1
|
Vigeland MD, Flåm ST, Vigeland MD, Espeland A, Zucknick M, Wigemyr M, Bråten LCH, Gjefsen E, Zwart JA, Storheim K, Pedersen LM, Selmer K, Lie BA, Gervin K, The Aim Study Group. Long-Term Use of Amoxicillin Is Associated with Changes in Gene Expression and DNA Methylation in Patients with Low Back Pain and Modic Changes. Antibiotics (Basel) 2023; 12:1217. [PMID: 37508313 PMCID: PMC10376514 DOI: 10.3390/antibiotics12071217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Long-term antibiotics are prescribed for a variety of medical conditions, recently including low back pain with Modic changes. The molecular impact of such treatment is unknown. We conducted longitudinal transcriptome and epigenome analyses in patients (n = 100) receiving amoxicillin treatment or placebo for 100 days in the Antibiotics in Modic Changes (AIM) study. Gene expression and DNA methylation were investigated at a genome-wide level at screening, after 100 days of treatment, and at one-year follow-up. We identified intra-individual longitudinal changes in gene expression and DNA methylation in patients receiving amoxicillin, while few changes were observed in patients receiving placebo. After 100 days of amoxicillin treatment, 28 genes were significantly differentially expressed, including the downregulation of 19 immunoglobulin genes. At one-year follow-up, the expression levels were still not completely restored. The significant changes in DNA methylation (n = 4548 CpGs) were mainly increased methylation levels between 100 days and one-year follow-up. Hence, the effects on gene expression occurred predominantly during treatment, while the effects on DNA methylation occurred after treatment. In conclusion, unrecognized side effects of long-term amoxicillin treatment were revealed, as alterations were observed in both gene expression and DNA methylation that lasted long after the end of treatment.
Collapse
Affiliation(s)
- Maria Dehli Vigeland
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Ansgar Espeland
- Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, 0313 Oslo, Norway
| | - Monica Wigemyr
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Lars Christian Haugli Bråten
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| | - Elisabeth Gjefsen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Kjersti Storheim
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, 0167 Oslo, Norway
| | - Linda Margareth Pedersen
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Department of Physiotherapy, Oslo Metropolitan University, 0167 Oslo, Norway
| | - Kaja Selmer
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- National Center for Epilepsy, Oslo University Hospital, 1337 Sandvika, Norway
| | - Benedicte Alexandra Lie
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Kristina Gervin
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, 0313 Oslo, Norway
| | - The Aim Study Group
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
2
|
Mikocziova I, Greiff V, Sollid LM. Immunoglobulin germline gene variation and its impact on human disease. Genes Immun 2021; 22:205-217. [PMID: 34175903 PMCID: PMC8234759 DOI: 10.1038/s41435-021-00145-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Immunoglobulins (Ig) play an important role in the immune system both when expressed as antigen receptors on the cell surface of B cells and as antibodies secreted into extracellular fluids. The advent of high-throughput sequencing methods has enabled the investigation of human Ig repertoires at unprecedented depth. This has led to the discovery of many previously unreported germline Ig alleles. Moreover, it is becoming clear that convergent and stereotypic antibody responses are common where different individuals recognise defined antigenic epitopes with the use of the same Ig V genes. Thus, germline V gene variation is increasingly being linked to the differential capacity of generating an effective immune response, which might lead to varying disease susceptibility. Here, we review recent evidence of how germline variation in Ig genes impacts the Ig repertoire and its subsequent effects on the adaptive immune response in vaccination, infection, and autoimmunity.
Collapse
Affiliation(s)
- Ivana Mikocziova
- Department of Immunology, University of Oslo, Oslo, Norway
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Ludvig M Sollid
- Department of Immunology, University of Oslo, Oslo, Norway.
- K. G. Jebsen Centre for Coeliac Disease Research, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Zhao J, Peng H, Gao J, Nong A, Hua H, Yang S, Chen L, Wu X, Zhang H, Wang J. Current insights into the expression and functions of tumor-derived immunoglobulins. Cell Death Discov 2021; 7:148. [PMID: 34226529 PMCID: PMC8257790 DOI: 10.1038/s41420-021-00550-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have reported expressions of immunoglobulins (Igs) in many human tumor tissues and cells. Tumor-derived Igs have displayed multiple significant functions which are different from classical Igs produced by B lymphocytes and plasma cells. This review will concentrate on major progress in expressions, functions, and mechanisms of tumor-derived Igs, similarities and differences between tumor-derived Igs and B-cell-derived Igs. We also discuss the future research directions of tumor-derived Igs, including their structural characteristics, physicochemical properties, mechanisms for rearrangement and expression regulation, signaling pathways involved, and clinical applications.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hui Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Jie Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Anna Nong
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Haoming Hua
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Shulin Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Liying Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Xiangsheng Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Hao Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Juping Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 533000, Baise, China.
| |
Collapse
|
4
|
Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, Schueler N, Dragicevic T, Ostler D, Hansen-Wester I, Lifke V, Kaluza B, Kaluza K, van Schooten W, Buelow R, Tissot AC, Platzer J. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs 2020; 12:1846900. [PMID: 33228444 PMCID: PMC7780963 DOI: 10.1080/19420862.2020.1846900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Transgenic animals incorporating human antibody genes are extremely attractive for drug development because they obviate subsequent antibody humanization procedures required for therapeutic translation. Transgenic platforms have previously been established using mice, but also more recently rats, chickens, and cows and are now in abundant use for drug development. However, rabbit-based antibody generation, with a strong track record for specificity and affinity, is able to include gene conversion mediated sequence diversification, thereby enhancing binder maturation and improving the variance/selection of output antibodies in a different way than in rodents. Since it additionally frequently permits good binder generation against antigens that are only weakly immunogenic in other organisms, it is a highly interesting species for therapeutic antibody generation. We report here on the generation, utilization, and analysis of the first transgenic rabbit strain for human antibody production. Through the knockout of endogenous IgM genes and the introduction of human immunoglobulin sequences, this rabbit strain has been engineered to generate a highly diverse human IgG antibody repertoire. We further incorporated human CD79a/b and Bcl2 (B-cell lymphoma 2) genes, which enhance B-cell receptor expression and B-cell survival. Following immunization against the angiogenic factor BMP9 (Bone Morphogenetic Proteins 9), we were able to isolate a set of exquisitely affine and specific neutralizing antibodies from these rabbits. Sequence analysis of these binders revealed that both somatic hypermutation and gene conversion are fully operational in this strain, without compromising the very high degree of humanness. This powerful new transgenic strategy will allow further expansion of the use of endogenous immune mechanisms in drug development.
Collapse
Affiliation(s)
- Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Sonja Offner
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharmaceutical Research and Early Development, Informatics, Roche Innovation Center Munich , Penzberg, Germany
| | - Irmgard Thorey
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Helmut Niersbach
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich , Penzberg, Germany
| | - Sebastian Breuer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Grit Zarnt
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Stefan Lorenz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | - Basile Siewe
- THE JACKSON LABORATORY JMCRS, Sacramento, CA, USA
| | - Nicole Schueler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Tajana Dragicevic
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Dominique Ostler
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Imke Hansen-Wester
- Supplier Quality Management, Global External Quality Roche Diagnostics GmbH , Penzberg, Germany
| | - Valeria Lifke
- Personalized Healthcare Solution, Immunoassay Development and System Integration, Roche Diagnostics GmbH , Penzberg, Germany
| | - Brigitte Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Klaus Kaluza
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | | | | | - Alain C Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| | - Josef Platzer
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich , Penzberg, Germany
| |
Collapse
|
5
|
Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT ® Bridging Genes, Structures and Functions. Biomedicines 2020; 8:E319. [PMID: 32878258 PMCID: PMC7555362 DOI: 10.3390/biomedicines8090319] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as 'genes' as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
6
|
Mohan M, Kumar V, Lackner AA, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 194:291-306. [PMID: 25452565 DOI: 10.4049/jimmunol.1401447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
7
|
Nandakumar DN, Koner BC, Vinayagamoorthi R, Nanda N, Negi VS, Goswami K, Bobby Z, Hamide A. Activation of NF-kappaB in lymphocytes and increase in serum immunoglobulin in hyperthyroidism: possible role of oxidative stress. Immunobiology 2007; 213:409-15. [PMID: 18472049 DOI: 10.1016/j.imbio.2007.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 10/12/2007] [Accepted: 10/24/2007] [Indexed: 01/22/2023]
Abstract
This study evaluated oxidative stress, serum IgM and IgG, and nuclear factor (NF)-kappaB signaling in lymphocytes of hyperthyroidism patients. GSH content in lymphocytes was significantly lower and serum malondialdehyde, IgM and IgG levels were significantly higher in hyperthyroidism as compared to controls. In lymphocytes, the NF-kappaB signaling pathway was studied by western blot analysis of p65 and p-IkappaBalpha. Density of p-IkappaBalpha and p65 (in nuclear fraction) was significantly higher in hyperthyroidism as compared to controls. The density of p-IkappaBalpha and p65 had significant positive correlation with serum malondialdehyde level and negative correlation with lymphocyte GSH level in hyperthyroid cases. The serum IgG and IgM levels were correlated significantly with density of p-IkappaBalpha and p65. As immunoglobulin production is regulated by the NF-kappaB pathway, we conclude that the oxidative stress-induced activation of the NF-kappaB pathway might play a role in the rise of serum immunoglobulin level in hyperthyroidism.
Collapse
Affiliation(s)
- D N Nandakumar
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry-6, India
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Vinayagamoorthi R, Koner BC, Kavitha S, Nandakumar DN, Padma Priya P, Goswami K. Potentiation of humoral immune response and activation of NF-kappaB pathway in lymphocytes in experimentally induced hyperthyroid rats. Cell Immunol 2006; 238:56-60. [PMID: 16472792 DOI: 10.1016/j.cellimm.2006.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 12/31/2005] [Accepted: 01/09/2006] [Indexed: 01/11/2023]
Abstract
This study explored the effect of hyperthyroid state on humoral immune response and NF-kappaB signaling in lymphocytes. Male Wistar rats were treated with l-thyroxin for four weeks. Animals were immunized with sheep red blood cells (SRBC) after three weeks of l-thyroxin treatment. After one week of immunization, serum anti-SRBC titer was measured and NF-kappaB signaling was studied in lymphocytes by Western blot analysis of p-IKB-alpha, IKB-alpha, and p65. These results were compared with that of control rats. Antibody response and density of p-IKB-alpha and p65 were significantly higher in l-thyroxin treated rats in comparison to controls. The antibody response was found to have significant correlation with density of p-IKB-alpha and p65. Our results indicate that NF-kappaB signaling pathway in lymphocytes is activated in hyperthyroid state which might play a role in potentiation of antibody response.
Collapse
Affiliation(s)
- R Vinayagamoorthi
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | | | | | | | | | | |
Collapse
|
9
|
Kim CH, Ardayfio P, Kim KS. An E-box motif residing in the exon/intron 1 junction regulates both transcriptional activation and splicing of the human norepinephrine transporter gene. J Biol Chem 2001; 276:24797-805. [PMID: 11333263 DOI: 10.1074/jbc.m101279200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The norepinephrine transporter (NET) is responsible for the rapid NaCl-dependent uptake of norepinephrine into presynaptic noradrenergic nerve endings. Recently, we have characterized the structural organization of the 5' upstream promoter region of the human NET (hNET) gene. A new intron of 476 base pairs was found in the middle of the 5'-untranslated leader sequence and was shown to robustly enhance the promoter activity. Here, we show that the first hNET intron enhances both the homologous hNET and the heterologous thymidine kinase promoter activities in an orientation- and position-dependent manner. The first hNET intron exhibited a similar promoter-enhancing effect in both SK-N-BE(2)C (NET-positive) and HeLa (NET-negative) cell lines, showing that its function is not cell-specific. Transient transfection assays of a series of deletional constructs show that the first hNET intron contains subdomains with either positive or negative regulatory functions. Furthermore, DNase I footprinting analysis demonstrated that the 5' side of the intron, encompassing the splice donor site, is prominently protected by nuclear proteins isolated from both SK-N-BE(2)C and HeLa cells. The protected nucleotide sequence contains a consensus E-box motif, known to regulate diverse eukaryotic genes, which overlaps with the splice donor site of the first intron. We demonstrate that two basic helix-loop-helix proteins, upstream stimulatory factors 1 and 2, are major proteins interacting at this site and that the E-box is at least in part responsible for the promoter-enhancing activity of the first intron. Furthermore, site-directed mutagenesis of the splice donor site of the first intron affects both correct splicing and transcriptional activity. Taken together, our results indicate that a cis-element residing at the first exon/intron junction, encompassing an E-box motif, has a unique dual role in basal transcriptional activation and splicing of hNET mRNA.
Collapse
Affiliation(s)
- C H Kim
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | | | | |
Collapse
|
10
|
Crowthers KC, Kline V, Giardina C, Lynes MA. Augmented humoral immune function in metallothionein-null mice. Toxicol Appl Pharmacol 2000; 166:161-72. [PMID: 10906280 DOI: 10.1006/taap.2000.8961] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stress response proteins can play integral roles as modulators of cellular function and can be involved in mechanisms that are important to immune function. Metallothionein (MT), a cysteine-rich stress response protein, has been shown to play numerous roles in the cell: it serves as a reservoir of essential heavy metals, it scavenges free radicals, and it can sequester heavy metals. These various functions suggest that MT may also participate in modulating immune responses. In previous work, we have shown that exogenous metallothionein can suppress the developing humoral immune response when coinjected with antigen. The present study was designed to evaluate the effects of endogenous MT on the development of humoral immunity. We compared the humoral immune function of animals with a targeted disruption of Mt-1 and -2 genes (MTKO) and their wild-type counterparts. MTKO mice displayed a significantly higher humoral response to challenge with ovalbumin (OVA) compared to wild-type controls. The secondary anti-OVA response in MTKO mice is as much as 58% higher than the response in control mice injected at the same time. Overall circulatory immunoglobulin levels are also substantially higher in MTKO mice (0.039 mg/ml IgM and 0.42 mg/ml IgG) than wild-type controls. MTKO mice displayed increased B cell differentiation following OVA challenge and an enhanced lymphoproliferative response to mitogenic stimulation. These changes in immune functional capacity occur in the context of changes in the makeup of the lymphoid compartments of the blood and spleen. There are substantially fewer T and B cells in the circulation of MTKO mice, but more T cells in the spleen of these mice than in control animals. Finally, we have found that splenocytes from MTKO animals displayed significantly elevated levels of NF-kappaB activity compared to wild-type controls. In conclusion, we have provided evidence that endogenous metallothionein can modulate the immune response in vivo and that intracellular MT may modulate immune function by regulation of transcription factor activity.
Collapse
Affiliation(s)
- K C Crowthers
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
11
|
Sun Z, Means AR. An intron facilitates activation of the calspermin gene by the testis-specific transcription factor CREM tau. J Biol Chem 1995; 270:20962-7. [PMID: 7673120 DOI: 10.1074/jbc.270.36.20962] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calspermin is a high affinity Ca2+/calmodulin binding protein that is found only in postmeiotic male germ cells. Our previous studies have shown that the calspermin transcript is produced by utilization of a testis-specific promoter located within an intron of the calmodulin kinase IV gene. This promoter contains two cAMP response element-like motifs that bind the testis-specific transcription factor CREM tau. This interaction is required for transcriptional activation. Here we describe a novel regulatory element, the 111-base pair first intron of the calspermin gene, which is also required for enhancement of transcription by CREM tau via the cAMP response element motifs. Deletion or inversion of this intron results in loss of CREM tau-mediated stimulation of transcription. However, CREM tau stimulates calspermin promoter activity when the intron is moved upstream of the promoter but only when inserted in the proper orientation. Footprint, linker scanning, and deletion analyses were used to identify regulatory elements in the intron. We suggest that the intron functions as an orientation-dependent but position-independent regulatory element to activate the calspermin promoter by facilitating the stimulatory effect of CREM tau on transcription.
Collapse
Affiliation(s)
- Z Sun
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
12
|
Bulfone-Paus S, Reiners-Schramm L, Lauster R. The chicken immunoglobulin lambda light chain gene is transcriptionally controlled by a modularly organized enhancer and an octamer-dependent silencer. Nucleic Acids Res 1995; 23:1997-2005. [PMID: 7596829 PMCID: PMC306975 DOI: 10.1093/nar/23.11.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Characterization of the regulatory elements involved in V(D)J recombination is crucial for understanding development of the B and T cell immune repertoire. Previously we have shown that the chicken immunoglobulin lambda light chain gene (CLLCG) undergoes lymphoid-specific rearrangement in transgenic mice. The whole gene is only 10 kb in length and contains all phylogenetically conserved target sites for recombinational and transcriptional regulation. In this study we have localized an enhancer element in a region 4 kb downstream of the constant (C) region. The 467 bp element can be subdivided into three subfragments. The previously detected silencer element on the V-J intervening sequence is shown to be localized on a 500 bp fragment. Partial silencer activity is retained on a 250 bp fragment, which includes an octamer motif. By mutational analysis this octamer is shown to be essential for B cell- but not for T cell-specific silencer function. The silencer represses transcription directed by heterologous elements like the SV 40 promoter or the Ig kappa 3' enhancer. We propose that transcription of the unrearranged and rearranged Ig genes is regulated by complex interactions between different modules from the promoter, enhancer and silencer, which is eliminated by recombination during B cell development.
Collapse
Affiliation(s)
- S Bulfone-Paus
- Institute for Immunology, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
13
|
Frippiat JP, Lefranc MP. Genomic organisation of 34 kb of the human immunoglobulin lambda locus (IGLV): restriction map and sequences of new V lambda III genes. Mol Immunol 1994; 31:657-70. [PMID: 8028600 DOI: 10.1016/0161-5890(94)90175-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to improve our knowledge of the human immunoglobulin variable lambda locus (IGLV), we mapped one cosmid clone (designated as C40.2) isolated by screening a Colo320HSR genomic library. The 34 kb insert of the C40.2 clone was shown to contain six genes. One gene, IGLV2S1, belongs to the V lambda II subgroup. Four genes belong to the V lambda III subgroup. Two of them, IGLV3S1 and IGLV3S2, are potentially functional whereas the two others are pseudogenes. The size of the IGLV3S2 leader intron is four times longer than the classical intron size of 110 bp. The cosmid also contains a vestigial sequence lambda vg2. All these genes share the same orientation of transcription. Pulsed field gel electrophoresis analysis of the IGLV locus shows that most of the V lambda I subgroup genes are located at the 5' end of the locus.
Collapse
Affiliation(s)
- J P Frippiat
- Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Moléculaire, UMR 9942 CNRS, Université Montpellier I. France
| | | |
Collapse
|
14
|
Ling X, Shenkar R, Sakai D, Arnheim N. The mouse Eb meiotic recombination hotspot contains a tissue-specific transcriptional enhancer. Immunogenetics 1993; 37:331-6. [PMID: 8428766 DOI: 10.1007/bf00216797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A meiotic recombination hotspot exists within the second intron of the mouse major histocompatibility complex (MHC) gene, Eb. In the present study, a small fragment from the intron which contains two potential transcriptional regulatory elements was cloned into an expression vector and its effect on transcription was tested. This fragment was found to contain tissue-specific transcriptional enhancer activity. An octamer-like sequence and a B motif may contribute to this enhancer activity. Similar regulatory sequences with the same orientation and distance from one another are found in another mouse MHC recombination hotspot.
Collapse
Affiliation(s)
- X Ling
- Molecular Biology Section, University of Southern California, Los Angeles 90089-1340
| | | | | | | |
Collapse
|
15
|
Two conserved essential motifs of the murine immunoglobulin lambda enhancers bind B-cell-specific factors. Mol Cell Biol 1992. [PMID: 1729607 DOI: 10.1128/mcb.12.1.309] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Two highly homologous enhancers associated with the two murine immunoglobulin lambda constant-region clusters were recently identified. In order to better understand the molecular basis for the developmental stage- and cell-type-restricted expression of lambda genes, we have undertaken an analysis of the putative regulatory domains of these enhancers. By using a combination of DNase I footprinting, electrophoretic mobility shift assay, and site-specific mutations, four candidate protein binding sites have been identified at analogous positions in both enhancers. A mutation of any of these sites decreases enhancer activity. Two of the sites, lambda A and lambda B, are essential for enhancer function, and both of these sites appear to bind both B-cell-specific and general factors. Nevertheless, isolated lambda A and lambda B sites show no evidence of inherent transactivating potential, alone or together, even when present in up to three copies. We suggest that the generation of transactivating signals from these enhancers may require the complex interaction of multiple B-cell-specific and nonspecific DNA-binding factors.
Collapse
|
16
|
Rudin CM, Storb U. Two conserved essential motifs of the murine immunoglobulin lambda enhancers bind B-cell-specific factors. Mol Cell Biol 1992; 12:309-20. [PMID: 1729607 PMCID: PMC364111 DOI: 10.1128/mcb.12.1.309-320.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two highly homologous enhancers associated with the two murine immunoglobulin lambda constant-region clusters were recently identified. In order to better understand the molecular basis for the developmental stage- and cell-type-restricted expression of lambda genes, we have undertaken an analysis of the putative regulatory domains of these enhancers. By using a combination of DNase I footprinting, electrophoretic mobility shift assay, and site-specific mutations, four candidate protein binding sites have been identified at analogous positions in both enhancers. A mutation of any of these sites decreases enhancer activity. Two of the sites, lambda A and lambda B, are essential for enhancer function, and both of these sites appear to bind both B-cell-specific and general factors. Nevertheless, isolated lambda A and lambda B sites show no evidence of inherent transactivating potential, alone or together, even when present in up to three copies. We suggest that the generation of transactivating signals from these enhancers may require the complex interaction of multiple B-cell-specific and nonspecific DNA-binding factors.
Collapse
Affiliation(s)
- C M Rudin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
17
|
Previato L, Parrott C, Santamarina-Fojo S, Brewer H. Transcriptional regulation of the human lipoprotein lipase gene in 3T3-L1 adipocytes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55156-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Kehrl JH. Transforming growth factor-beta: an important mediator of immunoregulation. INTERNATIONAL JOURNAL OF CELL CLONING 1991; 9:438-50. [PMID: 1955735 DOI: 10.1002/stem.1991.5530090502] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is synthesized and secreted by a wide variety of cells, including cells of the immune system. Lymphocytes and monocytes possess high affinity TGF-beta receptors and the addition of TGF-beta to in vitro cell cultures results in significant modulation of immune function. TGF-beta inhibits the proliferation of thymocytes, T cells, B cells, and natural killer cells. Additionally, it inhibits certain differentiative functions of lymphocytes including a marked inhibition of immunoglobulin production by human B lymphocytes. TGF-beta has dichotomous actions on monocytes. It is a potent chemoattractant for monocytes and induces interleukin 1 mRNA expression while inhibiting generation of reactive oxygen intermediates and monocyte killing. Evidence is accumulating that TGF-beta regulates immune function in vivo and that overproduction of TGF-beta may be associated with immunosuppression.
Collapse
Affiliation(s)
- J H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|