1
|
Mager DE, Straubinger RM. Contributions of William Jusko to Development of Pharmacokinetic and Pharmacodynamic Models and Methods. J Pharm Sci 2024; 113:2-10. [PMID: 37778439 DOI: 10.1016/j.xphs.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA; Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA.
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
2
|
Summerfield SG, Yates JWT, Fairman DA. Free Drug Theory - No Longer Just a Hypothesis? Pharm Res 2022; 39:213-222. [PMID: 35112229 DOI: 10.1007/s11095-022-03172-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
The Free Drug Hypothesis is a well-established concept within the scientific lexicon pervading many areas of Drug Discovery and Development, and yet it is poorly defined by virtue of many variations appearing in the literature. Clearly, unbound drug is in dynamic equilibrium with respect to absorption, distribution, metabolism, elimination, and indeed, interaction with the desired pharmacological target. Binding interactions be they specific (e.g. high affinity) or nonspecific (e.g. lower affinity/higher capacity) are governed by the same fundamental physicochemical tenets including Hill-Langmuir Isotherms, the Law of Mass Action and Drug Receptor Theory. With this in mind, it is time to recognise a more coherent version and consider it the Free Drug Theory and a hypothesis no longer. Today, we have the experimental and modelling capabilities, pharmacological knowledge, and an improved understanding of unbound drug distribution (e.g. Kpuu) to raise the bar on our understanding and analysis of experimental data. The burden of proof should be to rule out mechanistic possibilities and/or experimental error before jumping to the conclusion that any observations contradict these fundamentals.
Collapse
Affiliation(s)
- Scott G Summerfield
- UK Bioanalysis Immunogenicity and Biomarkers, GSK R&D, Stevenage, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - James W T Yates
- Drug Metabolism and Pharmacokinetics, GSK R&D, Stevenage, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - David A Fairman
- Clinical Pharmacology Modelling and Simulation, GSK R&D, Stevenage, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
3
|
Population pharmacodynamic modeling of intramuscular and oral dexamethasone and betamethasone effects on six biomarkers with circadian complexities in Indian women. J Pharmacokinet Pharmacodyn 2021; 48:411-438. [PMID: 33954911 PMCID: PMC8099395 DOI: 10.1007/s10928-021-09755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/03/2021] [Indexed: 11/07/2022]
Abstract
Population pharmacokinetic/pharmacodynamic (PK/PD) analysis was performed for extensive data for differing dosage forms and routes for dexamethasone (DEX) and betamethasone (BET) in 48 healthy nonpregnant Indian women in a partial and complex cross-over design. Single doses of 6 mg dexamethasone phosphate (DEX-P), betamethasone phosphate (BET-P), or 1:1 mixture of betamethasone phosphate and acetate (BET-PA) were administered orally (PO) or intramuscularly (IM) where each woman enrolled in a two-period cross-over study. Plasma concentrations collected over 96 h were described with a two-compartment model with differing PO and IM first-order absorption inputs. Overall, BET exhibited slower clearance, similar volume of distribution, faster absorption, and longer persistence than DEX with BET acetate producing extremely slow absorption but full bioavailability of BET. Six biomarkers were assessed over a 24-h baseline period with four showing circadian rhythms with complex baselines. These baselines and the strong responses seen after drug dosing were fitted with various indirect response models using the Laplace estimation methods in NONMEM 7.4. Both the PK and six biomarker responses were well-described with modest variability likely due to the homogeneous ages, weights, and ethnicities of the women. The drugs either inhibited or stimulated the influx processes with some models requiring joint inclusion of drug effects on circadian cortisol suppression. The biomarkers and order of sensitivity (lowest IC50/SC50 to highest) were: cortisol, T-helper cells, basophils, glucose, neutrophils, and T-cytotoxic cells. DEX sensitivities were generally greater than BET with corresponding mean ratios for these biomarkers of 2.86, 1.27, 1.72, 1.27, 2.69, and 1.06. Overall, the longer PK (e.g. half-life) of BET, but lesser PD activity (e.g. higher IC50), produces single-dose response profiles that appear quite similar, except for the extended effects from BET-PA. This comprehensive population modeling effort provides the first detailed comparison of the PK profiles and six biomarker responses of five commonly used dosage forms of DEX and BET in healthy women.
Collapse
|
4
|
Zhang RL, Lo HH, Lei C, Ip N, Chen J, Law BYK. Current pharmacological intervention and development of targeting IVIG resistance in Kawasaki disease. Curr Opin Pharmacol 2020; 54:72-81. [PMID: 32956895 PMCID: PMC7500898 DOI: 10.1016/j.coph.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Kawasaki disease is an acute childhood self-limited vasculitis, causing the swelling or inflammation of medium-sized arteries, eventually leading to cardiovascular problems such as coronary artery aneurysms. Acetylsalicylic acid combined with intravenous immunoglobulin (IVIG) is the standard treatment of Kawasaki disease (KD). However, a rising number of IVIG resistant cases were reported with severe disease complications such as the KD Shock Syndrome or KD-Macrophage activation syndrome. Recent reports have depicted the overlapped number of children with SARS-CoV-2 and KD, which was called multisystem inflammatory syndrome. Simultaneously, the incidence rate of KD-like diseases are increased after the outbreak of COVID-19, suggesting the virus may be associated with KD. New intervention is important to overcome the problem of IVIG treatment resistance. This review aims to introduce the current pharmacological intervention and possible resistance genes for the discovery of new drug for IVIG resistant KD.
Collapse
Affiliation(s)
- Rui Long Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, SAR China
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, SAR China
| | - Cheng Lei
- Department of Pediatrics, Kiang Wu Hospital, Macao, SAR China
| | - Nikki Ip
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, SAR China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, SAR China.
| |
Collapse
|
5
|
Ayyar VS, Jusko WJ. Transitioning from Basic toward Systems Pharmacodynamic Models: Lessons from Corticosteroids. Pharmacol Rev 2020; 72:414-438. [PMID: 32123034 DOI: 10.1124/pr.119.018101] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Technology in bioanalysis, -omics, and computation have evolved over the past half century to allow for comprehensive assessments of the molecular to whole body pharmacology of diverse corticosteroids. Such studies have advanced pharmacokinetic and pharmacodynamic (PK/PD) concepts and models that often generalize across various classes of drugs. These models encompass the "pillars" of pharmacology, namely PK and target drug exposure, the mass-law interactions of drugs with receptors/targets, and the consequent turnover and homeostatic control of genes, biomarkers, physiologic responses, and disease symptoms. Pharmacokinetic methodology utilizes noncompartmental, compartmental, reversible, physiologic [full physiologically based pharmacokinetic (PBPK) and minimal PBPK], and target-mediated drug disposition models using a growing array of pharmacometric considerations and software. Basic PK/PD models have emerged (simple direct, biophase, slow receptor binding, indirect response, irreversible, turnover with inactivation, and transduction models) that place emphasis on parsimony, are mechanistic in nature, and serve as highly useful "top-down" methods of quantitating the actions of diverse drugs. These are often components of more complex quantitative systems pharmacology (QSP) models that explain the array of responses to various drugs, including corticosteroids. Progressively deeper mechanistic appreciation of PBPK, drug-target interactions, and systems physiology from the molecular (genomic, proteomic, metabolomic) to cellular to whole body levels provides the foundation for enhanced PK/PD to comprehensive QSP models. Our research based on cell, animal, clinical, and theoretical studies with corticosteroids have provided ideas and quantitative methods that have broadly advanced the fields of PK/PD and QSP modeling and illustrates the transition toward a global, systems understanding of actions of diverse drugs. SIGNIFICANCE STATEMENT: Over the past half century, pharmacokinetics (PK) and pharmacokinetics/pharmacodynamics (PK/PD) have evolved to provide an array of mechanism-based models that help quantitate the disposition and actions of most drugs. We describe how many basic PK and PK/PD model components were identified and often applied to the diverse properties of corticosteroids (CS). The CS have complications in disposition and a wide array of simple receptor-to complex gene-mediated actions in multiple organs. Continued assessments of such complexities have offered opportunities to develop models ranging from simple PK to enhanced PK/PD to quantitative systems pharmacology (QSP) that help explain therapeutic and adverse CS effects. Concurrent development of state-of-the-art PK, PK/PD, and QSP models are described alongside experimental studies that revealed diverse CS actions.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, New York
| |
Collapse
|
6
|
Esposito A, Vollaro A, Esposito EP, D’Alonzo D, Guaragna A, Zarrilli R, De Gregorio E. Antibacterial and Antivirulence Activity of Glucocorticoid PYED-1 against Stenotrophomonas maltophilia. Antibiotics (Basel) 2020; 9:E105. [PMID: 32131413 PMCID: PMC7148523 DOI: 10.3390/antibiotics9030105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Stenotrophomonas maltophilia, an environmental Gram-negative bacterium, is an emerging nosocomial opportunistic pathogen that causes life-threatening infections in immunocompromised patients and chronic pulmonary infections in cystic fibrosis patients. Due to increasing resistance to multiple classes of antibiotics, S. maltophilia infections are difficult to treat successfully. This makes the search for new antimicrobial strategies mandatory. In this study, the antibacterial activity of the heterocyclic corticosteroid deflazacort and several of its synthetic precursors was tested against S. maltophilia. All compounds were not active against standard strain S. maltophilia K279a. The compound PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed a weak effect against some S. maltophilia clinical isolates, but exhibited a synergistic effect with aminoglycosides. PYED-1 at sub-inhibitory concentrations decreased S. maltophilia biofilm formation. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of biofilm- and virulence- associated genes (StmPr1, StmPr3, sphB, smeZ, bfmA, fsnR) was significantly suppressed after PYED-1 treatment. Interestingly, PYED-1 also repressed the expression of the genes aph (3´)-IIc, aac (6´)-Iz, and smeZ, involved in the resistance to aminoglycosides.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Eliana Pia Esposito
- Department of Public Health, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (A.E.); (A.G.)
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (E.P.E.); (R.Z.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
7
|
Ayyar VS, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part III: Estrous Cycle and Estrogen Receptor-Dependent Antagonism of Glucocorticoid-Induced Leucine Zipper (GILZ) Enhancement by Corticosteroids. J Pharmacol Exp Ther 2019; 370:337-349. [PMID: 31197018 DOI: 10.1124/jpet.119.257543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
Our previous report examined the pharmacokinetics (PK) of methylprednisolone (MPL) and adrenal suppression after a 50 mg/kg IM bolus in male and female rats, and we described in detail the development of a minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model. In continuation of such assessments, we investigated sex differences in genomic MPL responses (PD). Message expression of the glucocorticoid-induced leucine zipper (GILZ) was chosen as a multitissue biomarker of glucocorticoid receptor (GR)-mediated drug response. Potential time-dependent interplay between sex hormone and glucocorticoid signaling in vivo was assessed by comparing the enhancement of GILZ by MPL in the uterus [high estrogen receptor (ER) density] and in liver (lower ER density) from male and female rats dosed within the proestrus (high estradiol/progesterone) and estrus (low estradiol/progesterone) phases of the rodent estrous cycle. An expanded-systems PD model of MPL considering circadian rhythms, multireceptor (ER and GR) control, and estrous variations delineated the determinants controlling receptor/gene-mediated steroid responses. Hepatic GILZ response was ∼3-fold greater in females, regardless of estrous stage, compared with males, driven predominantly by increased MPL exposure in females and a negligible influence of estrogen interaction. In contrast, GILZ response in the uterus during proestrus in females was 60% of that observed in estrus-phased females, despite no PK or receptor differences, providing in vivo support to the hypothesis of estrogen-mediated antagonism of glucocorticoid signaling. The developed model offers a mechanistic platform to assess the determinants of sex and tissue specificity in corticosteroid actions and, in turn, reveals a unique PD drug-hormone interaction occurring in vivo. SIGNIFICANCE STATEMENT: Mechanisms relating to sex-based pharmacodynamic variability in genomic responses to corticosteroids have been unclear. Using combined experimental and systems pharmacology modeling approaches, sex differences in both pharmacokinetic and pharmacodynamic mechanisms controlling the enhancement of a sensitive corticosteroid-regulated biomarker, the glucocorticoid-induced leucine zipper (GILZ), were clarified in vivo. The multiscale minimal physiologically based pharmacokinetics/pharmacodynamic model successfully captured the experimental observations and quantitatively discerned the roles of the rodent estrous cycle (hormonal variation) and tissue specificity in mediating the antagonistic coregulation of GILZ gene synthesis. These findings collectively support the hypothesis that estrogens antagonize pharmacodynamic signaling of genomic corticosteroid actions in vivo in a time- and estrogen receptor-dependent manner.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
8
|
Swann JW, Szladovits B, Threlfall AJ, Garden OA, Chang YM, Church DB, Glanemann B. Randomised controlled trial of fractionated and unfractionated prednisolone regimens for dogs with immune-mediated haemolytic anaemia. Vet Rec 2019; 184:771. [PMID: 31048502 DOI: 10.1136/vr.105104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/11/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
METHODS A randomised non-blinded non-inferiority trial was conducted to determine whether treatment with an unfractionated regimen of oral prednisolone was inferior to a fractionated regimen for dogs with primary immune-mediated haemolytic anaemia. Dogs received the same total daily dose of prednisolone as unfractionated (group 1, starting at 4 mg/kg orally once daily) or fractionated (group 2, starting at 2 mg/kg orally twice daily) doses. Questionnaires were administered to owners to assess adverse effects and quality of life (QoL). End points included survival to eight weeks, and changes in QoL and clinicopathological parameters over time. RESULTS Thirty-nine dogs were enrolled in the study, of which 5 were withdrawn and 17 were assigned to each group. The number of cases recruited was insufficient to determine whether unfractionated treatment was inferior to fractionated. Total serum bilirubin decreased more rapidly in dogs in group 2, whereas polydipsia improved more rapidly in group 1. Blood pressure and score for polyuria were higher in dogs in group 2 over time, whereas lymphocyte concentration was lower. CONCLUSION Administration of the same total daily dose of prednisolone as an unfractionated dose resulted in fewer adverse effects but the effect on survival could not be assessed in this study.
Collapse
Affiliation(s)
- James W Swann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Balazs Szladovits
- Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Anna J Threlfall
- Small Animal Internal Medicine, Davies Veterinary Specialists, Higham Gobion, UK
| | - Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, London, UK
| | - David B Church
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, UK
| | - Barbara Glanemann
- Queen Mother Hospital for Animals, Royal Veterinary College, Hatfield, UK
| |
Collapse
|
9
|
Fuller M, Younkin K, Drum M, Reader A, Nusstein J, Fowler S. Postoperative Pain Management with Oral Methylprednisolone in Symptomatic Patients with a Pulpal Diagnosis of Necrosis: A Prospective Randomized, Double-blind Study. J Endod 2018; 44:1457-1461. [DOI: 10.1016/j.joen.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 11/27/2022]
|
10
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacogenomics and Proteomics in Rat Liver. J Pharmacol Exp Ther 2018; 367:168-183. [PMID: 30087156 DOI: 10.1124/jpet.118.251959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022] Open
Abstract
Corticosteroids (CS) regulate the expression of numerous genes at the mRNA and protein levels. The time course of CS pharmacogenomics and proteomics were examined in livers obtained from adrenalectomized rats given a 50-mg/kg bolus dose of methylprednisolone. Microarrays and mass spectrometry-based proteomics were employed to quantify hepatic transcript and protein dynamics. One-hundred, sixty-three differentially expressed mRNA and their corresponding proteins (163 genes) were clustered into two dominant groups. The temporal profiles of most proteins were delayed compared with their mRNA, attributable to synthesis delays and slower degradation kinetics. On the basis of our fifth-generation model of CS, mathematical models were developed to simultaneously describe the emergent time patterns for an array of steroid-responsive mRNA and proteins. The majority of genes showed time-dependent increases in mRNA and protein expression before returning to baseline. A model assuming direct, steroid-mediated stimulation of mRNA synthesis was applied. Some mRNAs and their proteins displayed down-regulation following CS. A model assuming receptor-mediated inhibition of mRNA synthesis was used. More complex patterns were observed for other genes (e.g., biphasic behaviors and opposite directionality in mRNA and protein). Models assuming either stimulation or inhibition of mRNA synthesis coupled with dual secondarily induced regulatory mechanisms affecting mRNA or protein turnover were derived. These findings indicate that CS-regulated gene expression manifested at the mRNA and protein levels are controlled via mechanisms affecting key turnover processes. Our quantitative models of CS pharmacogenomics were expanded from mRNA to proteins and provide extended hypotheses for understanding the direct, secondary, and downstream mechanisms of CS actions.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., S.S., D.C.D., R.R.A., W.J.J.) and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
11
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Qu J, Jusko WJ. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J Pharmacokinet Pharmacodyn 2018; 45:557-575. [PMID: 29704219 DOI: 10.1007/s10928-018-9585-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
A multiscale pharmacodynamic model was developed to characterize the receptor-mediated, transcriptomic, and proteomic determinants of corticosteroid (CS) effects on clinically relevant hepatic processes following a single dose of methylprednisolone (MPL) given to adrenalectomized (ADX) rats. The enhancement of tyrosine aminotransferase (TAT) mRNA, protein, and enzyme activity were simultaneously described. Mechanisms related to the effects of MPL on glucose homeostasis, including the regulation of CCAAT-enhancer binding protein-beta (C/EBPβ) and phosphoenolpyruvate carboxykinase (PEPCK) as well as insulin dynamics were evaluated. The MPL-induced suppression of circulating lymphocytes was modeled by coupling its effect on cell trafficking with pharmacogenomic effects on cell apoptosis via the hepatic (STAT3-regulated) acute phase response. Transcriptomic and proteomic time-course profiles measured in steroid-treated rat liver were utilized to model the dynamics of mechanistically relevant gene products, which were linked to associated systemic end-points. While time-courses of TAT mRNA, protein, and activity were well described by transcription-mediated changes, additional post-transcriptional processes were included to explain the lack of correlation between PEPCK mRNA and protein. The immune response model quantitatively discerned the relative roles of cell trafficking versus gene-mediated lymphocyte apoptosis by MPL. This systems pharmacodynamic model provides insights into the contributions of selected molecular events occurring in liver and explores mechanistic hypotheses for the multi-factorial control of clinically relevant pharmacodynamic outcomes.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
12
|
The Two Faces of Adjuvant Glucocorticoid Treatment in Ovarian Cancer. Discov Oncol 2018; 9:95-107. [PMID: 29313170 DOI: 10.1007/s12672-017-0319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Adjuvant glucocorticoid treatment is routinely used in the treatment of ovarian cancer to mitigate the undesirable side effects of chemotherapy, thereby enhancing tolerability to higher cytotoxic drug doses and frequency of treatment cycles. However, in vitro and preclinical in vivo and ex vivo studies indicate that glucocorticoids may spare tumor cells from undergoing cell death through enhanced cell adhesion, promotion of anti-inflammatory signaling, and/or inhibition of apoptotic pathways. The implications of laboratory studies showing potential negative impact on the efficacy of chemotherapy have been long overlooked since clinical investigations have found no apparent survival detriment attributable to adjuvant glucocorticoid use. Importantly, these clinical studies were not randomized and most did not consider glucocorticoid receptor status, a vital determinant of tumor response to glucocorticoid administration. Additionally, the clinically beneficial elements of increased chemotherapy treatment adherence and dosing afforded by adjuvant glucocorticoids may offset and therefore mask their anti-chemotherapy activities. This review summarizes the current evidence on the impact of glucocorticoids in ovarian cancer and discusses the need for further research and development of alternative strategies to ameliorate untoward side effects of chemotherapy.
Collapse
|
13
|
Ayyar VS, DuBois DC, Almon RR, Jusko WJ. Mechanistic Multi-Tissue Modeling of Glucocorticoid-Induced Leucine Zipper Regulation: Integrating Circadian Gene Expression with Receptor-Mediated Corticosteroid Pharmacodynamics. J Pharmacol Exp Ther 2017; 363:45-57. [PMID: 28729456 DOI: 10.1124/jpet.117.242990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) is an important mediator of anti-inflammatory corticosteroid action. The pharmacokinetic/pharmacodynamic/pharmacogenomic effects of acute and chronic methylprednisolone (MPL) dosing on the tissue-specific dynamics of GILZ expression were examined in rats. A mechanism-based model was developed to investigate and integrate the role of MPL and circadian rhythms on the transcriptional enhancement of GILZ in multiple tissues. Animals received a single 50-mg/kg intramuscular bolus or a 7-day 0.3-mg/kg/h subcutaneous infusion of MPL and were euthanized at several time points. An additional group of rats were euthanized at several times and served as 24-hour light/dark (circadian) controls. Plasma MPL and corticosterone concentrations were measured by high-performance liquid chromatography. The expression of GILZ and glucocorticoid receptor (GR) mRNA was quantified in tissues using quantitative real-time reverse-transcription polymerase chain reaction. The pharmacokinetics of MPL were described using a two-compartment model. Mild-to-robust circadian oscillations in GR and GILZ mRNA expression were characterized in muscle, lung, and adipose tissues and modeled using Fourier harmonic functions. Acute MPL dosing caused significant down-regulation (40%-80%) in GR mRNA and enhancement of GILZ mRNA expression (500%-1080%) in the tissues examined. While GILZ returned to its rhythmic baseline following acute dosing, a new steady-state was observed upon enhancement by chronic dosing. The model captured the complex dynamics in all tissues for both dosing regimens. The model quantitatively integrates physiologic mechanisms, such as circadian processes and GR tolerance phenomena, which control the tissue-specific regulation of GILZ by corticosteroids. These studies characterize GILZ as a pharmacodynamic marker of corticosteroid actions in several tissues.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
14
|
Ayyar VS, Almon RR, DuBois DC, Sukumaran S, Qu J, Jusko WJ. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics 2017; 160:84-105. [PMID: 28315483 DOI: 10.1016/j.jprot.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. SIGNIFICANCE Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and other tissues is sparse. While transcriptomic regulation following methylprednisolone (MPL) dosing has been temporally examined in rat liver, proteomic assessments are needed to better characterize the tissue-specific functional aspects of MPL actions. This study describes a functional pharmacoproteomic analysis of dynamic changes in MPL-regulated proteins in liver and provides biological insight into how steroid-induced perturbations on a molecular level may relate to both adverse and therapeutic responses presented clinically.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States.
| |
Collapse
|
15
|
Danhof M. Systems pharmacology - Towards the modeling of network interactions. Eur J Pharm Sci 2016; 94:4-14. [PMID: 27131606 DOI: 10.1016/j.ejps.2016.04.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/21/2016] [Accepted: 04/24/2016] [Indexed: 12/13/2022]
Abstract
Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and disease models can be extended to account for internal systems interactions. It is demonstrated how SP models can be used to predict the effects of multi-target interactions and of homeostatic feedback on the pharmacological response. In addition it is shown how DS models may be used to distinguish symptomatic from disease modifying effects and to predict the long term effects on disease progression, from short term biomarker responses. It is concluded that incorporation of expressions to describe the interactions in biological network analysis opens new avenues to the understanding of the effects of drug treatment on the fundamental aspects of biological systems behavior.
Collapse
Affiliation(s)
- Meindert Danhof
- Systems Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
16
|
Danhof M. Kinetics of drug action in disease states: towards physiology-based pharmacodynamic (PBPD) models. J Pharmacokinet Pharmacodyn 2015; 42:447-62. [PMID: 26319673 PMCID: PMC4582079 DOI: 10.1007/s10928-015-9437-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
Gerhard Levy started his investigations on the "Kinetics of Drug Action in Disease States" in the fall of 1980. The objective of his research was to study inter-individual variation in pharmacodynamics. To this end, theoretical concepts and experimental approaches were introduced, which enabled assessment of the changes in pharmacodynamics per se, while excluding or accounting for the cofounding effects of concomitant changes in pharmacokinetics. These concepts were applied in several studies. The results, which were published in 45 papers in the years 1984-1994, showed considerable variation in pharmacodynamics. These initial studies on kinetics of drug action in disease states triggered further experimental research on the relations between pharmacokinetics and pharmacodynamics. Together with the concepts in Levy's earlier publications "Kinetics of Pharmacologic Effects" (Clin Pharmacol Ther 7(3): 362-372, 1966) and "Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin" (Clin Pharmacol Ther 10(1): 22-35, 1969), they form a significant impulse to the development of physiology-based pharmacodynamic (PBPD) modeling as novel discipline in the pharmaceutical sciences. This paper reviews Levy's research on the "Kinetics of Drug Action in Disease States". Next it addresses the significance of his research for the evolution of PBPD modeling as a scientific discipline. PBPD models contain specific expressions to characterize in a strictly quantitative manner processes on the causal path between exposure (in terms of concentration at the target site) and the drug effect (in terms of the change in biological function). Pertinent processes on the causal path are: (1) target site distribution, (2) target binding and activation and (3) transduction and homeostatic feedback.
Collapse
Affiliation(s)
- Meindert Danhof
- Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
17
|
Stallone G, Infante B, Grandaliano G. Management and prevention of post-transplant malignancies in kidney transplant recipients. Clin Kidney J 2015; 8:637-44. [PMID: 26413294 PMCID: PMC4581374 DOI: 10.1093/ckj/sfv054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/11/2015] [Indexed: 12/27/2022] Open
Abstract
The central issue in organ transplantation remains suppression of allograft rejection. Thus, the development of immunosuppressive drugs has been the key to successful allograft function. The increased immunosuppressive efficiency obtained in the last two decades in kidney transplantation dramatically reduced the incidence of acute rejection. However, the inevitable trade-off was an increased rate of post-transplant infections and malignancies. Since the incidence of cancer in immunosuppressed transplant recipients becomes greater over time, and the introduction of new immunosuppressive strategies are expected to extend significantly allograft survival, the problem might grow exponentially in the near future. Thus, cancer is becoming a major cause of morbidity and mortality in patients otherwise successfully treated by organ transplantation. There are at least four distinct areas requiring consideration, which have a potentially serious impact on recipient outcome after transplantation: (i) the risk of transmitting a malignancy to the recipient within the donor organ; (ii) the problems of previously diagnosed and treated malignancy in the recipient; (iii) the prevention of de novo post-transplant malignant diseases and (iv) the management of these complex and often life-threatening clinical problems. In this scenario, the direct and indirect oncogenic potential of immunosuppressive therapy should be always carefully considered.
Collapse
Affiliation(s)
- Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Giuseppe Grandaliano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| |
Collapse
|
18
|
Aligo J, Walker M, Bugelski P, Weinstock D. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence? J Immunotoxicol 2014; 12:1-15. [PMID: 24512328 DOI: 10.3109/1547691x.2014.882996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi's Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.
Collapse
Affiliation(s)
- Jason Aligo
- Biologics Toxicology, Janssen Research and Development, LLC , Spring House, PA , USA
| | | | | | | |
Collapse
|
19
|
Fusco C, Ucchino V, Frattini D, Pisani F, Della Giustina E. Acute and chronic corticosteroid treatment of ten patients with paralytic form of Sydenham's chorea. Eur J Paediatr Neurol 2012; 16:373-8. [PMID: 22197452 DOI: 10.1016/j.ejpn.2011.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/26/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
AIMS To determine efficacy and safety of corticosteroid treatment in patients with severe Sydenham's chorea paralytic form. METHODS This is a 4 years observational study on ten patient with severe paralytic form of Sydenham's chorea unresponsive to neuroleptics and antiepileptics agents, treated with intravenous methylprednisolone followed by oral deflazacort therapy. Chorea paralytica patients were bedridden, unable to take independent steps, showed severe generalized hypotonia and were hospitalized for 3-4 weeks. Additional clinical evaluations were undertaken at 1, 3 and 6 months and 1, 2 and 4 years from onset of chorea. Severity chorea at the onset and during follow up was rated according to Universidade Federal de Minas Gerais (UFMG) Sydenham's Chorea Rating Scale (USCRS). In all children video-recording was performing at onset and during clinical follow-up. RESULTS We reported a significant improvement in swallowing and chewing with partial recovery of language 2-3 days after starting intravenous methylprednisolone treatment and complete disappearance of movement disorders after 3-4 weeks of treatment. All our patients were followed for 4 years from onset and none experienced relapse of chorea, other movement disorders or psychiatric disturbances. The treatment with deflazacort was well-tolerated in all children with no significant side effects reported. CONCLUSION Our data showed that high dose of methylprednisolone intravenously followed by deflazacort therapy may be effective and well-tolerated in children with severe paralytic form of Sydenham's chorea.
Collapse
Affiliation(s)
- Carlo Fusco
- Pediatric Neurology Unit, Arcispedale Santa Maria Nuova, V.le Risorgimento 80, 42123 Reggio Emilia, Italy.
| | | | | | | | | |
Collapse
|
20
|
Bertarelli D, Balbo A, Carletti M, Cannizzo T, Girolami F, Nebbia C. Hepatic tyrosine aminotransferase and glucocorticoid abuse in meat cattle. J Vet Pharmacol Ther 2012; 35:596-603. [PMID: 22376142 DOI: 10.1111/j.1365-2885.2012.01378.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Besides being extensively applied as therapeutical remedies, glucocorticoids (GCs) - most notably dexamethasone or prednisolone - are also illegally used in livestock for growth-promoting purposes. This study was designed to assess the suitability of liver tyrosine aminotransferase (TAT), a gluconeogenic enzyme known to be induced by GCs, to act as a reliable candidate biomarker to screen for GC abuse in cattle. Enzyme activity was measured spectrophotometrically in liver cytosols or in cell extracts, and TAT gene expression was determined by real-time PCR. Compared with untreated veal calves, a notable scatter (20-fold) and much higher median values (3-fold) characterized TAT specific activity in liver samples from commercially farmed veal calves. A time-related increase in both enzyme activity and gene expression was detected in rat hepatoma cell lines treated with dexamethasone concentrations (10(-8) or 10(-9) m) in the range of those recorded in noncompliant samples from EU official controls. In experimental studies in which finishing bulls were administered GCs at growth-promoting dosages, however, no such changes were recorded in dexamethasone-treated animals; a statistically significant rise in liver TAT activity (+95%) only occurred in prednisolone-treated bulls. Although further research is needed to characterize the GC-mediated response in cattle liver, TAT does not appear to be a specific and sensitive biomarker of GC abuse in the bovine species.
Collapse
Affiliation(s)
- D Bertarelli
- Dipartimento di Patologia Animale, Università degli Studi di Torino, Grugliasco, Italia
| | | | | | | | | | | |
Collapse
|
21
|
Lerapetritou MG, Georgopoulos PG, Roth CM, Androulakis LP. Tissue-level modeling of xenobiotic metabolism in liver: An emerging tool for enabling clinical translational research. Clin Transl Sci 2010; 2:228-37. [PMID: 20443896 DOI: 10.1111/j.1752-8062.2009.00092.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes some of the recent developments and identifies critical challenges associated with in vitro and in silico representations of the liver and assesses the translational potential of these models in the quest of rationalizing the process of evaluating drug efficacy and toxicity. It discusses a wide range of research efforts that have produced, during recent years, quantitative descriptions and conceptual as well as computational models of hepatic processes such as biotransport and biotransformation, intra- and intercellular signal transduction, detoxification, etc. The above mentioned research efforts cover multiple scales of biological organization, from molecule-molecule interactions to reaction network and cellular and histological dynamics, and have resulted in a rapidly evolving knowledge base for a "systems biology of the liver." Virtual organ/organism formulations represent integrative implementations of particular elements of this knowledge base, usually oriented toward the study of specific biological endpoints, and provide frameworks for translating the systems biology concepts into computational tools for quantitative prediction of responses to stressors and hypothesis generation for experimental design.
Collapse
Affiliation(s)
- Marianthi G Lerapetritou
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
22
|
Impact of protein binding on receptor occupancy: a two-compartment model. J Theor Biol 2010; 265:657-71. [PMID: 20561976 DOI: 10.1016/j.jtbi.2010.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/22/2022]
Abstract
In this paper we analyse the impact of protein-, lipid- and receptor-binding on receptor occupancy in a two-compartment system, with proteins in both compartments and lipids and receptors in the peripheral compartment only. We do this for two manners of drug administration: a bolus administration and a constant rate infusion, both into the central compartment. We derive explicit approximations for the time-curves of the different compounds valid for a wide range of realistic values of rate constants and initial concentrations of proteins, lipids, receptors and the drug. These approximations are used to obtain both qualitative and quantitative insight into such critical properties as the distribution of the drug over the two compartments, the maximum receptor occupancy and the area under the drug-receptor complex curve. In particular we focus on assessing the impact of the dissociation constants, K(P), K(L) and K(R) of the drug with, respectively, the proteins, the lipids and the receptors, the permeability and the surface area of the membrane between compartments, and the rate the drug is eliminated from the system.
Collapse
|
23
|
Abstract
Virtually all cells in the body have an intracellular clockwork based on a negative feedback mechanism. The circadian timekeeping system in mammals is a hierarchical multi-oscillator network, with the suprachiasmatic nuclei (SCN) acting as the central pacemaker. The SCN synchronizes to daily light-dark cycles and coordinates rhythmic physiology and behavior. Synchronization in the SCN and at the organismal level is a key feature of the circadian clock system. In particular, intercellular coupling in the SCN synchronizes neuron oscillators and confers robustness against perturbations. Recent advances in our knowledge of and ability to manipulate circadian rhythms make available cell-based clock models, which lack strong coupling and are ideal for target discovery and chemical biology.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. [
| | | | | |
Collapse
|
24
|
Stafford MA, Peng P, Hill DA. Sciatica: a review of history, epidemiology, pathogenesis, and the role of epidural steroid injection in management. Br J Anaesth 2007; 99:461-73. [PMID: 17704089 DOI: 10.1093/bja/aem238] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Radicular pain in the distribution of the sciatic nerve, resulting from herniation of one or more lumbar intervertebral discs, is a frequent and often debilitating event. The lifetime incidence of this condition is estimated to be between 13% and 40%. Fortunately, the majority of cases resolve spontaneously with simple analgesia and physiotherapy. However, the condition has the potential to become chronic and intractable, with major socio-economic implications. This review discusses the history, epidemiology, pathophysiology, and natural history of sciatica. A Medline search was performed to obtain the published literature on the sciatica, between 1966 and 2006. Hand searches of relevant journals were also performed. Epidemiological factors found to influence incidence of sciatica included increasing height, age, genetic predisposition, walking, jogging (if a previous history of sciatica), and particular physical occupations, including driving. The influence of herniated nucleus pulposus and the probable cytokine-mediated inflammatory response in lumbar and sacral nerve roots is discussed. An abnormal immune response and possible mechanical factors are also proposed as factors that may mediate pain. The ongoing issue of the role of epidural steroid injection in the treatment of this condition is also discussed, as well as potential hazards of this procedure and the direction that future research should take.
Collapse
Affiliation(s)
- M A Stafford
- Department of Anaesthesia, Ulster Hospital, Dundonald, Upper Newtownards Road, Belfast BT16 1RH, Ireland
| | | | | |
Collapse
|
25
|
Heetun ZS, Byrnes C, Neary P, O'Morain C. Review article: Reproduction in the patient with inflammatory bowel disease. Aliment Pharmacol Ther 2007; 26:513-33. [PMID: 17661756 DOI: 10.1111/j.1365-2036.2007.03397.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) affects mainly the young population. The effect of IBD and its treatment on fertility and pregnancy is therefore an important clinical consideration. AIM To review the best management of IBD in the reproductive and pregnant population. METHODS A MEDLINE and an EMBASE search were performed using mainly the search phrases 'pregnancy AND IBD,''sulphasalazine AND male fertility,''abdominal surgery AND female fertility,''AZA AND placenta' and 'infliximab AND pregnancy.' No language or date restrictions were placed. References of review articles were examined. RESULTS Overall male and female fertility are not affected by IBD. Sulphasalzine reduces male fertility. No other drugs used in IBD affect significantly fertility in humans. The risk of pregnancy-related complications and the disease behaviour during pregnancy depends mainly on disease activity at time of conception. Proactive treatment for maintenance of disease remission during gestation is recommended. Except for methotrexate, drugs used in IBD appear safe in pregnancy. Breast feeding should be encouraged. CONCLUSION The management of IBD in the young and pregnant population remains controversial because the literature comes mostly from retrospective studies. Further studies particularly large prospective trials are needed to guide clinicians in decision making.
Collapse
Affiliation(s)
- Z S Heetun
- Department of Gastroenterology, Adelaide and Meath Hospital, Trinity College, Tallaght, Dublin 24, Ireland.
| | | | | | | |
Collapse
|
26
|
Gutierrez-Dalmau A, Campistol JM. Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review. Drugs 2007; 67:1167-98. [PMID: 17521218 DOI: 10.2165/00003495-200767080-00006] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Post-transplant malignancy is recognised as being a major limitation to the success of solid organ transplantation and it is currently considered one of the unavoidable costs of long-term immunosuppressive therapy. However, the continual introduction of new immunosuppressive drugs and the growing knowledge about their different oncogenic profiles, requires a continuous evaluation of the available evidence on this topic. The incidence and risk of malignancy is elevated in solid organ transplant recipients compared with the general population. As proof of the relationship between immunosuppressive therapy and post-transplant malignancy, epidemiological data reveal that the length of exposure to immunosuppressive therapy and the intensity of therapy are clearly related to the post-transplant risk of malignancy, and that once cancer has developed, more intense immunosuppression can translate into more aggressive tumour progression in terms of accelerated growth and metastasis and lower patient survival. The association between malignancy and immunosuppressive therapy is mediated through several pathogenic factors. Indirectly, immunosuppressive drugs greatly increase the post-transplant risk of malignancy by impairing cancer surveillance and facilitating the action of oncogenic viruses. However, the direct pro- and anti-oncogenic actions of immunosuppressants also play an important role. The cancer-promoting effect of calcineurin inhibitors, independently of depressed immunosurveillance, has been demonstrated in recent years, and currently only mammalian target of rapamycin (mTOR) inhibitors have shown simultaneous immunosuppressive and antitumour properties. Reports of the initial results of the reduced incidence of cancer in organ transplant recipients receiving mTOR inhibitor therapy strongly indicate separate pathways for pharmacological immunosuppression and oncogenesis. The role of mTOR inhibitors has been firmly established for the treatment of post-transplant Kaposi's sarcoma and its role in the management of patients with other post-transplant malignancies should be clarified as soon as possible. Prevention of morbidity and mortality resulting from post-transplant malignancy should become a main endpoint in solid organ transplant programmes, and the choice and management of immunosuppressive therapy in each phase of transplantation plays a central role in this objective. Although comprehensive and rigorous information about the management of immunosuppressive therapy in transplant recipients at risk of or affected by cancer is still lacking, new experimental and clinical data about mTOR inhibitors offers novel approaches to this problem.
Collapse
Affiliation(s)
- Alex Gutierrez-Dalmau
- Department of Nephrology and Renal Transplantation, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
27
|
Bundgaard C, Larsen F, Jørgensen M, Mørk A. Pharmacokinetic/Pharmacodynamic Feedback Modelling of the Functional Corticosterone Response in Rats after Acute Treatment with Escitalopram. Basic Clin Pharmacol Toxicol 2007; 100:182-9. [PMID: 17309522 DOI: 10.1111/j.1742-7843.2006.00029.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of the drug-induced corticosterone response after administration of escitalopram in rats. To achieve this, a mechanistic feedback turnover model mimicking the acute mechanism of action of selective serotonin reuptake inhibitors was assessed. Conscious and freely moving rats received constant rate infusions of 2.5, 5 or 10 mg/kg escitalopram or vehicle over 60 min. Automated serial blood sampling was conducted to determine escitalopram and corticosterone concentrations. The PK/PD model consisted of a turnover model of escitalopram-evoked changes in response, which included an inhibitory feedback moderator function. Accordingly, response acted linearly on the production (k(tol)) of the moderator, which acted inversely on the production (k(in)) of response. The escitalopram plasma kinetics served as input to an inhibitory function acting on the loss (k(out)) of response. The corticosterone responses were successfully described using the model by fitting responses from all doses simultaneously resulting in estimation of drug parameters (I(max), IC(50) and n) in addition to system parameters (k(in), k(out) and k(tol)) for the whole exposure range. Thus, the applicability of the model for analysis of the acute selective serotonin reuptake inhibitor-induced corticosterone response including acute auto-inhibitory feedback was demonstrated.
Collapse
|
28
|
Qu J, Jusko WJ, Straubinger RM. Utility of cleavable isotope-coded affinity-tagged reagents for quantification of low-copy proteins induced by methylprednisolone using liquid chromatography/tandem mass spectrometry. Anal Chem 2006; 78:4543-52. [PMID: 16808464 PMCID: PMC2516203 DOI: 10.1021/ac0521697] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene expression changes underlie important biological and pharmacological responses. Although mRNA expression profiling is routine, quantification of low-abundance proteins, which typically represent key effectors of responses, remains challenging. A novel strategy was developed for sensitive and accurate quantification of low-abundance proteins in highly complex biological matrixes. First, the cysteine specificity of cleavable isotope-coded affinity tags (cICAT) was employed to reduce the complexity of the digested proteome of tissue homogenates and to improve the quantification of low-abundance proteins. Second, cICAT-treated tissue samples were analyzed on a capillary LC coupled to an ion trap MS to screen for the subset of cICAT-peptides, derived from target proteins of interest, that was successfully labeled and retrieved. Third, putatively identified peptides derived from target proteins were synthesized, cICAT-labeled, and used both to optimize multiple reactions monitoring (MRM) analysis and to confirm chromatographic retention time and fragmentation pattern. Finally, batch quantification of target peptides was performed using MRM on a LC/triple-quad MS/MS using (12)C- (control) and (13)C (experimental)-cICAT-labeled tissue mixtures. The utility of this method was demonstrated by elucidating the time-course of tyrosine aminotransferase induction in the liver of rats following treatment with the corticosteroid methylprednisolone (MPL). This approach significantly improved quantitative sensitivity, and the linear range was 10-fold greater than published previously. An additional advantage is that archived samples may be reinterrogated to investigate the regulation of additional targets that become of interest. Stored samples were sucessfully reinterrogated to monitor the induction of ornithine decarboxylase, which is also an MPL-induced protein. To our knowledge, this is the first report of an ICAT-based method that is capable of quantifying low-abundance proteins in highly complex samples, such as tissue homogenates. The approach enables simultaneous quantification of multiple effector proteins induced by biological or pharmacological stimuli, and the processed samples can be interrogated repeatedly as additional targets of interest arise.
Collapse
Affiliation(s)
- Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200
| | - William J. Jusko
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200
| | - Robert M. Straubinger
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200
| |
Collapse
|
29
|
Chen Y, Nickola TJ, DiFronzo NL, Colberg-Poley AM, Rose MC. Dexamethasone-mediated repression of MUC5AC gene expression in human lung epithelial cells. Am J Respir Cell Mol Biol 2005; 34:338-47. [PMID: 16239644 PMCID: PMC2644199 DOI: 10.1165/rcmb.2005-0176oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glucocorticoids regulate gene expression via binding of the ligand-activated glucocorticoid receptor (GR) to glucocorticoid-responsive elements (GRE) in target gene promoters. The MUC5AC gene, which encodes the protein backbone of an abundant secreted airway mucin, has several putative GRE cis-elements in its 5' sequence. Mechanism(s) whereby glucocorticoids regulate mucin genes have not previously been described. In this study, the glucocorticoid dexamethasone (Dex) decreased MUC5AC mRNA abundance in A549 and NCI-H292 cell lines and primary differentiated normal bronchial epithelial cells by 50-80%, suggesting a common mechanism of MUC5AC gene repression in human lung epithelial cells. Kinetic analyses showed that MUC5AC mRNA was not significantly decreased until 6 h after Dex exposure, and that nuclear translocation of GR was biphasic, suggesting that Dex-mediated cis-repression of MUC5AC gene expression was a delayed response of GR translocation. Transfection analyses demonstrated that Dex transcriptionally repressed the MUC5AC promoter. Electrophoretic mobility shift assays with wild-type and mutant oligonucleotide probes showed that GR bound to two GRE cis-sites (nucleotides -930 to -912 and -369 to -351) in the MUC5AC promoter. Analyses of mutated MUC5AC promoter constructs demonstrated that NF-kappaB cis-sites were not involved in Dex-mediated repression of MUC5AC. Dex did not alter mRNA stability of MUC5AC transcripts. Taken together, the data indicate that Dex transcriptionally mediates repression of MUC5AC gene expression in human lung epithelial cells at quiescent states after binding of GR to one or more GRE cis-elements in the MUC5AC promoter.
Collapse
Affiliation(s)
- Yajun Chen
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
30
|
van Runnard Heimel PJ, Franx A, Schobben AFAM, Huisjes AJM, Derks JB, Bruinse HW. Corticosteroids, pregnancy, and HELLP syndrome: a review. Obstet Gynecol Surv 2005; 60:57-70; quiz 73-4. [PMID: 15618920 DOI: 10.1097/01.ogx.0000150346.42901.07] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Corticosteroids are potent antiinflammatory and immunosuppressive drugs, which are used in the treatment of a wide range of medical disorders. During pregnancy, several corticosteroids are administered for maternal as well as fetal reasons. Prednisone and prednisolone show limited transplacental passage and are thus used for treatment of maternal disease. Dexamethasone and betamethasone, drugs that can easily cross the placenta, are more suitable for fetal indications. During the last decade, administration of corticosteroids was introduced in the treatment of hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome), a severe form of preeclampsia unique to human pregnancy. Several randomized, controlled trials as well as other prospective and retrospective studies have been performed to investigate this beneficial effect of corticosteroids on biochemical measures and clinical signs. This review discusses the characteristics of corticosteroids in humans and details the use of corticosteroids during pregnancy. A review of literature on the effect of corticosteroids on HELLP syndrome is given and possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- P J van Runnard Heimel
- Department of Perinatology and Gynecology, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
A basic tenet of clinical pharmacology is that the pharmacologic activity of an exogenously administered agent is related to the free drug concentration available at its receptor or ligand-binding site. The discipline of pharmacokinetics can be defined as the study of the processes that lead to the availability of an agent to its site of action. In this review we will discuss basic principles of pharmacokinetics that govern the absorption, distribution, metabolism, elimination and binding of immunosuppressive drugs commonly utilized in whole organ transplantation. In a discipline such as organ transplantation, where the agents utilized carry significant toxicity and where failure of efficacy can have dire consequences, knowledge of the pharmacokinetics of the agents utilized has become a basic skill for all transplant professionals. In this review we describe some of the underlying principles that govern the disposition of the agents commonly utilized in solid organ transplantation. In addition, we hope this review will help in understanding some of the basic drug interactions encountered in transplant practice.
Collapse
Affiliation(s)
- Titte R Srinivas
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
32
|
Qu J, Straubinger RM. Improved sensitivity for quantification of proteins using triply charged cleavable isotope-coded affinity tag peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2857-64. [PMID: 16155978 DOI: 10.1002/rcm.2138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Isotope-coded affinity tag (ICAT) methods, in conjunction with capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS), represent a promising approach for accurate protein quantification. However, sensitivity remains a challenge for the quantification of low-copy proteins in complex biological matrices. Here we investigated the electrospray ionization (ESI) and collision-activated dissociation (CAD) behavior of peptides derivatized with the cleavable ICAT (cICAT) reagent. For cICAT-peptides that were either synthesized or obtained by digestion of model proteins, the cICAT moiety showed a tendency toward protonation under positive ESI, producing relatively intense triply charged cICAT-peptide ions ([IP+3H]3+). [IP+3H]3+ exhibited significantly higher CAD reactivity than did the doubly charged cICAT-peptide ([IP+2H]2+), and produced a greater abundance of fragments at lower collision energies. Fragmentation spectra of [IP+3H]3+ showed variable intensities of doubly charged y and b ions, and the amount of sequence information obtained was dependent on the position of the cICAT-labeled cysteine residue in the peptide sequence. However, the absolute abundances of major fragments of [IP+3H]3+ were much higher than for [IP+2H]2+. Although the efficiency of identification of cICAT-peptides was compromised by their charge distribution toward the triply charged state and by the unique CAD behavior of the [IP+3H]3+ ions, it was found that the triply charged ions provided higher sensitivity than [IP+2H]2+ for quantification using multiple reaction monitoring (MRM). ESI and CAD conditions for MRM of [IP+3H]3+ were optimized, and, for all cICAT-peptides studied, MRM using [IP+3H]3+ as precursors showed 2- to 8-fold higher sensitivity than obtained using [IP+2H]2+, without compromising quantitative accuracy. Using this approach, the time course of tyrosine aminotransferase induction by methylprednisolone was monitored in rat livers. A remarkably better signal-to-noise ratio was observed by using [IP+3H]3+ for quantification compared to [IP+2H]2+.
Collapse
Affiliation(s)
- Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA.
| | | |
Collapse
|
33
|
Ohta H, Ichikawa M, Seki Y. Effects of cadmium intake on bone metabolism of mothers during pregnancy and lactation. TOHOKU J EXP MED 2002; 196:33-42. [PMID: 12498324 DOI: 10.1620/tjem.196.33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a heavy metal that exists ubiquitously in the environment, and it interacts with essential elements such as zinc, copper, iron, and calcium (Ca). Particularly, Cd interferes with Ca and vitamin D metabolism in bone kidney and intestine. The interaction between Cd and Ca in bone, intestine, and kidney may result in the disorder of bone metabolism. On the other hand, pregnancy and lactation are also important physiological factors affecting bone metabolism in the mother. Ca absorption is decreased by competition with Cd in the intestine, and more Ca is released from maternal bone and transferred to neonate by lactation. In the intestine, Cd uptake competes with Ca uptake. Cd causes a marked decrease in bone density compared to the normal decrease in bone mineral density during lactation. Lactation is an important factor contributing to the decrease in bone mineral density and Cd has an additive effect of decreasing bone metabolism of mother animal, although the Cd intake level is relatively low (approximately 3-14 microgCd/kg/day). The relationship among maternal Cd intake, renal function and bone metabolism and the interaction between Cd and Ca during lactation are reviewed herein, together with additional data obtained recently in our laboratory.
Collapse
Affiliation(s)
- Hisayoshi Ohta
- Department of Environmental and Occupational Health and Toxicology, Graduate School of Medical Sciences, Kitasato University, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
34
|
Schultz IR, Orner G, Merdink JL, Skillman A. Dose-response relationships and pharmacokinetics of vitellogenin in rainbow trout after intravascular administration of 17alpha-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2001; 51:305-18. [PMID: 11090892 DOI: 10.1016/s0166-445x(00)00118-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A commonly used endpoint in bioassays testing the estrogenicity of chemicals is the induction of the egg yolk precursor vitellogenin (VTG) in male fish. However, relatively little is known about the kinetics of induction and elimination of VTG in fish exposed to xenoestrogens. In this study, we administered graded intra-arterial doses (0.001, 0.1, 1.0 and 10.0 mg/kg) of 17alpha-ethynylestradiol (EE(2)) to male rainbow trout via a dorsal aortic cannula which allowed repetitive blood sampling from individual fish for up to 48 days after injection. The plasma concentrations of VTG was quantified using an enzyme-linked immunosorbent assay procedure and the simultaneous concentrations of EE(2) were determined by gas chromatography-mass spectrometry. The pattern of VTG induction was similar for all doses of EE(2), with a 12-h lag-time before increase from basal levels (0.006-0.008 microg/ml), then increasing sharply to maximum levels within 7-9 days (C(max)=0.05, 711, 1521 and 2547 microg/ml VTG for the 0.001, 0.1, 1.0 and 10.0 mg/kg doses, respectively). After induction by EE(2), VTG declined mono-exponentially with an elimination half-life of 42-49 h. The half-life of VTG increased to 145 h in the 10 mg/kg treated fish. The pharmacokinetics of EE(2) were distinctly nonlinear with substantial increases in the elimination half-life with increasing dose. The plasma concentration-time profiles of EE(2) were influenced by enterohepatic recirculation that caused multiple or secondary peaks in the profiles. In a separate experiment, the pharmacokinetics of purified VTG was characterized after intra-arterial injection in trout. After direct injection of VTG, plasma levels declined tri-exponentially with an apparent steady-state volume of distribution of 837 ml/kg; total body clearance was 31.1 ml/h per kg, and the elimination half-life was 43.7 h.
Collapse
Affiliation(s)
- I R Schultz
- Molecular Biosciences Division, Battelle PNNL, P.O. Box 999-P7-56, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
35
|
Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM. Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci U S A 1997; 94:2687-92. [PMID: 9122257 PMCID: PMC20150 DOI: 10.1073/pnas.94.6.2687] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In earlier studies, the neural cell adhesion molecule, N-CAM, was found to inhibit the proliferation of rat astrocytes both in vitro and in vivo. To identify the gene targets involved, we used subtractive hybridization to examine changes in gene expression that occur after astrocytes are exposed to N-CAM in vitro. While the mRNA levels for N-CAM decreased after such treatment, the levels of mRNAs for glutamine synthetase and calreticulin increased. Since glutamine synthetase and calreticulin are known to be involved in glucocorticoid receptor pathways, we tested a number of steroids for their effects on astrocyte proliferation. Dexamethasone, corticosterone, and aldosterone were all found to inhibit rat cortical astrocyte proliferation in culture in a dose-dependent manner. RU-486, a potent glucocorticoid antagonist, reversed the inhibitory effects of dexamethasone. These observations prompted the hypothesis that the inhibition of proliferation by N-CAM might be mediated through the glucocorticoid receptor pathway. Consistent with this hypothesis, the inhibition of astrocyte proliferation by N-CAM was reversed in part by a number of glucocorticoid antagonists, including RU-486, dehydroepiandrosterone, and progesterone. In transfection experiments with cultured astrocytes, N-CAM treatment increased the expression of a luciferase reporter gene under the control of a minimal promoter linked to a glucocorticoid response element. The enhanced activity of this construct stimulated by N-CAM was abolished in the presence of RU-486. The combined data suggest that astrocyte proliferation is in part regulated by alterations in glucocorticoid receptor pathways.
Collapse
Affiliation(s)
- K L Crossin
- Department of Neurobiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The benefits of basing quantitative risk assessment on measures of 'internal dose', i.e. target organ exposures as estimated, for instance, by pharmacokinetic models, have been extensively discussed. Recasting risk assessment methods at the level of internal dose raises novel issues, however, some of which are explored by examining the 1987 revision by the US Environmental Protection Agency (EPA) of its cancer risk assessment for inhaled methylene chloride, which was based on the 1987 pharmacokinetic model results of Andersen and coworkers. The internal dose measure was the daily amount of methylene chloride metabolized by a glutathione-S-transferase pathway per 1 of target organ (liver and lung). Owing to high-dose saturation of a competing detoxification reaction, this metabolic activation is less-than-proportionally active at low exposure levels. For a given inhalation exposure, humans have relatively less metabolic activation than do mice, but this is shown to be a foreseeable consequence of their relatively lower breathing rate, a cross-species difference already accounted for in standard EPA methodology. Indeed, many species differences in the rates and tempos of physiological processes evince regular 'scaling' relationships across differently sized mammals. EPA's practice of scaling carcinogen doses by body surface area for cross-species extrapolation, often viewed as a correction for metabolic activation, is shown to be more reasonably regarded as an accommodation for the more general species variation in the pace of physiological processes underlying both pharmacokinetics and the carcinogenic response to internal doses. Under this view, the issue of cross-species dose scaling is not obviated by the use of pharmacokinetics.
Collapse
Affiliation(s)
- L Rhomberg
- Office of Health and Environmental Assessment, US Environmental Protection Agency, Washington, DC 20460, USA
| |
Collapse
|