1
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
de Angelis C, Galdiero G, Menafra D, Garifalos F, Verde N, Piscopo M, Negri M, Auriemma RS, Simeoli C, Pivonello C, Colao A, Pivonello R. The environment and male reproductive system: the potential role and underlying mechanisms of cadmium in testis cancer. Crit Rev Toxicol 2023; 53:412-435. [PMID: 37737155 DOI: 10.1080/10408444.2023.2250387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Cadmium is a known human carcinogen, and has been shown to profoundly affect male reproductive function, at multiple levels, by exerting both endocrine and non-endocrine actions. Nevertheless, the potential role of cadmium in the etiology of testis cancer has been scantly investigated in humans, and, currently, available epidemiological observational studies are insufficient to draw definitive conclusions in this regard. On the contrary, experimental studies in laboratory animals demonstrated that cadmium is a strong inducer of testis tumors, mostly represented by benign Leydig cell adenoma; moreover, malignant transformation was also reported in few animals, following cadmium treatment. Early experimental studies in animals proposed an endocrine-dependent mechanism of cadmium-induced testis tumorigenesis; however, more recent findings from cell-free assays, in vitro studies, and short-term in vivo studies, highlighted that cadmium might also contribute to testis tumor development by early occurring endocrine-independent mechanisms, which include aberrant gene expression within the testis, and genotoxic effects, and take place well before the timing of testis tumorigenesis. These endocrine-independent mechanisms, however, have not been directly investigated on testis tumor samples retrieved from affected, cadmium-treated animals so far. The present review focuses on the relationship between cadmium exposure and testis cancer, by reporting the few epidemiological observational human studies available, and by providing animal-based experimental evidences of cadmium implication in the pathogenesis and progression of testis tumor. Moreover, the relevance of experimental animal studies to human cadmium exposure and the translational potential of experimental findings will be extensively discussed, by critically addressing strengths and weaknesses of available data.
Collapse
Affiliation(s)
- Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Davide Menafra
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
- Department of Public Health, Federico II University, Naples, Italy
| | - Nunzia Verde
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
| | | | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Università Federico II di Napoli, Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile (FERTISEXCARES), Università Federico II di Napoli, Naples, Italy
- Unesco Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| |
Collapse
|
3
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Ohta H, Qi Y, Ohba K, Toyooka T, Wang RS. Role of metallothionein-like cadmium-binding protein (MTLCdBP) in the protective mechanism against cadmium toxicity in the testis. INDUSTRIAL HEALTH 2019; 57:570-579. [PMID: 30606898 PMCID: PMC6783288 DOI: 10.2486/indhealth.2018-0177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The role of metallothionein (MT)-like cadmium (Cd) binding protein (MTLCdBP) in protecting the testes against Cd toxicity was examined. In the acute Cd exposure treatment, cadmium chloride was intraperitoneally injected at 2 mg Cd/kg to Wistar male rats. In the chronic Cd toxicity treatments, 20 mg Cd/kg/d was orally administered for 5 d a week for 5, 10, and 15 wk. MT (-I,-II) and MTLCdBP were measured using ELISA and Cd-Hem methods, respectively. Testicular tissues were immunostained with antibodies of MT-I,-II, MT-III, and MTLCdBP. Expression of HO1, OGG, iNOS, COX2, and p53 was measured by RT-PCR. Cd concentration in the testis increased dose-dependently in response to Cd exposure. MTLCdBP concentration increased markedly with increasing Cd accumulation. Significant increases in expression of iNOS, HO1, COX2, and OGG1 were observed in the acute exposure treatment. In the chronic oral administration group, expression of MT-I, MT-II, MT-III, iNOS, HO1, and COX2 did not change. Positive immunostaining of MTLCdBP was observed in testicular interstitial tissue. In the testis protected from Cd toxicity, MTLCdBP induction increased significantly with increasing Cd accumulation. Our results suggest that MTLCdBP plays an important role in protecting the testis against Cd toxicity.
Collapse
Affiliation(s)
- Hisayoshi Ohta
- Department of Environmental, Occupational Health and Toxicology, Graduate School of Medical Sciences, Kitasato University, Japan
- 2Department of Environmental, Occupational Health and Toxicology, School of Allied Health Sciences, Kitasato University, Japan
| | - Yonggang Qi
- Department of Environmental, Occupational Health and Toxicology, Graduate School of Medical Sciences, Kitasato University, Japan
| | - Kenichi Ohba
- 2Department of Environmental, Occupational Health and Toxicology, School of Allied Health Sciences, Kitasato University, Japan
| | - Tatsushi Toyooka
- 3Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| | - Rui-Sheng Wang
- Department of Environmental, Occupational Health and Toxicology, Graduate School of Medical Sciences, Kitasato University, Japan
- 3Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| |
Collapse
|
5
|
Mikowska M, Dziublińska B, Świergosz-Kowalewska R. Variation of Metallothionein I and II Gene Expression in the Bank Vole (Clethrionomys glareolus) Under Environmental Zinc and Cadmium Exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:66-74. [PMID: 29248947 PMCID: PMC5988772 DOI: 10.1007/s00244-017-0485-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The main idea of the study was to assess how environmental metal pollution activates defence responses at transcription levels in the tissues of bank voles (Clethrionomys glareolus). For this purpose, the metallothioneine (MT) genes expression (a well known biomarker of exposure and response to various metals) was measured. The real-time PCR method was used for relative quantification of metallothionein I and metallothionein II expressions in the livers, kidneys and testes of bank voles from six populations exposed to different contaminants, mainly zinc, cadmium and iron. The assessment of Zn, Cu and Fe concentrations in the tissues allowed to study the MTs gene expression responses to these metals. ANOVA analysis showed differences between populations in terms of metal concentration in tissues, livers and kidneys. Student T test showed significant differences in metal concentration between unpolluted and polluted sites only for the liver tissue: significantly lower Zn levels and significantly higher Fe levels in the unpolluted sites. Kruskal-Wallis test performed on C T data shows differences in the gene expressions between populations for both MT genes for liver and testes. In the liver metallothionein I gene expression was upregulated in populations considered as more polluted (up to 7.5 higher expression in Miasteczko Śląskie comparing to Mikołajki). Expression of metallothionein II revealed a similar pattern. In kidneys, differences in expression of both MT genes were not that evident. In testes, MT upregulation in polluted sites was noted for metallothionein II. For metallothionein however, we found downregulation in populations from more contaminated sites. The expressions of both MTs were positively influenced by cadmium in kidney (concentration data from the previous study) and zinc and copper in liver, while cadmium had effects only on the liver MT II gene expression. Positive relationship was obtained for lead and metallothionein II expression in the liver.
Collapse
Affiliation(s)
- Magdalena Mikowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Barbara Dziublińska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
6
|
Lamas CA, Gollücke APB, Dolder H. Grape juice concentrate (G8000(®) ) intake mitigates testicular morphological and ultrastructural damage following cadmium intoxication. Int J Exp Pathol 2015; 96:301-10. [PMID: 26515339 DOI: 10.1111/iep.12141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 07/20/2015] [Indexed: 10/22/2022] Open
Abstract
Cadmium is a well-known testicular toxicant, and parts of the world population are exposed chronically by inhalation or by food and water intake. Grape products have been highlighted as important sources of bioactive compounds, having anti-inflammatory, anti-oxidant and metal chelating properties. Since maintenance of tissue morphology is essential for testicular sperm development and hence male fertility, we analysed the protective effect of grape juice concentrate (GJC) (G8000(®) ) consumption on testicular morphology in rats exposed to cadmium. Thus, four groups of male Wistar rats (n = 6 per group), 50 days old, ingested either water or G8000(®) (2 g/kg/day) until they had completed one spermatogenic cycle in adult life (136 days old). Cadmium (1.2 mg / kg) was injected intraperitoneally when the animals were 80 days old into one of the water and one of the G8000 groups; intraperitoneal saline was used as a control in the other two groups. Animals anaesthetised and exsanguinated at 136 days and then perfused with Karnovsky's fixative and then the testes were collected for morphological analysis. We describe evident disruption of testicular morphology by cadmium, with alteration in tissue component proportions, reduced Leydig cells volume and initial signs of an inflammatory process. Ultrastructural analysis showed greater damage, suggesting spermatogenesis disruption. G8000(®) ingestion allowed tissue architecture to be re-established, as was corroborated by our stereological and morphometric findings. Animals from the group where G8000(®) had been administered together with cadmium revealed a significant reduction in macrophages and blood vessel volume, suggesting diminished inflammation, when compared to animals that received only cadmium. Moreover, smaller number of ultrastructural alterations was noted, revealing fewer areas of degeneration and disorganized interstitium. In conclusion, our results demonstrate that GJC consumption prevented the spermatogenic disruption promoted by cadmium, and thus could be a promising form of therapy against male infertility.
Collapse
Affiliation(s)
- Celina A Lamas
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Andrea P B Gollücke
- Department of Biosciences, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Heidi Dolder
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
7
|
Sheng Z, Yang WX, Zhu JQ. Metallothionein from Pseudosciaena crocea: expression and response to cadmium-induced injury in the testes. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:779-794. [PMID: 25680968 DOI: 10.1007/s10646-015-1423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Metallothioneins (MTs) are a family of stress proteins that are involved in the process of detoxification and anti-oxidation. Previous studies have focused mostly on the expression and functions of MTs in the non-reproductive tissues of aquatic vertebrates. However, there have been only a few reports regarding the functions of MTs in the reproductive tissues of such vertebrates. In order to investigate the function of MTs during spermatogenesis in Pseudosciaena crocea, reverse-transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends were performed to obtain the P. crocea MT complete cDNA sequence from the total RNA of the testes for the first time. MT was detected in the liver, kidneys, testes, spleen, gill and muscle of P. crocea by tissue-specific expression analysis. Meanwhile, immunohistochemistry staining indicated that the MT protein was localized in germ cells, Sertoli cells and the peripheral connective tissues in P. crocea testes. Furthermore, acute toxicity tests were conducted with cadmium (Cd) to determine the 96 h-medial lethal concentration value. The toxic effects of Cd on the microstructure and ultrastructure of the testes were observed. In addition, the changes in MT mRNA expression levels in the testes after Cd exposure were measured using real-time quantitative PCR. Consequently, we suggest that MTs play an important role in spermatogenesis and testes protection against Cd toxicity in P. crocea.
Collapse
Affiliation(s)
- Zhang Sheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | | | | |
Collapse
|
8
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
9
|
Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010; 23:897-926. [PMID: 20549307 DOI: 10.1007/s10534-010-9351-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 05/28/2010] [Indexed: 12/11/2022]
Abstract
Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.
Collapse
|
10
|
Mukhopadhyay D, Mitra A, Nandi P, Varghese AC, Murmu N, Chowdhury R, Chaudhuri K, Bhattacharyya AK. Expression of metallothionein-1 (MT-1) mRNA in the rat testes and liver after cadmium injection. Syst Biol Reprod Med 2010; 55:188-92. [PMID: 19938953 DOI: 10.3109/19396360903114429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metallothioneins (MTs) belong to the family of stress proteins that are present in the majority of living organisms. The MTs play an important task in detoxifying heavy metals. The mammalian scrotal testis is known to be susceptible to cadmium (Cd) exposure. The present work focuses on the MT-1 isoform and aims to ascertain and confirm previous findings to answer whether rodent testes indeed contain MT-1 mRNA, whether its level is increased with Cd injection in liver and testes, and lastly what is the relative difference in the expression of MT-1 mRNA in liver and testes both with and without Cd injection. Adult male Wistar rats weighing 270-290 g received a subcutaneous injection of 4.0 mumol Cd/kg and were sacrificed by cervical dislocation 6 h later. RNA was isolated from testes as well as the liver. There were 2 replicates per treatment for RNA analyses. MT-1 mRNA levels were determined by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis and then assessed by densitometry scanning. The results of RT-PCR clearly demonstrated that the rodent testes express MT-1 mRNA. The densitometry data shows that the expression of MT-1 mRNA increases with Cd treatment in testes. The relative level of MT1-mRNA is greater in the control-liver than in the control-testes. However, upon Cd injection, the level of testes MT-1 mRNA increases 2.16 fold. These results suggest that the testes respond to Cd for at least 6 h post injection through a transcriptional mechanism.
Collapse
Affiliation(s)
- Dyutiman Mukhopadhyay
- Department of Zoology, University of Calcutta and Institute of Reproductive Health and Toxicology, Kolkata 70001, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Siu ER, Mruk DD, Porto CS, Cheng CY. Cadmium-induced testicular injury. Toxicol Appl Pharmacol 2009; 238:240-9. [PMID: 19236889 DOI: 10.1016/j.taap.2009.01.028] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/20/2009] [Accepted: 01/31/2009] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans and rodents. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer and/or regulate the testis sensitivity to Cd, such as Cd transporters and metallothioneins, the impact of Cd on the testis as an endocrine disruptor and oxidative stress inducer, and how it may disrupt the Zn(2+) and/or Ca(2+) mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity emerges, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men.
Collapse
Affiliation(s)
- Erica R Siu
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | | | |
Collapse
|
12
|
Nemoto K, Miyajima S, Hara S, Saigusa R, Yamada M, Shikama H, Yotsuya S, Sekimoto M, Degawa M. Decreased Gene Expression of Testicular Cell-Specific Proteins in Cadmium-Induced Acute Testicular Toxicity. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kiyomitsu Nemoto
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shoji Miyajima
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shiori Hara
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryosuke Saigusa
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Masaki Yamada
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | - Masashi Sekimoto
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| | - Masakuni Degawa
- Department of Molecular Toxicology and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
13
|
Scibetta AG, Santangelo S, Coleman J, Hall D, Chaplin T, Copier J, Catchpole S, Burchell J, Taylor-Papadimitriou J. Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 2007; 27:7220-35. [PMID: 17709396 PMCID: PMC2168894 DOI: 10.1128/mcb.00274-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The PLU-1/JARID1B nuclear protein, which is upregulated in breast cancers, belongs to the ARID family of DNA binding proteins and has strong transcriptional repression activity. To identify the target genes regulated by PLU-1/JARID1B, we overexpressed or silenced the human PLU-1/JARID1B gene in human mammary epithelial cells by using adenovirus and RNA interference systems, respectively, and then applied microarray analysis to identify candidate genes. A total of 100 genes showed inversely correlated differential expression in the two systems. Most of the candidate genes were downregulated by the overexpression of PLU-1/JARID1B, including the MT genes, the tumor suppressor gene BRCA1, and genes involved in the regulation of the M phase of the mitotic cell cycle. Chromatin immunoprecipitation assays confirmed that the metallothionein 1H (MT1H), -1F, and -1X genes are direct transcriptional targets of PLU-1/JARID1B in vivo. Furthermore, the level of trimethyl H3K4 of the MT1H promoter was increased following silencing of PLU-1/JARID1B. Both the PLU-1/JARID1B protein and the ARID domain selectively bound CG-rich DNA. The GCACA/C motif, which is abundant in metallothionein promoters, was identified as a consensus binding sequence of the PLU-1/JARID1B ARID domain. As expected from the microarray data, cells overexpressing PLU-1/JARID1B have an impaired G(2)/M checkpoint. Our study provides insight into the molecular function of the breast cancer-associated transcriptional repressor PLU-1/JARID1B.
Collapse
Affiliation(s)
- Angelo G Scibetta
- Breast Cancer Biology Group, King's College London School of Medicine, 3rd Floor, Thomas Guy House, Guy's Hospital, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bonda E, Włostowski T, Krasowska A. Testicular toxicity induced by dietary cadmium is associated with decreased testicular zinc and increased hepatic and renal metallothionein and zinc in the bank vole (Clethrionomys glareolus). Biometals 2005; 17:615-24. [PMID: 15689104 DOI: 10.1007/s10534-004-1226-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanism of testicular toxicity induced by dietary cadmium (Cd) has been less investigated than that following acute Cd injection. In the present study we characterized testicular injury in a small rodent, the bank vole, exposed subchronically to dietary Cd in a quantity of 0.9 micromol/g, and determined the importance of some factors (Cd accumulation, metallothionein (MT), oxidative stress, and zinc (Zn)) in the injury. Dietary Cd induced moderate histopathological changes (hemorrhage in interstitium, necrosis and apoptosis in seminiferous tubule epithelium) in young (1 month old) bank voles fed, for 6 weeks, Fe-adequate (1.1-1.4 micromol/g) and Fe-enriched (4.5-4.8 micromol/g) diets. In contrast, adult (5 months old) bank voles appeared to be resistant to the toxic effects of dietary Cd, despite the fact that testicular Cd contents were higher and MT levels lower than those in the young animals. The Cd-induced histopathological changes and apoptosis were accompanied by increased testicular lipid peroxidation, decreased testicular Zn concentration and elevated levels of hepatic and renal MT and Zn. Supplemental dietary Zn (1.7-1.8 micromol/g) prevented the Cd-induced testicular Zn depletion and injury. The data indicate that dietary Cd produces testicular lesions indirectly, through decreasing testicular Zn, which seems to be due to the sequestration of this element by the Cd-induced hepatic and renal MT.
Collapse
Affiliation(s)
- Elzbieta Bonda
- Institute of Biology, University of Białystok, Swierkowa 20B, 15-950 Białystok, Poland
| | | | | |
Collapse
|
15
|
Yin H, Smith M, Glass J. Stable expression of C/EBPalpha in prostate cancer cells down-regulates metallothionein and increases zinc-induced toxicity. Prostate 2005; 62:209-16. [PMID: 15389791 DOI: 10.1002/pros.20136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The transcription factor C/EBPalpha regulates terminal differentiation of various cell types. C/EBPalpha is expressed in prostate epithelium but its role in prostate development and malignant transformation is unknown. In examining the effect of forced expression of C/EBPalpha on the global gene expression profile in prostate cancer cells, we found that C/EBPalpha significantly decreased the RNA level of metallothioneins (MTs). METHODS The prostate cancer cell lines DU145, LNCaP, and PC3 with stable overexpression of C/EBPalpha were established with a retroviral expression system. MT expression was assayed by Western blot analysis and with the MT promoter in a plasmid using luciferase as a reporter. RESULTS Under basal conditions and in response to zinc, forced overexpression of C/EBPalpha decreased expression of MT isoforms 1A, B, F, and H, IIA and III. Following zinc exposure C/EBPalpha inhibited MT promoter activity by 1.5-2.5-fold. Overexpression of C/EBPalpha led to increased cytotoxicity of zinc at concentration of 150 microM in DU145 and LNCaP cells. CONCLUSIONS Our data demonstrated that expression of MTs in prostate cancer cells is inhibited by C/EBPalpha and the effect may have functional significance in regulating the growth of prostate cancer cells and the response of these cells to environment stresses.
Collapse
Affiliation(s)
- Hong Yin
- Feist-Weiller Cancer Center and Department of Medicine, Louisiana State University, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
16
|
Ren XY, Zhou Y, Zhang JP, Feng WH, Jiao BH. Expression of metallothionein gene at different time in testicular interstitial cells and liver of rats treated with cadmium. World J Gastroenterol 2003; 9:1554-8. [PMID: 12854162 PMCID: PMC4615503 DOI: 10.3748/wjg.v9.i7.1554] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Rodent testes are generally more susceptible to cadmium (Cd)-induced toxicity than liver. To clarify the molecular mechanism of Cd-induced toxicity in testes, we compared metallothionein (MT) gene expression, MT protein accumulation, and Cd retention at different time in freshly isolated testicular interstitial cells and liver of rats treated with Cd.
METHODS: Adult male Sprague-Dawley rats weighing 250-280 g received a s.c injection of 4.0 μmol Cd/kg and were euthanized by CO2 asphyxiation 1 h, 3 h, 6 h, or 24 h later. Tissue was sampled and testicular interstitial cells were isolated. There were three replicates per treatment and 3 animals per replicate for RNA analyses, others, three replicates per treatment and one animal per replicate. MT1 and MT2 mRNA levels were determined by semi-quantitative RT-PCR analysis followed by densitometry scanning, and MT was estimated by the enzyme-linked immunosorbent assay (ELISA) method. Cadmium content was determined by atomic absorption spectrophotometry. The same parametersd were also analyzed in the liver, since this tissue unquestionably accumulate MT.
RESULTS: The rat testis expressed MT1 and MT2, the major isoforms. We also found that untreated animals contained relatively high basal levels of both isoform mRNA, which were increased after Cd treatment in liver and peaked at 3 h, followed by a decline. In contrast, the mRNA levels in interstitial cells peaked at 6 h. Interestingly, the induction of MT1 mRNA was lower than MT2 mRNA in liver of rat treated with Cd, but it was opposite to interstitial cells. Cd exposure substantially increased hepatic MT (3.9-fold increase), but did not increase MT translation in interstitial cells.
CONCLUSION: Cd-induced expression of MT isoforms is not only tissue dependent but also time-dependent. The inability to induce the metal-detoxicating MT-protein in response to Cd, may account for a higher susceptibility of testes to Cd toxicity and carcinogenesis compared to liver.
Collapse
Affiliation(s)
- Xu-Yi Ren
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
17
|
Matsuura T, Kawasaki Y, Miwa K, Sutou S, Ohinata Y, Yoshida F, Mitsui Y. Germ cell-specific nucleocytoplasmic shuttling protein, tesmin, responsive to heavy metal stress in mouse testes. J Inorg Biochem 2002; 88:183-91. [PMID: 11803038 DOI: 10.1016/s0162-0134(01)00377-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tesmin 60, a novel testis-specific gene, has been identified to have homology in plant and animal species, sharing a pair of cysteine-rich regions reported to be similar to metallothionein. The functional implications for these homologs, however, are not fully understood. Two plant homologs are involved in regulating transcription or floral development. cDNA was transfected in COS-1 cells using GFP as a tag. The tesmin-GFP chimeric protein revealed its cytoplasmic localization, which is inconsistent with findings for the plant homologs. We hypothesized that the putative regulatory protein tesmin could be under the regulation of the nucleocytoplasmic shuttling by the effect of metal stress. Immunocytochemistry of male germ cells revealed that tesmin mainly locates in the cytoplasm at stages I-VIII of pachytene spermatocytes, while it temporarily translocates into the nucleus in the late pachytene or diplotene stages X-XII under normal conditions. This is one of a few examples of a germ cell-specific protein that undergoes temporal and spatial regulation through the G2/M transition in meiosis. This nucleocytoplasmic translocation of tesmin is also stress-responsive. Administration of cadmium causes loss of temporal regulation in spermatocytes. This observation suggests the testis is more sensitive to stresses than other organs. This is necessary to maintain genetic integrity.
Collapse
Affiliation(s)
- Tadashi Matsuura
- Institute of Molecular and Cell Biology (IMCB), National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu J, Corton C, Dix DJ, Liu Y, Waalkes MP, Klaassen CD. Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice. Toxicol Appl Pharmacol 2001; 176:1-9. [PMID: 11578143 DOI: 10.1006/taap.2001.9262] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sensitivity to cadmium (Cd)-induced testicular injury varies greatly among mouse strains. For instance, 129/SvJ (129) mice are highly sensitive while C57BL/6J (C57) mice are refractory to Cd-induced testicular injury. Metallothionein (MT), a Cd-binding protein, is thought to be responsible for the strain susceptibility to Cd toxicity. In this study, MT-I/II knockout (MT-null) and wild-type 129 mice were used to determine the role of MT in Cd-induced testicular injury. Two additional strains of mice (C57 and the C57 x 129 F1cross) were also used to help define the role of genetic background in Cd toxicity. Mice were given 5-20 micromol/kg ip CdCl(2) and testicular injury was examined 24 h later by histopathology and testicular hemoglobin concentration. Cd produced dose-dependent testicular injury in all strains of mice, except for C57 mice, in which testicular injury could not be produced. MT-null mice were more sensitive than C57 x 129 mice but were equally sensitive as 129 mice to Cd-induced testicular injury. Fourteen days after 15 micromol/kg ip Cd administration, testicular atrophy was evident in MT-null, 129, and C57 x 129 mice but was absent in C57 mice. The resistance of C57 mice to Cd-induced testicular injury could not be attributed solely to a decreased uptake of (109)Cd nor to a greater amount of testicular MT. Microarray analysis revealed a higher expression of glutathione peroxidase in the testes of C57 mice, as well as genes encoding antioxidant components and DNA damage/repair, but their significance to Cd-induced injury is not immediately clear. Thus, this study demonstrates that it is genetic strain, not MT genotype, that is mechanistically important in determining susceptibility to Cd-induced testicular injury.
Collapse
Affiliation(s)
- J Liu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ghoshal K, Jacob ST. Regulation of metallothionein gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:357-84. [PMID: 11051769 DOI: 10.1016/s0079-6603(00)66034-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rapid and robust induction of metallothioneins (MT)-I and II by a variety of inducers that include heavy toxic metals, reactive oxygen species, and different types of stress provide a useful system to study the molecular mechanisms of this unique induction process. The specific expression of MT-III in the brain and of MT-IV in the squamous epithelium of skin and tongue offers a unique opportunity to identify and characterize the tissue-specific factors involved in their expression. Studies using transgenic mice that overexpress MTs or MT null mice have revealed the role of MT in the protection of cells against numerous tissue-damaging agents such as reactive oxygen species. The primary physiological function of these proteins, however, remains an enigma. Considerable advances have been made in the identification of the cis-acting elements that are involved in the constitutive and induced expression of MT-I and MT-II. By contrast, only one key trans-activating factor, namely MTF-1, has been extensively characterized. Studies on the epigenetic silencing of MT-I and MT-II by promoter hypermethylation in some cancer cells have posed interesting questions concerning the functional relevance of MT gene silencing, the molecular mechanisms of MT suppression in these cells, particularly chromatin modifications, and the characteristics of the repressors.
Collapse
Affiliation(s)
- K Ghoshal
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine, Columbus 43210, USA
| | | |
Collapse
|
20
|
Zhou T, Zhou G, Song W, Eguchi N, Lu W, Lundin E, Jin T, Nordberg G. Cadmium-induced apoptosis and changes in expression of p53, c-jun and MT-I genes in testes and ventral prostate of rats. Toxicology 1999; 142:1-13. [PMID: 10647914 DOI: 10.1016/s0300-483x(99)00115-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis and a change in the expression of p53, c-jun and MT-I genes occurred in rats exposed to cadmium in a way known to cause carcinogenesis in testes and ventral prostate. In situ end labelling (ISEL), DNA electrophoresis, and RT-PCR methods were used in present study. Adult male Wistar rats were given a single (s.c.) injection of 0, 5, 10, or 20 micromol/kg CdCl2. Then 12, 48 or 96 h after administration of cadmium, animals were sacrificed. It was observed that cadmium markedly induced apoptosis in the testes at the dose of 5 micromol/kg while 10 and 20 micromol/kg cadmium caused more necrosis than apoptosis. Apoptosis in the ventral prostate was markedly induced by all the doses of cadmium and there was an obvious time- and dose-dependent relationship between apoptotic index (AI) and cadmium treatment. Far fewer apoptotic cells appeared in liver, compared to the testes and ventral prostate. p53 mRNA expression was clearly enhanced in the ventral prostate but clearly suppressed in the testes by cadmium exposure, and the time- and dose-effect was very clear. The expression level of p53 in the liver was not affected by cadmium treatment. Cadmium-induced overexpression of c-jun gene appeared at 12 h in the liver, but not until 96 h in the testes and ventral prostate. Although the MT-I gene was found to be expressed in all tissues, marked induction by cadmium of the expression of MT-I gene was only observed in the liver. These results indicate: (1) that apoptosis is an early mechanism of acute tissue damage by cadmium in the testes and ventral prostate; (2) that p53 and c-jun genes may be involved in cadmium-induced cytotoxicity (apoptosis) and related carcinogenicity in male reproductive tissues; and (3) that the enhanced expression of MT-I in the liver could protect this organ from cadmium-induced cytotoxicity (apoptosis) and carcinogenicity.
Collapse
Affiliation(s)
- T Zhou
- Department of Environmental Medicine, Umea University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sugihara T, Wadhwa R, Kaul SC, Mitsui Y. A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics 1999; 57:130-6. [PMID: 10191092 DOI: 10.1006/geno.1999.5756] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a novel cDNA encoding testis-specific metallothionein-like protein, tesmin, by randomized RT-PCR on RNA from mouse tissues. Two tesmin-related transcripts (2.2 and 1.8 kb) in mouse and one (2.1 kb) in human were detected and cloned. These encode a cysteine-rich 32-kDa protein that contained a metallothionein-like motif. In situ hybridization analysis in adult mouse testis showed that tesmin is specifically expressed in spermatocytes. Quantitative RT-PCR at different stages of mouse postnatal development (days 4, 8, 12, 18, and 42) revealed that tesmin is expressed as early as day 8 and coincides with the entry of germ cells into meiosis. Furthermore, adult W/Wv sterile mice that harbor the c-kit mutation lacked tesmin expression. The gene is assigned to mouse chromosome 19B, which has been reported to translocate (11;19) in male sterile mice.
Collapse
Affiliation(s)
- T Sugihara
- National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, 1-1 Higashi, Tsukuba, 305-8566, Japan.
| | | | | | | |
Collapse
|
22
|
McKenna IM, Gordon T, Chen LC, Anver MR, Waalkes MP. Expression of metallothionein protein in the lungs of Wistar rats and C57 and DBA mice exposed to cadmium oxide fumes. Toxicol Appl Pharmacol 1998; 153:169-78. [PMID: 9878588 DOI: 10.1006/taap.1998.8399] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic exposure to inhaled cadmium (Cd) has been shown to induce lung tumors in rats (Wistar strain) but not in mice (NMRI strain). The protein metallothionein (MT) plays an important role in Cd detoxification, and it has been suggested that differential inducibility of pulmonary MT may lead to interspecies susceptibility differences to inhaled Cd. Interstrain differences in the pulmonary response of the MT gene to Cd stimuli have not been examined in rats or mice. We compared pulmonary MT expression in Wistar Furth (WF) rats with that in DBA and C57 mice, following a single 3-h exposure to CdO fumes containing 1 mg Cd/m3. Induction of the MT gene was assessed by the levels of MT-I and MT-II transcripts, MT-protein content, and number of MT-labeled alveolar and bronchiolar epithelial cells immediately after Cd exposure and 1, 3, and 5 days later. Control animals were exposed to air/argon furnace gases. We observed differential intra- and interspecies inducibility of the MT gene in the lung following Cd inhalation. DBA mice exhibited greater levels of MT-mRNA, mainly for the MT-I isoform, MT-protein content, and number of MT positive cells relative to C57 mice. WF rats showed lower transcription and translation responses of the MT gene upon Cd stimuli than C57 mice. The present results, in concert with our previous findings of higher lung cell proliferation in Cd-exposed C57 relative to DBA mice, predict greater susceptibility of C57 to the carcinogenic effects of inhaled Cd. Furthermore, the low transcriptional and translation responses of the MT gene to Cd stimuli in WF rats might explain the higher susceptibility of this rat strain to develop malignant lung tumors after chronic exposure to Cd via inhalation. Parallel to our findings in mice, differences in the responsiveness of lung MT gene may exist across rat strains. Thus intraspecies genetic variability in pulmonary MT may influence the susceptibility of rats or mice to lung carcinogenesis induced by inhalation of Cd compounds.
Collapse
Affiliation(s)
- I M McKenna
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, USA.
| | | | | | | | | |
Collapse
|
23
|
McKenna IM, Waalkes MP, Chen LC, Gordon T. Comparison of inflammatory lung responses in Wistar rats and C57 and DBA mice following acute exposure to cadmium oxide fumes. Toxicol Appl Pharmacol 1997; 146:196-206. [PMID: 9344887 DOI: 10.1006/taap.1997.8241] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhalation of cadmium oxide (CdO) is a significant form of human exposure to cadmium (Cd). Furthermore, there is epidemiological and experimental data relating Cd inhalation with lung cancer. Animal studies indicate that rats are more susceptible to Cd-induced lung cancer than mice, but interstrain sensitivity differences to Cd-induced pulmonary inflammation or carcinogenesis have not been addressed in either species. We compared pulmonary inflammatory processes in Wistar Furth (WF) rats with those in C57 and DBA mice exposed to freshly generated CdO fumes in nose-only inhalation chambers. Animals were exposed to 1 mg Cd/m3 for 3 hr and terminated immediately or 1, 3, and 5 days after exposure. Control animals were exposed to air/argon furnace gases. Cd-induced lung injury was assessed by bronchoalveolar lavage fluid (BALF) analyses, histopathology, and immunohistochemical detection of cell proliferation. Inhalation of CdO resulted in pulmonary inflammatory processes that varied widely across species and strains. C57 mice responded with faster and greater influx of neutrophils and proliferation of alveolar macrophages, type II epithelial cells, and bronchiolar epithelial cells compared to DBA mice or WF rats. DBA mice retained a greater percentage of inhaled Cd in the lungs and presented higher levels of BALF protein than C57 mice or rats. In comparison to mice, WF rats responded with a more transient inflammatory response in BALF parameters and higher degree of acute inflammation in lung tissue. The more pronounced proliferation of alveolar and bronchiolar epithelial cells observed in C57 mice might indicate higher susceptibility of this mice strain to Cd-induced lung carcinogenesis compared to DBA mice or WF rats. Furthermore, the present results of fewer inflammatory cells and lower proliferation of epithelial cells in DBA mice in association with our previous observation of higher Cd-induced metallothionein protein in this strain suggest that DBA might be less susceptible to the pulmonary carcinogenic effects of inhaled Cd than C57 mice or WF rats. We conclude that mice might not necessarily be more resistant than rats to the carcinogenic effects of inhaled Cd, since intraspecies susceptibility differences are strongly suggested by the present data. An extrapolation of this conclusion is that genetic variations in the human population may determine individual sensitivity differences to inhaled Cd.
Collapse
Affiliation(s)
- I M McKenna
- Laboratory of Comparative Carcinogenesis, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | | | | | |
Collapse
|