral changes caused by caffeine during pregnancy and lactation in the offspring that were not treated directly, but received through their mothers; thus, it is important to raise awareness regarding caffeine consumption among pregnant and lactating females.
Collapse
Affiliation(s)
- Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Ive Bahia Franca
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Pamela Souza de Marcos
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Pauline Souza Effting
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Alexandre Pastoris Muller
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Maria Eduarda Anastácio Borges Correa
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Carina Rodrigues Boeck
- Graduate Program in Nanosciences, Franciscan University Center - UNIFRA, Santa Maria, RS, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil.
| |
Collapse
|
17
|
Xing D, Meng Y, Yuan X, Jin S, Song X, Zare RN, Zhang X. Capture of Hydroxyl Radicals by Hydronium Cations in Water Microdroplets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dong Xing
- Nankai University Chemistry 94 Weijin Rd 300071 Tianjin CHINA
| | - Yifan Meng
- Stanford University Department of Chemistry chemistry 380 Roth Way 94305 Stanford UNITED STATES
| | - Xu Yuan
- Nankai University Chemistry 94 Weijin Rd 300071 Tianjin CHINA
| | - Shuihui Jin
- Nankai University Chemistry 94 Weijin Rd 300071 Tianjin CHINA
| | - Xiaowei Song
- Stanford University Chemistry 380 Roth Way 94305 Stanford UNITED STATES
| | - Richard Neil Zare
- Stanford University Dept. of Chemistry Campus Way and Roth Way 94305-5080 Stanford UNITED STATES
| | - Xinxing Zhang
- Nankai University Chemistrty 94 Weijin Rd 300071 Tianjin CHINA
| |
Collapse
|
18
|
The Conflicting Role of Caffeine Supplementation on Hyperoxia-Induced Injury on the Cerebellar Granular Cell Neurogenesis of Newborn Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5769784. [PMID: 35693697 PMCID: PMC9175096 DOI: 10.1155/2022/5769784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Preterm birth disrupts cerebellar development, which may be mediated by systemic oxidative stress that damages neuronal developmental stages. Impaired cerebellar neurogenesis affects several downstream targets important for cognition, emotion, and speech. In this study, we demonstrate that oxidative stress induced with high oxygen (80%) for three or five postnatal days (P3/P5) could significantly damage neurogenesis and proliferative capacity of granular cell precursor and Purkinje cells in rat pups. Reversal of cellular neuronal damage after recovery to room air (P15) was augmented by treatment with caffeine. However, downstream transcripts important for migration and differentiation of postmitotic granular cells were irreversibly reduced by hyperoxia, without rescue by caffeine. Protective effects of caffeine in the cerebellum were limited to neuronal survival but failed to restore important transcript signatures.
Collapse
|
19
|
Wu JC, Chuang YH, Liou SYH, Li Q, Hou CH. In situ engineering of highly conductive TiO 2/carbon heterostructure fibers for enhanced electrocatalytic degradation of water pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128328. [PMID: 35114455 DOI: 10.1016/j.jhazmat.2022.128328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Rational design of nanocomposite electrode materials with high conductivity, activity, and mechanical strength is critical in electrocatalysis. Herein, freestanding, flexible heteronanocomposites were fabricated in situ by carbonizing electrospun fibers with TiO2 nanoparticles on the surface for electrocatalytic degradation of water pollutants. The carbonization temperature was observed as a dominant parameter affecting the characteristics of the electrodes. As the carbonization temperature increased to 1000 °C, the conductivity of the electrode was significantly enhanced due to the high degree of graphitization (ID/IG ratio 1.10) and the dominant rutile phase. Additionally, the formation of TiO2 protrusions and the C-Ti heterostructure were observed at 1000 °C, which contributed to increasing the electrocatalytic activity. When 1.5 V (vs. Ag/AgCl) was employed, electrocatalytic experiments using the electrode achieved 90% degradation of crystal violet and 10.9-87.5% for an array of micropollutants. The electrical energy-per-order (EEO) for the removal of crystal violet was 0.7 kWh/m3/order, indicative of low-energy requirement. The efficient electrocatalytic activity can be ascribed to the fast electron transfer and the strong ability to generate hydroxyl radicals. Our findings expand efforts for the design of highly conductive heteronanocomposites in a facile in situ approach, providing a promising perspective for the energy-efficient electrocatalytic degradation of water pollutants.
Collapse
Affiliation(s)
- Jhen-Cih Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Hsueh Chuang
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, East District, Hsinchu 30010, Taiwan
| | - Sofia Ya Hsuan Liou
- Department of Geosciences, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, No. 1, Section 4. Roosevelt Rd., Taipei 10617, Taiwan
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street MS 519, Houston, TX 77005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, 6100 Main Street MS 6398, Houston, TX 77005, USA
| | - Chia-Hung Hou
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; Research Center for Future Earth, National Taiwan University, No. 1, Section 4. Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
20
|
Mitra S, Naskar N, Ghosh K, Dutta A, Lahiri S, Chaudhuri P, Saha A. Studies on radiation stability of natural caffeine. Appl Radiat Isot 2022; 183:110148. [DOI: 10.1016/j.apradiso.2022.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
|
21
|
Figueredo M, Rodríguez EM, Rivas J, Beltrán FJ. Photocatalytic ozonation in water treatment: Is there really a synergy between systems? WATER RESEARCH 2021; 206:117727. [PMID: 34624657 DOI: 10.1016/j.watres.2021.117727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies report on the synergy between ozonation and photocatalytic oxidation (TiO2/UVA), which could open the way to the application of photocatalytic ozonation (PCOz) in water treatment. With the aim of establishing the existence of this synergy and its origin, in this work, using TiO2 P25, 365 nm UVA LEDs and ozone transferred doses up to 5 mg (mg DOC0)-1 (DOC0 7 - 10 mg L-1), a systematic study has been carried out featuring the effect of pH, alkalinity and water matrix in each of the systems involved in PCOz, with special attention to the role of organics adsorption onto TiO2. In ultrapure water, an increase in pH and carbonates content exerted a slight negative effect on the photocatalytic degradation of primidone (low adsorption onto TiO2 and mainly abated by free HO•), this effect being higher on its mineralization. The negative effect of pH and alkalinity was much stronger for oxalic acid (high tendency to adsorb and mainly oxidized by positive holes). Accordingly, the results obtained at pH < pHpzc (point of zero charge of the catalyst) in ultrapure water cannot at all be extrapolated to secondary effluents, since their composition negatively affects the photocatalytic performance. At the experimental conditions applied, only for the secondary effluent a synergy between O3/UVA and TiO2/UVA systems was observed. This synergy would be related, on the one hand, to the generation, from the matrix itself, of reactive entities or intermediates that promote the decomposition of ozone into HO•; and, on the other hand, to an increase in catalyst activity as the matrix UVA absorption decreases, rather than from direct interactions between both systems. Despite de above, ozone requirement to achieve a significant reduction of DOC is high and would only be an interesting strategy for the elimination of ozone-refractory micropollutants.
Collapse
Affiliation(s)
- Manuel Figueredo
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain
| | - Eva M Rodríguez
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain.
| | - Javier Rivas
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain
| | - Fernando J Beltrán
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. Elvas S/N 06006, Badajoz, Spain
| |
Collapse
|
22
|
|
23
|
Karuppagounder SS, Uthaythas S, Govindarajulu M, Ramesh S, Parameshwaran K, Dhanasekaran M. Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem Int 2021; 148:105066. [PMID: 34004240 DOI: 10.1016/j.neuint.2021.105066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects more than 10 million people worldwide. Oxidative stress and mitochondrial dysfunction play a significant role in altering the homeostasis of energy production and free radical generation. Current PD therapies are focused on reducing the cardinal symptoms rather than preventing disease progression in the patients. Adenosine A2A receptor (A2A R) antagonist (Istradephylline) combined with levodopa shows a promising therapy for PD. In animal studies, caffeine administration showed to improve motor functions and neuroprotective effect in the neurons. Caffeine is probably the most extensively used psychoactive substance. In this current study, we investigated the neuroprotective effect of caffeine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurodegeneration. Here, we demonstrate that caffeine improves behavioral and neurotransmitter recovery against MPTP-induced toxicity. Caffeine restores endogenous antioxidant levels and suppresses neuroinflammation. Our finding suggests that the blockage of A2AR is a promising disease-modifying therapy for PD. Target engagement strategies could be more beneficial in preventing disease progression rather than symptomatic reliefs in PD patients.
Collapse
Affiliation(s)
- Senthilkumar S Karuppagounder
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| | - Subramaniam Uthaythas
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Koodeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
24
|
Long-term ecotoxicological effects of ciprofloxacin in combination with caffeine on the microalga Raphidocelis subcapitata. Toxicol Rep 2021; 8:429-435. [PMID: 33717995 PMCID: PMC7932887 DOI: 10.1016/j.toxrep.2021.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
Ciprofloxacin at up to 1 μg L−1 inhibits Raphidocelis subcapitata growth parameters. Caffeine increases the growth inhibition EC50 by 6.6 times after 96h-exposure. Longer exposure times lead to higher growth inhibition of Raphidocelis subcapitata. Diverse endpoints and longer exposure times give more real ecotoxicological assays.
Ciprofloxacin (CIP) is an antimicrobial “pseudo-persistent” in aquatic ecosystems. Once dispersed in the water compartments, it can also affect the microalgae. Thus, the evaluation of its long-term ecotoxicological effects is necessary. CIP interactions with other pharmaceuticals are not well known. In this study, we investigated the toxic effects of CIP alone and combined with caffeine (CAF), using the modified Gompertz model parameters and the chlorophyll-a production of the microalga Raphidocelis subcapitata as endpoints, throughout a 16-day exposure assay. The exposure to CIP alone led to significant reductions of the growth rate and the cell density of the microalgae compared to control groups. The combination with CAF lowered the adverse effects of CIP to R. subcapitata. However, as the toxicity is dynamic, our results indicated that the toxic effects in respect to the studied endpoints changed throughout the exposure period, reinforcing the need for longer-term ecotoxicity assessments.
Collapse
|
25
|
Chassaing FJ, Mahmudov R, Metcalfe CD, Yargeau V. Changes to levels of microcontaminants and biological responses in rainbow trout exposed to extracts from wastewater treated by catalytic ozonation. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124110. [PMID: 33049625 DOI: 10.1016/j.jhazmat.2020.124110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Two separate pilot-scale studies were performed at two wastewater treatment plants comparing conventional ozonation and catalytic ozonation with an alumina-based catalyst supplied by BASF. The results of the first pilot study showed that catalytic ozonation achieved the same degree of disinfection as conventional ozonation with 30% lower applied ozone dose and enhanced the removal of several contaminants of emerging concern (CECs). The second pilot study conducted over 6 months of operation with the same batch of catalyst showed sustained enhanced removal of CECs relative to ozonation alone. The removals of CECs by catalytic ozonation was particularly effective for compounds with low reaction rates with ozone, indicating reactions with hydroxyl radicals formed in the presence of the catalyst. Analysis of plasma vitellogenin and total glutathione in liver tissues of juvenile rainbow trout (Oncorhynchus mykiss) injected with wastewater extracts indicated that catalytic ozonation removed the estrogenic activity and modulated oxidative stress caused by exposure to the organic compounds in wastewater extracts. Analysis of other biomarker responses indicated that no transformation products were formed that can cause lipid damage in the liver or affect levels of a brain neurotransmitter (i.e. serotonin). Catalytic ozonation is a promising technology to increase the efficiency of ozone treatment of municipal wastewater and to meet increasingly more stringent regulations for effluent quality.
Collapse
Affiliation(s)
| | | | - Chris D Metcalfe
- School of the Environment, Trent University, Peterborough, ON, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Ingredient-Dependent Extent of Lipid Oxidation in Margarine. Antioxidants (Basel) 2021; 10:antiox10010105. [PMID: 33451064 PMCID: PMC7828556 DOI: 10.3390/antiox10010105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
This study reports the impact of margarine-representative ingredients on its oxidative stability and green tea extract as a promising antioxidant in margarine. Oil-in-water emulsions received much attention regarding factors that influence their oxidative stability, however, water-in-oil emulsions have only been scarcely investigated. Margarine, a widely consumed water-in-oil emulsion, consists of 80-90% fat and is thermally treated when used for baking. As different types of margarine contain varying additives, their impact on the oxidative stability of margarine during processing is of pressing importance. Thus, the influence of different ingredients, such as emulsifiers, antioxidants, citric acid, β-carotene and NaCl on the oxidative stability of margarine, heated at 80 °C for 1 h to accelerate lipid oxidation, was analyzed by the peroxide value and oxidation induction time. We found that monoglycerides influenced lipid oxidation depending on their fatty acyl chain. α-Tocopheryl acetate promoted lipid oxidation, while rosemary and green tea extract led to the opposite. Whereas green tea extract alone showed the most prominent antioxidant effect, combinations of green tea extract with citric acid, β-carotene or NaCl increased lipid oxidation in margarine. Complementary, NMR data suggested that polyphenols in green tea extracts might decrease lipid mobility at the surface of the water droplets, which might lead to chelating of transition metals at the interface and decreasing lipid oxidation.
Collapse
|
27
|
Anastasiadi RM, Berti F, Colomban S, Tavagnacco C, Navarini L, Resmini M. Simultaneous Quantification of Antioxidants Paraxanthine and Caffeine in Human Saliva by Electrochemical Sensing for CYP1A2 Phenotyping. Antioxidants (Basel) 2020; 10:antiox10010010. [PMID: 33374269 PMCID: PMC7823619 DOI: 10.3390/antiox10010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The enzyme CYP1A2 is responsible for the metabolism of numerous antioxidants in the body, including caffeine, which is transformed into paraxanthine, its main primary metabolite. Both molecules are known for their antioxidant and pro-oxidant characteristics, and the paraxanthine-to-caffeine molar ratio is a widely accepted metric for CYP1A2 phenotyping, to optimize dose–response effects in individual patients. We developed a simple, cheap and fast electrochemical based method for the simultaneous quantification of paraxanthine and caffeine in human saliva, by differential pulse voltammetry, using an anodically pretreated glassy carbon electrode. Cyclic voltammetry experiments revealed for the first time that the oxidation of paraxanthine is diffusion controlled with an irreversible peak at ca. +1.24 V (vs. Ag/AgCl) in a 0.1 M H2SO4 solution, and that the mechanism occurs via the transfer of two electrons and two protons. The simultaneous quantification of paraxanthine and caffeine was demonstrated in 0.1 M H2SO4 and spiked human saliva samples. In the latter case, limits of detection of 2.89 μM for paraxanthine and 5.80 μM for caffeine were obtained, respectively. The sensor is reliable, providing a relative standard deviation within 7% (n = 6). Potential applicability of the sensing platform was demonstrated by running a small scale trial on five healthy volunteers, with simultaneous quantification by differential pulse voltammetry (DPV) of paraxanthine and caffeine in saliva samples collected at 1, 3 and 6 h postdose administration. The results were validated by ultra-high pressure liquid chromatography and shown to have a high correlation factor (r = 0.994).
Collapse
Affiliation(s)
- Rozalia-Maria Anastasiadi
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (R.-M.A.); (M.R.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (C.T.)
| | - Silvia Colomban
- Aromalab, illycaffè S.p.A., Area Science Park, Localita’ Padriciano 99, 34149 Trieste, Italy; (S.C.); (L.N.)
| | - Claudio Tavagnacco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (C.T.)
| | - Luciano Navarini
- Aromalab, illycaffè S.p.A., Area Science Park, Localita’ Padriciano 99, 34149 Trieste, Italy; (S.C.); (L.N.)
| | - Marina Resmini
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (R.-M.A.); (M.R.)
| |
Collapse
|
28
|
Gonçalves DF, Tassi CC, Amaral GP, Stefanello ST, Dalla Corte CL, Soares FA, Posser T, Franco JL, Carvalho NR. Effects of caffeine on brain antioxidant status and mitochondrial respiration in acetaminophen-intoxicated mice. Toxicol Res (Camb) 2020; 9:726-734. [PMID: 33178433 DOI: 10.1093/toxres/tfaa075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/24/2023] Open
Abstract
Hepatic encephalopathy is a pathophysiological complication of acute liver failure, which may be triggered by hepatotoxic drugs such as acetaminophen (APAP). Although APAP is safe in therapeutic concentration, APAP overdose may induce neurotoxicity, which is mainly associated with oxidative stress. Caffeine is a compound widely found in numerous natural beverages. However, the neuroprotective effect of caffeine remains unclear during APAP intoxication. The present study aimed to investigate the possible modulatory effects of caffeine on brain after APAP intoxication. Mice received intraperitoneal injections of APAP (250 mg/kg) and/or caffeine (20 mg/kg) and, 4 h after APAP administration, samples of brain and blood were collected for the biochemical analysis. APAP enhanced the transaminase activity levels in plasma, increased oxidative stress biomarkers (lipid peroxidation and reactive oxygen species), promoted an imbalance in endogenous antioxidant system in brain homogenate and increased the mortality. In contrast, APAP did not induce dysfunction of the mitochondrial bioenergetics. Co-treatment with caffeine modulated the biomarkers of oxidative stress as well as antioxidant system in brain. Besides, survival assays demonstrated that caffeine protective effects could be dose- and time-dependent. In addition, caffeine promoted an increase of mitochondrial bioenergetics response in brain by the enhancement of the oxidative phosphorylation, which could promote a better energy supply necessary for brain recovery. In conclusion, caffeine prevented APAP-induced biochemical alterations in brain and reduced lethality in APAP-intoxicated mice, these effects may relate to the preservation of the cellular antioxidant status, and these therapeutic properties could be useful in the treatment of hepatic encephalopathy induced by APAP intoxication.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cintia C Tassi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Guilherme P Amaral
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Silvio T Stefanello
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristiane L Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix A Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Posser
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson L Franco
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, Rio Grande do Sul, Brazil
| | - Nélson R Carvalho
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020; 9:antiox9090902. [PMID: 32971922 PMCID: PMC7554764 DOI: 10.3390/antiox9090902] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
This paper reviews the results of studies conducted on the role of caffeine in the management of different neurological disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To highlight the potential role of caffeine in managing different neurodegenerative diseases, we identified studies by searching PubMed, Web of Science, and Google Scholar by scrutinizing the lists of pertinent publications. According to the collected overall findings, caffeine may reduce the elevated oxidative stress; inhibit the activation of adenosine A2A, thereby regulating the accumulation of Aβ; reduce the hyperphosphorylation of tau; and reduce the accumulation of misfolded proteins, such as α-synuclein, in Alzheimer's and Parkinson's diseases. The studies have suggested that caffeine has promising protective effects against different neurodegenerative diseases and that these effects may be used to tackle the neurological diseases and/or their consequences. Here, we review the ongoing research on the role of caffeine in the management of different neurodegenerative disorders, focusing on AD and PD. The current findings suggest that caffeine produces potent antioxidant, inflammatory, and anti-apoptotic effects against different models of neurodegenerative disease, including AD, PD, and other neurodegenerative disorders. Caffeine has shown strong antagonistic effects against the adenosine A2A receptor, which is a microglial receptor, and strong agonistic effects against nuclear-related factor-2 (Nrf-2), thereby regulating the cellular homeostasis at the brain by reducing oxidative stress, neuroinflammation, regulating the accumulation of α-synuclein in PD and tau hyperphosphorylation, amyloidogenesis, and synaptic deficits in AD, which are the cardinal features of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow 0747 657 5394, UK;
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
30
|
Vieira AJ, Gaspar EM, Santos PM. Mechanisms of potential antioxidant activity of caffeine. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Zwilling M, Theiss C, Matschke V. Caffeine and NAD + Improve Motor Neural Integrity of Dissociated Wobbler Cells In Vitro. Antioxidants (Basel) 2020; 9:antiox9060460. [PMID: 32471290 PMCID: PMC7346375 DOI: 10.3390/antiox9060460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common degenerative disease of the central nervous system concerning a progressive loss of upper and lower motor neurons. While 5%–10% of patients are diagnosed with the inherited form of the disease, the vast majority of patients suffer from the less characterized sporadic form of ALS (sALS). As the wobbler mouse and the ALS show striking similarities in view of phenotypical attributes, the mouse is rated as an animal model for the disease. Recent investigations show the importance of nicotinamide adenine dinucleotide (NAD+) and its producing enzyme nicotinic acid mononucleotide transferase 2 (Nmnat2) for neurodegeneration as well as for the preservation of health of the neuronal cells. Furthermore, it is newly determined that these molecules show significant downregulations in the spinal cord of wobbler mice in the stable phase of disease development. Here, we were able to prove a positive benefit on affected motor neurons from an additional NAD+ supply as well as an increase in the Nmnat2 level through caffeine treatment in cells in vitro. In addition, first assumptions about the importance of endogenous and exogenous factors that have an influence on the wellbeing of motor nerve cells in the model of ALS can be considered.
Collapse
|
32
|
Romeo I, Parise A, Galano A, Russo N, Alvarez-Idaboy JR, Marino T. The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants (Basel) 2020; 9:E358. [PMID: 32344940 PMCID: PMC7278810 DOI: 10.3390/antiox9050358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Density functional theory was employed to highlight the antioxidant working mechanism of higenamine in aqueous and lipid-like environments. Different reaction mechanisms were considered for the reaction of higenamine with the •OOH radical. The pH values and the molar fraction at physiological pH were determined in aqueous solution. The results show that the preferred reaction mechanism was the hydrogen atom transfer from the catecholic ring. The computed kinetic constants revealed that, in order to obtain reliable results, it is important to consider all the species present in water solution derived from acid-base equilibria. From the present investigation, it emerges that at physiological pH (7.4), the scavenging activity of higenamine against the •OOH radical is higher than that of Trolox, chosen as a reference antioxidant. Furthermore, higenamine results to be more efficient for that purpose than melatonin and caffeine, whose protective action against oxidative stress is frequently associated with their reactive oxygen species (ROS) scavenging activity.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy; (I.R.); (A.P.)
| |
Collapse
|
33
|
Leisser C, Stimpfl T, Ruiss M, Pilwachs C, Hienert J, Fisus A, Burgmüller W, Findl O, Kronschläger M. Caffeine Uptake into the Vitreous after Peroral Coffee Consumption. Ophthalmic Res 2020; 63:533-540. [PMID: 32146476 DOI: 10.1159/000507026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Caffeine and its metabolites have antioxidant activity, scavenging reactive oxygen species. The aim of our study was to measure caffeine concentrations in vitreous samples after peroral caffeine intake. METHODS This prospective study included patients scheduled for 23-G pars plana vitrectomy with membrane peeling due to epiretinal membranes. The study was performed in two parts: in the first part, patients were recruited into three different groups: group A consisted of habitual coffee drinkers who agreed to drink coffee containing 180 mg caffeine 1 h before surgery (n = 10), group B consisted of habitual coffee drinkers who were not offered coffee before surgery (n = 5), and group C consisted of non-habitual coffee drinkers, forming the control group (n = 5). In the second part (group D) patients (habitual coffee drinkers) agreed to give additional blood serum samples for measurement of caffeine concentration. Harvested samples of vitreous (groups A-D), epiretinal membranes (groups A-C), and blood serum samples (group D) were examined for concentrations of caffeine with gas chromatography-mass spectrometry. RESULTS Samples of 40 eyes of 40 patients were harvested. The concentrations of caffeine in the vitreous samples were 1,998 ± 967 ng/mL in group A and 1,108 ± 874 ng/mL in group B. In group C, caffeine concentrations were below 176 ng/mL in all vitreous samples. Both groups A and B had significantly higher concentrations of caffeine in the vitreous samples than group C (p < 0.002, p < 0.01, Mann-Whitney U test). Caffeine concentrations in epiretinal membranes were below the limits of detection. Correlation of caffeine concentrations between blood serum samples and vitreous samples in group D was high, with significantly higher caffeine concentrations in the blood serum. CONCLUSION Coffee consumption leads to significant caffeine levels in the vitreous compared to patients in the control group, and caffeine concentrations in the vitreous showed a high correlation to blood serum concentrations of caffeine after peroral coffee consumption.
Collapse
Affiliation(s)
- Christoph Leisser
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Manuel Ruiss
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Caroline Pilwachs
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Julius Hienert
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Andreea Fisus
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Wilhelm Burgmüller
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria,
| | - Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery, Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| |
Collapse
|
34
|
Wang C, Rosenfeldt E, Li Y, Hofmann R. External Standard Calibration Method To Measure the Hydroxyl Radical Scavenging Capacity of Water Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1929-1937. [PMID: 31880146 DOI: 10.1021/acs.est.9b06273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hydroxyl radical (•OH) scavenging capacity is a useful parameter for the design and operation of an advanced oxidation process (AOP) in water treatment. The scavenging capacity may change with time, and it would be useful to continuously measure this change to be able to optimize AOP doses. In this study, we first reviewed current methods for scavenging capacity measurement to identify strengths and weaknesses of each method. This information helped guide the design of an external calibration method to allow straightforward laboratory and field measurement of •OH scavenging capacity. The method used low-pressure UV/H2O2 as the •OH generation system, methylene blue (MB) as the probe compound, and isopropyl alcohol (IPA) as the standard. By monitoring, offline, the color decay of MB in a series of IPA solutions with different scavenging capacity, a calibration curve was established between the color decay rate and the scavenging capacity. The measured color decay in real water samples can then be used with this external calibration to estimate their scavenging capacity. Work was undertaken to ensure that the process would be robust under a wide range of water quality conditions. Parallel tests using this method compared with the benchmark methods confirmed its robustness and accuracy.
Collapse
Affiliation(s)
- Chengjin Wang
- Department of Civil and Mineral Engineering , University of Toronto , 35 St. George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Erik Rosenfeldt
- Hazen and Sawyer , 1555 Roseneath Road , Richmond , Virginia 23230 , United States
| | - Yi Li
- Department of Civil and Mineral Engineering , University of Toronto , 35 St. George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Ron Hofmann
- Department of Civil and Mineral Engineering , University of Toronto , 35 St. George Street , Toronto , Ontario M5S 1A4 , Canada
| |
Collapse
|
35
|
Kasabova-Angelova A, Kondeva-Burdina M, Mitkov J, Georgieva M, Tzankova V, Zlatkov A. Neuroprotective and MAOB inhibitory effects of a series of caffeine-8-thioglycolic acid amides. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
36
|
Kumar VHS, Lipshultz SE. Caffeine and Clinical Outcomes in Premature Neonates. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E118. [PMID: 31653108 PMCID: PMC6915633 DOI: 10.3390/children6110118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
Caffeine is the most widely used drug by both adults and children worldwide due to its ability to promote alertness and elevate moods. It is effective in the management of apnea of prematurity in premature infants. Caffeine for apnea of prematurity reduces the incidence of bronchopulmonary dysplasia in very-low-birth-weight infants and improves survival without neurodevelopmental disability at 18-21 months. Follow-up studies of the infants in the Caffeine for Apnea of Prematurity trial highlight the long-term safety of caffeine in these infants, especially relating to motor, behavioral, and intelligence skills. However, in animal models, exposure to caffeine during pregnancy and lactation adversely affects neuronal development and adult behavior of their offspring. Prenatal caffeine predisposes to intrauterine growth restriction and small growth for gestational age at birth. However, in-utero exposure to caffeine is also associated with excess growth, obesity, and cardio-metabolic changes in children. Caffeine therapy is a significant advance in newborn care, conferring immediate benefits in preterm neonates. Studies should help define the appropriate therapeutic window for caffeine treatment along with with the mechanisms relating to its beneficial effects on the brain and the lung. The long-term consequences of caffeine in adults born preterm are being studied and may depend on the ability of caffeine to modulate both the expression and the maturation of adenosine receptors in infants treated with caffeine.
Collapse
Affiliation(s)
- Vasantha H S Kumar
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
37
|
Liu R, Gang L, Shen X, Xu H, Wu F, Sheng L. Binding Characteristics and Superimposed Antioxidant Properties of Caffeine Combined with Superoxide Dismutase. ACS OMEGA 2019; 4:17417-17424. [PMID: 31656914 PMCID: PMC6812128 DOI: 10.1021/acsomega.9b02205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 05/08/2023]
Abstract
The binding characteristics and superimposed antioxidant properties of caffeine combined with copper/zinc superoxide dismutase (SOD) were studied. The superimposed antioxidant activity of caffeine with SOD was investigated by detecting the concentration of malondialdehyde (MDA) present in cells, which was induced by hyperthermia and heavy metal exposure. The interactions between the SOD enzyme and caffeine were researched by ultraviolet spectrum, fluorescence spectrum, and molecular computation. The relative amounts of MDA contents of caffeine (0.1 mmol/L), SOD (0.1 mg/L), and caffeine (0.1 mmol/L) and SOD (0.1 mg/L) to water in cells were 0.70, 0.72, and 0.54, respectively, indicating that the antioxidant properties of caffeine combined with SOD may be superimposed. The fluorescence spectroscopy and molecular computation results show that the mixture of caffeine and SOD can result in the formation of a 1:1 complex through hydrogen bond and van der Waals forces spontaneously. The binding constant (K a) of caffeine with SOD at five different temperatures are 4.41 × 104, 3.30 × 104, 2.29 × 104, 1.71 × 104, and 1.17 × 104 L/mol. The changes of Gibbs-free energy (ΔG) are -26.50, -26.21, -25.71, -25.12, and -24.29 KJ/mol and the ΔG of molecular docking calculation is -26.95 KJ/mol. The experimental results are in accordance with the results of theoretical calculations. The combination of caffeine with SOD can change the conformation and microenvironment of SOD but does not change the activity of SOD. In addition, the combination can superimpose the antioxidant activity of caffeine and SOD.
Collapse
Affiliation(s)
- Ruirui Liu
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
- Engineering
Research Centre of Biomass Conversion and Pollution Prevention Control
of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Liping Gang
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Xiaobao Shen
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Huajie Xu
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
- Engineering
Research Centre of Biomass Conversion and Pollution Prevention Control
of Anhui Provincial Department of Education, Fuyang 236037, China
| | - Fufang Wu
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
- Engineering
Research Centre of Biomass Conversion and Pollution Prevention Control
of Anhui Provincial Department of Education, Fuyang 236037, China
- E-mail: (F.W.)
| | - Liangquan Sheng
- School
of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China
- Engineering
Research Centre of Biomass Conversion and Pollution Prevention Control
of Anhui Provincial Department of Education, Fuyang 236037, China
- E-mail: . Phone: 86-0558-2593836. Fax: 86-0558-2593836 (L.S.)
| |
Collapse
|
38
|
Mitkov J, Kondeva-Burdina M, Zlatkov A. Synthesis and preliminary hepatotoxicity evaluation of new caffeine-8-(2-thio)-propanoic hydrazid-hydrazone derivatives. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e37263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
New series of caffeine-8-(2-thio)-propanoic hydrazid-hydrazone derivatives were designed and synthesized. The targed compounds were obtained in yields of 51 to 96% and their structures were elucidated by FTIR,1H NMR,13C NMR, MS and microanalyses. All of the compounds were found to be “drug-like” as they fulfill the criteria of drug-likeness, which includes the MDDR-like rule. The tested compounds were subjected toin silicoprediction of substrate/metabolite specificity and Drug Induced Liver Injury (DILI). The prediction for indicated that the evaluated compounds would most probably act as CYP1A2 substrates. The performedin vitrostudies didn’t reveal statistically significant hepatotoxicity of the tested compounds, probably due to the pro-oxidant effects expressed on sub-cellular (isolated rat liver microsomes) level. The obtained experimental results confirmed the predicted low hepatotoxicity for the tested structures. Based on these results the compounds may be considered as promising structures for design of future molecules with low hepatotoxicity.
Collapse
|
39
|
Wang C, Moore N, Bircher K, Andrews S, Hofmann R. Full-scale comparison of UV/H 2O 2 and UV/Cl 2 advanced oxidation: The degradation of micropollutant surrogates and the formation of disinfection byproducts. WATER RESEARCH 2019; 161:448-458. [PMID: 31228664 DOI: 10.1016/j.watres.2019.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 05/03/2023]
Abstract
The photolysis of chlorine by UV light leads to the formation of the hydroxyl radicals (OH) as well as reactive chlorine species (RCS) that can be effective as advanced oxidation processes (AOPs) for water treatment. Much of the research to date has been done at laboratory- or bench-scale. This study reports results from a model that demonstrates that the relative effectiveness of the UV/Cl2 AOP compared to the more traditional UV/H2O2 AOP is a function of optical path length. As such, the relative effectiveness of the two treatment options evaluated at small scale may not reflect the relative performance at full-scale, making results previously obtained at small-scale potentially less scalable. This study therefore compares the performance of UV/Cl2 to UV/H2O2 at a full-scale water treatment plant, using sucralose and caffeine as spiked surrogates for contaminants that are reactive solely to OH radicals, and to both OH and RCS, respectively. pH was varied between 6.5 and 8.0. The results demonstrated that when using a medium pressure UV lamp, UV/Cl2 might lead to approximately twice the production of OH radicals as UV/H2O2 at pH 6.5 when using the same molar oxidant concentration, but adding chlorine to the UV reactor at pH 8.0 had a negligible impact on OH radical concentration in comparison to UV alone. The study also confirmed previous small-scale results that RCS can be a major contributor to UV/Cl2 treatment for compounds such as caffeine that are susceptible to RCS, with UV/Cl2 effective at both pH 6.5 and 8.0 for such compounds. Disinfection byproducts were monitored, with adsorbable organohalide (AOX) formation increasing by approximately 10 μg-Cl/L due to chlorine photolysis, but only at pH 6.5 and not at pH 8.0. This implies that UV/Cl2 might increase AOX mostly due to reaction between OH and organic precursors to make them more reactive with chlorine, and not due to RCS. The formation of specific DBPs of current or emerging regulatory interest was minimal under all conditions, except for chlorate. Chlorate yields were in the order of 6-18% of the photolysed chlorine.
Collapse
Affiliation(s)
- Chengjin Wang
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Nathan Moore
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Keith Bircher
- Calgon Carbon Corporation, 3000 GSK Drive Moon Township, Pennsylvania, 15108, USA
| | - Susan Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Ron Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| |
Collapse
|
40
|
Tsang JKW, Liu J, Lo ACY. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. Int J Mol Sci 2019; 20:E4321. [PMID: 31484463 PMCID: PMC6747312 DOI: 10.3390/ijms20174321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological events occur when babies return to room air, leading to ROP with neuronal degeneration and vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore, increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for effective and safe therapies in these developing infants. Therefore, it is essential to identify potential therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions. This review gives an overview of various agents in their efficacy in reducing retinal damages in cell culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective pathways in the developing retina are also reviewed.
Collapse
Affiliation(s)
- Jessica K W Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Kaczmarczyk-Sedlak I, Folwarczna J, Sedlak L, Zych M, Wojnar W, Szumińska I, Wyględowska-Promieńska D, Mrukwa-Kominek E. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Arch Med Sci 2019; 15:1073-1080. [PMID: 31360202 PMCID: PMC6657250 DOI: 10.5114/aoms.2019.85461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION One of the major causes of cataract in diabetes is oxidative stress induced by reactive oxygen species (ROS). Nowadays, new substances with antioxidative properties that may prevent cataract development are needed. One such substance is caffeine - an alkaloid with well-documented antioxidative activity. MATERIAL AND METHODS The study was conducted on lenses obtained from female rats, divided into 3 groups: control rats; diabetic rats; diabetic rats treated with caffeine at a dose of 20 mg/kg p.o. Type 1 diabetes was induced by streptozotocin (60 mg/kg i.p.). After 4 weeks of caffeine administration, the rats were sacrificed, and the lenses were collected, weighed and homogenized in PBS. The homogenate was used for analysis of protein content, glutathione (GSH) concentration, advanced oxidation protein product (AOPP) concentration, malondialdehyde (MDA) concentration and the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). RESULTS The SOD, CAT and GPx activities were found to be higher in the lenses of diabetic rats. There were also increased MDA and AOPP concentrations as well as decreased GSH concentration. The administration of caffeine resulted in decreased activity of SOD, CAT and GPx. The treatment with caffeine also caused an increase of GSH concentration and a decrease of MDA and AOPP concentrations. CONCLUSIONS The results of the present study may be of relevance in determining the effect of caffeine on the processes induced by ROS in vivo. Further, they can be an indication for clinical observations aiming at the assessment of both preventive and therapeutic effects of caffeine in cataract.
Collapse
Affiliation(s)
- Ilona Kaczmarczyk-Sedlak
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Lech Sedlak
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia in Katowice, Poland
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poland
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Weronika Wojnar
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Iwona Szumińska
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Dorota Wyględowska-Promieńska
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia in Katowice, Poland
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, University Clinical Center, Medical University of Silesia in Katowice, Poland
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
42
|
Laouafa S, Iturri P, Arias-Reyes C, Marcouiller F, Gonzales M, Joseph V, Bairam A, Soliz J. Erythropoietin and caffeine exert similar protective impact against neonatal intermittent hypoxia: Apnea of prematurity and sex dimorphism. Exp Neurol 2019; 320:112985. [PMID: 31254520 DOI: 10.1016/j.expneurol.2019.112985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/21/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Apnea of prematurity (AoP) is associated with severe and repeated episodes of arterial oxygen desaturation (intermittent hypoxia - IH), which in turn increases the number of apneas. So far, there is no data addressing whether IH leads to sex-specific respiratory consequences, neither if drugs targeting AoP are more effective in males or females. We used rat pups for investigating whether IH-mediated increase of apneas is sex-specific. We also tested whether caffeine (treatment of choice of AoP), erythropoietin (Epo - a neuroprotective factor and potent respiratory stimulant), and combination of both (caffeine+Epo) prevent the IH-mediated formation of apneas in a sex-dependent manner. Newborn rats exposed to IH (21% - 10% FIO2-8 h a day - 10 cycles per hour) during postnatal days (P) 3-10 were used in this work. Animals were administered drug vehicle, Epo, caffeine and Epo + caffeine (daily from P3 to P10) gavage. At P10 the frequency of apneas at rest (as an index of respiratory dysfunction induced by IH), and respiratory parameters were measured by plethysmography. Our results showed that IH significantly increases the number of apneas in male but not in female rat pups. Moreover, caffeine and Epo in males similarly prevented the increase of apneas induced by IH, and the administration of both drugs together did not provide a cumulative beneficial effect. No impact of drugs was evidenced in females. Apart from apneas, IH increased the normoxic basal ventilation (ventilation at rest) of male animals, and treatments did not prevent such alteration. Besides, no IH- nor treatment-mediated modulation of basal ventilation was found in the basal ventilation of female animals. Analysis of the activity of pro- and antioxidative molecules revealed that IH induces oxidative stress in the brainstem of male and female animals and that all tested treatments similarly prevented such oxidative imbalance in pups of both sexes. We concluded that neonatal IH and the treatments tested to prevent its respiratory consequences are sex-specific. The mechanics associated with such prevention are directly linked with the prevention of oxidative stress and the maturation of the brain. These findings are relevant to understanding better the AoP disorder and for proposing Epo as a new therapeutical tool.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Pablo Iturri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Christian Arias-Reyes
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada; Departamento de Biologia Celular y Molecular, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andres, La Paz, Bolivia
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Marcelino Gonzales
- Instituto Boliviano de Biologia de la Altura, Facultad de Medicina, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada; Departamento de Biologia Celular y Molecular, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andres, La Paz, Bolivia.
| |
Collapse
|
43
|
Yuan C, Sleighter RL, Weavers LK, Hatcher PG, Chin YP. Fast Photomineralization of Dissolved Organic Matter in Acid Mine Drainage Impacted Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6273-6281. [PMID: 31038308 DOI: 10.1021/acs.est.9b00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Acid mine drainage (AMD) formed from pyrite (iron disulfide) weathering contributes to ecosystem degradation in impacted waters. Solar irradiation has been shown to be an important factor in the biogeochemical cycling of iron in AMD-impacted waters, but its impact on dissolved organic matter (DOM) is unknown. With a typical AMD-impacted water (pH 2.7-3) collected from the Perry State Forest watershed in Ohio, we observed highly efficient (>80%) photochemical mineralization of DOM within hours in a solar simulator resembling twice summer sunlight at 40°N. We confirmed that the mineralization was initially induced by •OH formed from FeOH2+ photodissociation and was inhibited 2-fold by dissolved oxygen removal, suggesting the importance of both the photochemical reaction and oxygen involvement. Size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry elucidated that any remaining organic matter was comprised of smaller and highly aliphatic compounds. The quantitative and qualitative changes in DOM are likely to constitute an important component in regional carbon cycling and nutrient release and to influence downstream aquatic ecosystems in AMD-affected watersheds.
Collapse
Affiliation(s)
- Chenyi Yuan
- Environmental Science Graduate Program , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Rachel L Sleighter
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Linda K Weavers
- Department of Civil, Environmental, and Geodetic Engineering , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Patrick G Hatcher
- Department of Chemistry and Biochemistry , Old Dominion University , Norfolk , Virginia 23529 , United States
| | - Yu-Ping Chin
- School of Earth Sciences , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
44
|
Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. BEVERAGES 2019. [DOI: 10.3390/beverages5020037] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Caffeine (1,3,7-trimethylxanthine) is the most consumed psychoactive substance in the world, acting by means of antagonism to adenosine receptors, mainly A1 and A2A. Coffee is the main natural source of the alkaloid which is quite soluble and well extracted during the brew’s preparation. After consumption, caffeine is almost completely absorbed and extensively metabolized in the liver by phase I (cytochrome P450) enzymes, mainly CYP1A2, which appears to be polymorphically distributed in human populations. Paraxanthine is the major caffeine metabolite in plasma, while methylated xanthines and methyluric acids are the main metabolites excreted in urine. In addition to stimulating the central nervous system, caffeine exerts positive effects in the body, often in association with other substances, contributing to prevention of several chronic diseases. The potential adverse effects of caffeine have also been extensively studied in animal species and in humans. These aspects will be approached in the present review.
Collapse
|
45
|
Rosado C, Tokunaga VK, Sauce R, de Oliveira CA, Sarruf FD, Parise-Filho R, Maurício E, de Almeida TS, Velasco MVR, Baby AR. Another Reason for Using Caffeine in Dermocosmetics: Sunscreen Adjuvant. Front Physiol 2019; 10:519. [PMID: 31130869 PMCID: PMC6509748 DOI: 10.3389/fphys.2019.00519] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The excessive exposure to ultraviolet (UV) radiation is the main cause of skin cancer, the most commonly diagnosed cancer in the world. In this context, the development of innovative and more effective sunscreens, with bioactive compounds like caffeine, displaying antioxidant and anticancer potential, is required. This research work assessed in vitro and in vivo the efficacy and safety of topical sunscreen formulations containing caffeine as an adjuvant of the UV filters. Sunscreens were prepared with 2.5% w/w caffeine or in the absence of this compound. In order to evaluate the safety of these formulations, stratum corneum hydration, skin barrier and colorimetry were assessed in vivo in healthy subjects before and after skin treatment with the samples. The efficacy of the sunscreens was assessed in vitro, using PMMA plates and a spectrophotometer equipped with an integrating sphere; and in vivo by the determination of the sun protection factor (SPF). None of the formulations caused erythema or impaired the skin barrier function. The in vitro functional characterization showed higher SPF values for the caffeine formulation. The in vivo studies also confirmed the higher SPF value of the formulation combining caffeine with the filters, compared to the caffeine-free sample. This improvement contributed to an increase of, approximately, 25% in the in vivo anti-UVB protection. In conclusion, caffeine was well tolerated by the skin and increased the photoprotective activity, being a new alternative adjuvant in sunscreens formulation.
Collapse
Affiliation(s)
- Catarina Rosado
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - Viviane Kaori Tokunaga
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Sauce
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Areias de Oliveira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Roberto Parise-Filho
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisabete Maurício
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - Tânia Santos de Almeida
- CBIOS – Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | | | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Optimized Dyeing Process for Enhancing the Functionalities of Spent Coffee Dyed Wool Fabrics Using a Facile Extraction Process. Polymers (Basel) 2019; 11:polym11040574. [PMID: 30960558 PMCID: PMC6523087 DOI: 10.3390/polym11040574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Spent coffee grounds are the byproduct of coffee brewing and are generally discarded as waste. However, spent coffee has high levels of organic compounds that have multiple biological effects, including antibacterial and antioxidant activities. In this light, spent coffee grounds were tested for fabric dyeing to both functionalize as well as color the fabrics. The dyeing solution was prepared by extracting spent coffee grounds collected from a local coffee house by using a manual espresso machine. The spent coffee extract was applied to wool fabrics using a laboratory infrared dyeing machine. After the dyeing process was completed, the fabrics were mordanted with a tannic acid aqueous solution. To optimize the dyeing conditions, the times and temperatures during the process were varied, and the functionalities and other properties including color and strength of the wool fabrics dyed with the spent coffee extract were investigated. The wool fabrics dyed with the spent coffee extract were significantly colored, and the color withstands the effect of washing and light exposure. Moreover, the dyeing process with the spent coffee extract and the mordanting process with tannic acid gave the wool fabrics antibacterial and antioxidant properties.
Collapse
|
47
|
Tea consumption and oxidative stress: a cross-sectional analysis of 889 premenopausal women from the Sister Study. Br J Nutr 2019; 121:582-590. [PMID: 30567620 DOI: 10.1017/s0007114518003732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In experimental and clinical studies, green or black tea consumption has been shown to reduce oxidative stress. However, these studies involved high levels of tea consumption and may not reflect patterns in the general population. Here, we examined the association between black or green tea consumption and oxidative stress in a cross-sectional study of 889 premenopausal US women aged 35-54 years. Tea consumption was measured using the Block-98 FFQ. Urinary 8-iso-PGF2α (F2-IsoP) and 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (15-F2t-IsoP-M) were used as biomarkers of oxidative stress. These compounds were measured by MS and normalised to creatinine. Linear regression was used to calculate the geometric mean differences (GMD) and 95% CI for log-transformed urinary F2-IsoP or 15-F2t-IsoP-M in relation to black or green tea consumption. We further examined whether adjusting for caffeine impacted associations between tea and oxidative stress. Geometric means of urinary F2-IsoP and 15-F2t-IsoP-M were 1·44 (95% CI 1·39, 1·49) and 0·71 (95% CI 0·69, 0·73) ng/mg creatinine, respectively. Overall, green tea consumption was not associated with urinary F2-IsoP or 15-F2t-IsoP-M. High-level black tea consumption (≥5 cups/week compared with 0) was associated with higher 15-F2t-IsoP-M concentrations (adjusted GMD=0·10, 95 % CI 0·02-0.19) but not F2-IsoP. Adjusting for caffeine nullified the association between black tea and 15-F2t-IsoP-M. Our findings do not support the hypothesis that dietary tea consumption is inversely associated with oxidative stress.
Collapse
|
48
|
Caffeine Prevents Memory Impairment Induced by Hyperhomocysteinemia. J Mol Neurosci 2018; 66:222-228. [PMID: 30140995 DOI: 10.1007/s12031-018-1158-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
L-Methionine chronic administration leads to impairment of memory. This impairment is due to the increase in the body oxidative stress, which damages neurons and prevents their firing. On the other hand, caffeine has antioxidant and neuroprotective effects that could prevent impairment of memory induced by L-methionine chronic administration. In the current study, this hypothesis was evaluated. L-methionine (1.7 g/kg/day) was orally administered to animals for 4 weeks and caffeine (0.3 g/L) treatment was added to the drinking water. The radial arm water maze (RAWM) was used to test spatial learning and memory. Antioxidant biomarkers were assessed in the hippocampus tissues using biochemical assay methods. Chronic L-methionine administration induced (short- and long-) term memory impairment (P < 0.05), while caffeine treatment prevented such effect. Additionally, L-methionine treatment reduced catalase and glutathione peroxidase (GPx") enzymatic activities, and reduced glutathione (GSH) to oxidized glutathione (GSSG) ratio. These effects were normalized by caffeine treatment. Activity of superoxide dismutase (SOD) was unchanged by either L-methionine or caffeine treatments. In conclusion, L-methionine induces impairment of memory, and caffeine treatment prevented this impairment probably through affecting hippocampus antioxidant mechanisms.
Collapse
|
49
|
Ogawa Y, Sekine-Suzuki E, Ueno M, Nakanishi I, Matsumoto KI. Localized hydroxyl radical generation at mmol/L and mol/L levels in water by photon irradiation. J Clin Biochem Nutr 2018; 63:97-101. [PMID: 30279619 PMCID: PMC6160720 DOI: 10.3164/jcbn.18-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023] Open
Abstract
The generation of localized hydroxyl radical (•OH) in aqueous samples by low linear energy transfer irradiation was investigated. Several concentrations of 5,5-dimethyl-1-pyrroline-N-oxid solution (from 0.5 to 1,680 mmol/L) were prepared and irradiated with an identical dose of X-ray or γ-ray. The density of •OH generation in aqueous solution was evaluated by the electron paramagnetic resonance spin-trapping technique using 5,5-dimethyl-1-pyrroline-N-oxid as an electron paramagnetic resonance spin-trapping agent. The relationship between the molecular density of 5,5-dimethyl-1-pyrroline-N-oxid in the samples and the concentration of 5,5-dimethyl-1-pyrroline-N-oxid-OH generated in the irradiated samples was analyzed. Two different characteristic linear trends were observed in the 5,5-dimethyl-1-pyrroline-N-oxid-OH/5,5-dimethyl-1-pyrroline-N-oxid plots, which suggested •OH generation in two fashions, i.e., mmol/L- and mol/L-level local concentrations. The dose, dose rate, and/or the energy of photon irradiation did not affect the shapes of the 5,5-dimethyl-1-pyrroline-N-oxid-OH/5,5-dimethyl-1-pyrroline-N-oxid plots. Moreover, the addition of 5 mmol/L caffeine could cancel the contribution of mmol/L-level •OH generation, leaving a trace of mol/L-level •OH generation. Thus, the localized mmol/L- and mol/L-level generations of •OH, which were independent of experimental parameters such as dose, dose rate, and/or the energy of photon of low linear energy transfer radiation, were established.
Collapse
Affiliation(s)
- Yukihiro Ogawa
- Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan.,Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Emiko Sekine-Suzuki
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.,Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
50
|
Carlström M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev 2018; 76:395-417. [DOI: 10.1093/nutrit/nuy014] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Susanna C Larsson
- Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|