1
|
Teahan J, Perry D, Chen B, McPherson IJ, Meloni GN, Unwin PR. Scanning Ion Conductance Microscopy: Surface Charge Effects on Electroosmotic Flow Delivery from a Nanopipette. Anal Chem 2021; 93:12281-12288. [PMID: 34460243 DOI: 10.1021/acs.analchem.1c01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scanning ion conductance microscopy (SICM) is a powerful and versatile technique that allows an increasingly wide range of interfacial properties and processes to be studied. SICM employs a nanopipette tip that contains electrolyte solution and a quasi-reference counter electrode (QRCE), to which a potential is applied with respect to a QRCE in a bathing solution, in which the tip is placed. The work herein considers the potential-controlled delivery of uncharged electroactive molecules (solute) from an SICM tip to a working electrode substrate to determine the effect of the substrate on electroosmotic flow (EOF). Specifically, the local delivery of hydroquinone from the tip to a carbon fiber ultramicroelectrode (CF UME) provides a means of quantifying the rate of mass transport from the nanopipette and mapping electroactivity via the CF UME current response for hydroquinone oxidation to benzoquinone. EOF, and therefore species delivery, has a particularly strong dependence on the charge of the substrate surface at close nanopipette-substrate surface separations, with implications for retaining neutral solute within the tip predelivery and for the delivery process itself, both controlled via the applied tip potential. Finite element method (FEM) simulations of mass transport and reactivity are used to explain the experimental observations and identify the nature of EOF, including unusual flow patterns under certain conditions. The combination of experimental results with FEM simulations provides new insights on mass transport in SICM that will enhance quantitative applications and enable new possibilities for the use of nanopipettes for local delivery.
Collapse
Affiliation(s)
- James Teahan
- MAS Centre for Doctoral Training, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Perry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Baoping Chen
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
2
|
Vijayraghavan S, Everling S. Neuromodulation of Persistent Activity and Working Memory Circuitry in Primate Prefrontal Cortex by Muscarinic Receptors. Front Neural Circuits 2021; 15:648624. [PMID: 33790746 PMCID: PMC8005543 DOI: 10.3389/fncir.2021.648624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Neuromodulation by acetylcholine plays a vital role in shaping the physiology and functions of cerebral cortex. Cholinergic neuromodulation influences brain-state transitions, controls the gating of cortical sensory stimulus responses, and has been shown to influence the generation and maintenance of persistent activity in prefrontal cortex. Here we review our current understanding of the role of muscarinic cholinergic receptors in primate prefrontal cortex during its engagement in the performance of working memory tasks. We summarize the localization of muscarinic receptors in prefrontal cortex, review the effects of muscarinic neuromodulation on arousal, working memory and cognitive control tasks, and describe the effects of muscarinic M1 receptor stimulation and blockade on the generation and maintenance of persistent activity of prefrontal neurons encoding working memory representations. Recent studies describing the pharmacological effects of M1 receptors on prefrontal persistent activity demonstrate the heterogeneity of muscarinic actions and delineate unexpected modulatory effects discovered in primate prefrontal cortex when compared with studies in rodents. Understanding the underlying mechanisms by which muscarinic receptors regulate prefrontal cognitive control circuitry will inform the search of muscarinic-based therapeutic targets in the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Du ZJ, Bi GQ, Cui XT. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1703988. [PMID: 30467460 PMCID: PMC6242295 DOI: 10.1002/adfm.201703988] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implantable microelectrode arrays (MEAs) are important tools for investigating functional neural circuits and treating neurological diseases. Precise modulation of neural activity may be achieved by controlled delivery of neurochemicals directly from coatings on MEA electrode sites. In this study, a novel dual-layer conductive polymer/acid functionalized carbon nanotube (fCNT) microelectrode coating is developed to better facilitate the loading and controlled delivery of the neurochemical 6,7-dinitroquinoxaline-2,3-dione (DNQX). The base layer coating is consisted of poly(3,4-ethylenedioxythiophene/fCNT and the top layer is consisted of polypyrrole/fCNT/DNQX. The dual-layer coating is capable of both loading and electrically releasing DNQX and the release dynamic is characterized with fluorescence microscopy and mathematical modeling. In vivo DNQX release is demonstrated in rat somatosensory cortex. Sensory-evoked neural activity is immediately (<1s) and locally (<446 µm) suppressed by electrically triggered DNQX release. Furthermore, a single DNQX-loaded, dual-layer coating is capable of inducing effective neural inhibition for at least 26 times without observable degradation in efficacy. Incorporation of the novel drug releasing coating onto individual MEA electrodes offers many advantages over alternative methods by increasing spatial-temporal precision and improving drug selection flexibility without increasing the device's size.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and Intelligence, Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Kirkpatrick D, Edwards MA, Flowers PA, Wightman RM. Characterization of solute distribution following iontophoresis from a micropipet. Anal Chem 2014; 86:9909-16. [PMID: 25157675 PMCID: PMC4188272 DOI: 10.1021/ac5026072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Iontophoresis uses a current to eject solution from the tip of a barrel formed from a pulled glass capillary and has been employed as a method of drug delivery for neurochemical investigations. Much attention has been devoted to resolving perhaps the greatest limitation of iontophoresis, the inability to determine the concentration of substances delivered by ejections. To further address this issue, we evaluate the properties of typical ejections such as barrel solution velocity and its relation to the ejection current using an amperometric and liquid chromatographic approach. These properties were used to predict the concentration distribution of ejected solute that was then confirmed by fluorescence microscopy. Additionally, incorporation of oppositely charged fluorophores into the barrel investigated the role of migration on the mass transport of an ejected species. Results indicate that location relative to the barrel tip is the primary influence on the distribution of ejected species. At short distances (<100 μm), advection from electroosmotic transport of the barrel solution may significantly contribute to the distribution, but this effect can be minimized through the use of low to moderate ejection currents. However, as the distance from the source increases (>100 μm), even solute ejected using high currents exhibits diffusion-limited behavior. Lastly a time-dependent theoretical model was constructed and is used with experimental fluorescent profiles to demonstrate how iontophoresis can generate near-uniform concentration distributions near the ejection source.
Collapse
Affiliation(s)
- Douglas
C. Kirkpatrick
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Martin A. Edwards
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Paul A. Flowers
- Department
of Chemistry and Physics, University of
North Carolina at Pembroke, Pembroke, North Carolina 28372, United States
| | - R. Mark Wightman
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
5
|
Wang T, Rusu SI, Hruskova B, Turecek R, Borst JGG. Modulation of synaptic depression of the calyx of Held synapse by GABA(B) receptors and spontaneous activity. J Physiol 2013; 591:4877-94. [PMID: 23940376 DOI: 10.1113/jphysiol.2013.256875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The calyx of Held synapse of the medial nucleus of the trapezoid body is a giant axosomatic synapse in the auditory brainstem, which acts as a relay synapse showing little dependence of its synaptic strength on firing frequency. The main mechanism that is responsible for its resistance to synaptic depression is its large number of release sites with low release probability. Here, we investigated the contribution of presynaptic GABA(B) receptors and spontaneous activity to release probability both in vivo and in vitro in young-adult mice. Maximal activation of presynaptic GABA(B) receptors by baclofen reduced synaptic output by about 45% in whole-cell voltage clamp slice recordings, which was accompanied by a reduction in short-term depression. A similar reduction in transmission was observed when baclofen was applied in vivo by microiontophoresis during juxtacellular recordings using piggyback electrodes. No significant change in synaptic transmission was observed during application of the GABA(B) receptor antagonist CGP54626 both during in vivo and slice recordings, suggesting a low ambient GABA concentration. Interestingly, we observed that synapses with a high spontaneous frequency showed almost no synaptic depression during auditory stimulation, whereas synapses with a low spontaneous frequency did depress during noise bursts. Our data thus suggest that spontaneous firing can tonically reduce release probability in vivo. In addition, our data show that the ambient GABA concentration in the auditory brainstem is too low to activate the GABA(B) receptor at the calyx of Held significantly, but that activation of GABA(B) receptors can reduce sound-evoked synaptic depression.
Collapse
Affiliation(s)
- Tiantian Wang
- J. G. G. Borst: Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Herr NR, Wightman RM. Improved techniques for examining rapid dopamine signaling with iontophoresis. Front Biosci (Elite Ed) 2013; 5:249-57. [PMID: 23276986 DOI: 10.2741/e612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dopamine is a neurotransmitter that is utilized in brain circuits associated with reward processing and motor activity. Advances in microelectrode techniques and cyclic voltammetry have enabled its extracellular concentration fluctuations to be examined on a subsecond time scale in the brain of anesthetized and freely moving animals. The microelectrodes can be attached to micropipettes that allow local drug delivery at the site of measurement. Drugs that inhibit dopamine uptake or its autoreceptors can be evaluated while only affecting the brain region directly adjacent to the electrode. The drugs are ejected by iontophoresis in which an electrical current forces the movement of molecules by a combination of electrical migration and electroosmosis. Using electroactive tracer molecules, the amount ejected can be measured with cyclic voltammetry. In this review we will give an introduction to the basic principles of iontophoresis, including a historical account on the development of iontophoresis. It will also include an overview of the use of iontophoresis to study neurotransmission of dopamine in the rat brain. It will close by summarizing the advantages of iontophoresis and how the development of quantitative iontophoresis will facilitate future studies.
Collapse
Affiliation(s)
- Natalie Rios Herr
- The University of North Carolina at Chapel Hill, Department of Chemistry, CB 3290, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
7
|
Stauffer WR, Lau PM, Bi GQ, Cui XT. Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes. J Neural Eng 2011; 8:044001. [PMID: 21633143 DOI: 10.1088/1741-2560/8/4/044001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We demonstrate targeted perturbation of neuronal activity with controlled release of neurochemicals from conducting polymer-coated microelectrodes. Polymer coating and chemical incorporation are achieved through individually addressable electrodeposition, a process that does not compromise the recording capabilities of the electrodes. Release is realized by the application of brief voltage pulses that electrochemically reduce the polymer and dissociate incorporated neurochemicals; whereby they can diffuse away and achieve locally effective concentrations. Inhibition of evoked synaptic currents in neurons within 200 µm of a 6-cyano-7-nitroquinoxaline-2,3-dione releasing electrode lasts for several seconds. Spiking activity of neurons in local circuits recorded extracellularly near the releasing electrode is silenced for a similar duration following release. This methodology is compatible with many neuromodulatory chemicals and various recording electrodes, including in vitro and implantable neural electrode arrays, thus providing an inexpensive and accessible technique capable of achieving sophisticated patterned chemical modulation of neuronal circuits.
Collapse
Affiliation(s)
- W R Stauffer
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
8
|
Noudoost B, Moore T. A reliable microinjectrode system for use in behaving monkeys. J Neurosci Methods 2010; 194:218-23. [PMID: 20951736 DOI: 10.1016/j.jneumeth.2010.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
We describe a modified system for the precise delivery of small volumes of drugs to brain sites of behaving monkeys during simultaneous single-neuron electrophysiology. The system combines a conventional microelectrode for recording single neurons and a small gauge microsyringe in a durable design. It incorporates newly available microfluidic components to achieve high-precision fluidic control. The system is inexpensive, reusable and easy to fabricate; it minimizes neural tissue damage and achieves reliable single-neuron recordings at the injection site.
Collapse
Affiliation(s)
- Behrad Noudoost
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
9
|
Herr NR, Belle AM, Daniel KB, Carelli RM, Wightman RM. Probing presynaptic regulation of extracellular dopamine with iontophoresis. ACS Chem Neurosci 2010; 1:627-638. [PMID: 21060714 DOI: 10.1021/cn100056r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Iontophoresis allows for localized drug ejections directly into brain regions of interest driven by the application of current. Our lab has previously adapted a method to quantitatively monitor iontophoretic ejections. Here those principles have been applied in vivo to modulate electrically evoked release of dopamine in anesthetized rats. A neutral, electroactive marker molecule that is ejected purely by electroosmotic flow (EOF) was used to monitor indirectly the ejection of electroinactive dopaminergic drugs (raclopride, quinpirole, and nomifensine). Electrode placements were marked with an iontophoretically ejected dye, pontamine sky blue. We show that EOF marker molecules, acetaminophen (AP) and 2-(4-nitrophenoxy) ethanol, have no effect on electrically evoked dopamine release in the striatum or the sensitivity of electrode. Additionally, we establish that a short, 30 second ejection of raclopride, quinpirole, or nomifensine with iontophoresis is sufficient to affect autoreceptor regulation and the re-uptake of dopamine. These effects vary in lifetime, indicating that this technique can be used to study receptor kinetics.
Collapse
|
10
|
Houweling AR, Doron G, Voigt BC, Herfst LJ, Brecht M. Nanostimulation: Manipulation of Single Neuron Activity by Juxtacellular Current Injection. J Neurophysiol 2010; 103:1696-704. [DOI: 10.1152/jn.00421.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the mammalian brain, many thousands of single-neuron recording studies have been performed but less than 10 single-cell stimulation studies. This paucity of single-cell stimulation data reflects a lack of easily applicable single-cell stimulation techniques. We provide a detailed description of the procedures involved in nanostimulation, a single-cell stimulation method derived from the juxtacellular labeling technique. Nanostimulation is easy to apply and can be directed to a wide variety of identifiable neurons in anesthetized and awake animals. We describe the recording approach and the parameters of the electric configuration underlying nanostimulation. We use glass pipettes with a DC resistance of 4–7 MΩ. Obtaining the juxtacellular configuration requires a close contact between pipette tip and neuron and is associated with a several-fold increase in resistance to values ≥20 MΩ. The recorded action potential (AP) amplitude grows to ≥2 mV, and neurons can be activated with currents in the nanoampere range—hence the term nanostimulation. While exact AP timing has not been achieved, AP frequency and AP number can be parametrically controlled. We demonstrate that nanostimulation can also be used to selectively inhibit sensory responses in identifiable neurons. Nanostimulation is biophysically similar to electroporation, and based on this assumption, we argue that nanostimulation operates on membranes in the micrometer area directly below the pipette tip, where membrane pores are induced by high transmembrane voltage. There is strong evidence to suggest that nanostimulation selectively activates single neurons and that the evoked effects are cell-specific. Nanostimulation therefore holds great potential for elucidating how single neurons contribute to behavior.
Collapse
Affiliation(s)
- Arthur R. Houweling
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany; and
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guy Doron
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany; and
| | - Birgit C. Voigt
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany; and
| | - Lucas J. Herfst
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany; and
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany; and
| |
Collapse
|
11
|
Abstract
Single neurons in the somatosensory cortex are divisible into a population with receptive fields and a population without receptive fields. These two populations display different laminar distributions, and their respective functions are unknown. We compared other physiological characteristics of these two neuronal populations in an attempt to understand why some neurons lack a receptive field. Only 23% of 465 neurons isolated in the somatosensory cortex of halothane-anesthetized cats displayed a cutaneous receptive field. The iontophoretic administration of glutamate uncovered input from the periphery in another 34% of the sample, leaving 43% of the neurons without evidence of peripheral input under these experimental conditions. Neurons with a receptive field were spontaneously active much more often than neurons lacking peripheral inputs, and their rates of discharge were higher. No differences were found between neurons having a receptive field uncovered with glutamate and those unaffected by glutamate. In all classes of neurons, those cells with spontaneous activity were excited by smaller amounts of glutamate than were silent neurons, but sensitivity to glutamate was not correlated with the presence or absence of a receptive field. We infer that some classes of somatosensory cortical neurons receive strong thalamocortical inputs, whereas others have only relatively weak or no thalamocortical connections. In other experiments we have shown also that those neurons lacking a receptive field and/or spontaneous activity were more likely to be plastic than those with stronger inputs (see Warren and Dykes, 1993a,b), suggesting that neurons having weaker afferent inputs can be more readily modified under certain circumstances.
Collapse
Affiliation(s)
- R A Warren
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
12
|
Affiliation(s)
- Patricia L Brooks
- Systems Neurobiology Laboratory, Department of Cell and Systems Biology, University of Toronto, Canada
| | | |
Collapse
|
13
|
Robinson DL, Hermans A, Seipel AT, Wightman RM. Monitoring rapid chemical communication in the brain. Chem Rev 2008; 108:2554-84. [PMID: 18576692 PMCID: PMC3110685 DOI: 10.1021/cr068081q] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Donita L Robinson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
14
|
Vahle-Hinz C, Detsch O, Siemers M, Kochs E. Contributions of GABAergic and glutamatergic mechanisms to isoflurane-induced suppression of thalamic somatosensory information transfer. Exp Brain Res 2006; 176:159-72. [PMID: 16847609 DOI: 10.1007/s00221-006-0604-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 06/14/2006] [Indexed: 12/01/2022]
Abstract
Indications for a pivotal role of the thalamocortical network in producing the state of anesthesia have come from in vivo animal studies as well as imaging studies in humans. We studied possible synaptic mechanisms of anesthesia-induced suppression of touch perception in the rat's thalamus. Thalamocortical relay neurons (TCNs) receive ascending and descending glutamatergic excitatory inputs via NMDA and non-NMDA receptors (AMPAR) and are subjected to GABA(A)ergic inhibitory input which shapes the sensory information conveyed to the cortex. The involvement of these synaptic receptors in the suppressive effects of the prototypic volatile anesthetic isoflurane was assessed by local iontophoretic administration of receptor agonists/antagonists during extracellular recordings of TCNs of the ventral posteromedial nucleus responding to whisker vibration in rats anesthetized with isoflurane concentrations of approximately 0.9 vol.% (baseline) and approximately 1.9 vol.% (ISO high). ISO high induced a profound suppression of response activity reflected by a conversion of the sustained vibratory responses to ON responses. Administration of NMDA, AMPA, or GABA(A)R antagonists caused a reversal to sustained responses in 88, 94 and 88% of the neurons, respectively, with a recovery to baseline levels of response activity. The data show that the block of thalamocortical transfer of tactile information under ISO high may result from an enhancement of GABA(A)ergic inhibition and/or a reduction of glutamatergic excitation. Furthermore, they show that the ascending vibratory signals still reach the thalamic neurons under the high isoflurane concentration, indicating that this input is resistant to isoflurane while the attenuation of excitation may be brought about at the corticothalamic glutamatergic facilitatory input.
Collapse
Affiliation(s)
- Christiane Vahle-Hinz
- Institut für Neurophysiologie und Pathophysiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | | | | | | |
Collapse
|
15
|
McDaid J, Dallimore JE, Mackie AR, Napier TC. Changes in accumbal and pallidal pCREB and deltaFosB in morphine-sensitized rats: correlations with receptor-evoked electrophysiological measures in the ventral pallidum. Neuropsychopharmacology 2006; 31:1212-26. [PMID: 16123760 PMCID: PMC1464405 DOI: 10.1038/sj.npp.1300854] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of mu-opioid receptors in the ventral pallidum (VP) is important for the induction of behavioral sensitization to morphine in rats. The present study was designed to ascertain if neurons within the VP demonstrate sensitization at a time when morphine-induced behavioral sensitization occurred (ie 3 or 14 days after five once-daily injections of 10 mg/kg i.p. morphine) in rats. Western blotting was used to evaluate transcription factors altered by opiates, CREB and deltaFosB. CREB levels did not change in the VP, but there was a significant decrease in levels of its active, phosphorylated form (pCREB) at both 3- and 14-days withdrawal. DeltaFosB levels were elevated following a 3-day withdrawal, but returned to normal by 14 days. This profile also was obtained from nucleus accumbens tissue. In a separate group of similarly treated rats, in vivo electrophysiological recordings of VP neuronal responses to microiontophoretically applied ligands were carried out after 14-days withdrawal. The firing rate effects of local applications of morphine were diminished in rats withdrawn from i.p. morphine. Repeated i.p. morphine did not alter GABA-mediated suppression of firing, or the rate enhancing effects of the D1 dopamine receptor agonist SKF82958 or glutamate. However, VP neurons from rats withdrawn from repeated i.p. morphine showed a higher propensity to enter a state of depolarization inactivation to locally applied glutamate. Overall, these findings reveal that decreased pCREB in brain regions such as the VP accompanies persistent behavioral sensitization to morphine and that this biochemical alteration may influence the excitability of neurons in this brain region.
Collapse
Affiliation(s)
- John McDaid
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | - Jeanine E Dallimore
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | - Alexander R Mackie
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | - T Celeste Napier
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
- *Correspondence: Dr TC Napier, Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, 2160 South 1st Avenue, Maywood, IL 60153, USA, Tel: +1 708 216 8427, Fax: +1 708 216 6596, E-mail:
| |
Collapse
|
16
|
Kurt S, Crook JM, Ohl FW, Scheich H, Schulze H. Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex. Hear Res 2006; 212:224-35. [PMID: 16442250 DOI: 10.1016/j.heares.2005.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/07/2005] [Accepted: 12/01/2005] [Indexed: 11/26/2022]
Abstract
We have compared the effects of microiontophoretic application of the GABA(A)-receptor antagonists bicuculline (BIC) and gabazine (SR95531) on responses to pure tones and to sinusoidally amplitude-modulated (AM) tones in cells recorded extracellularly from primary auditory cortex (AI) of Mongolian gerbils. Besides similar effects in increasing spontaneous and stimulus-evoked activity and their duration, both drugs elicited differential effects on spectral tuning and synchronized responses to AM tones. In contrast to gabazine, iontophoresis of the less potent GABA(A)-antagonist BIC often resulted in substantial broadening of frequency tuning for pure tones and an elimination of synchronized responses to AM tones, particularly with high ejecting currents. BIC-induced effects which could not be replicated by application of gabazine were presumably due to the well-documented, non-GABAergic side-effects of BIC on calcium-dependent potassium channels. Our results thus provide strong evidence that GABA(A)-mediated inhibition in AI does not sharpen frequency tuning for pure tones, but rather contributes to the processing of fast temporal modulations of sound envelopes. They also demonstrate that BIC can have effects on neuronal response selectivity which are not due to blockade of GABAergic inhibition. The results have profound implications for microiontophoretic studies of the role of intracortical inhibition in sensory cortex.
Collapse
Affiliation(s)
- Simone Kurt
- Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Vahle-Hinz C, Hicks TP. Temporal shaping of phasic neuronal responses by GABA- and non-GABA-mediated mechanisms in the somatosensory thalamus of the rat. Exp Brain Res 2003; 153:310-21. [PMID: 14504856 DOI: 10.1007/s00221-003-1623-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 07/02/2003] [Indexed: 11/26/2022]
Abstract
Trapezoidal mechanical movement of whiskers was used to study the responses of 44 single thalamic ventral posteromedial (VPM) neurons to dynamic and static stimulus components in urethane-anesthetized rats. The effects of local administration of the GABAA receptor antagonist, bicuculline, and the GABAB receptor antagonist, 2-hydroxysaclofen, were tested to determine whether and to what extent the responses altered when GABA-mediated inhibitory synaptic transmission was blocked. Two classes of phasically responding neurons were identified, ON/OFF and movement-sensitive types. Bicuculline enhanced the magnitudes of the responses from both types by 2.5-fold and ON/OFF responses were converted to movement-sensitive ones in 17 (43%) of the 40 ON/OFF neurons. 2-hydroxysaclofen either had no effect or appeared to act like a GABA agonist. In 21 (48%) neurons, a significantly reduced responsiveness was observed during a 100-ms period following the ON and OFF responses. This discharge suppression was especially prominent during the plateau phase of the stimulus, and in some cases extended for several 100 ms following its onset. This suppression was overcome neither by the GABA receptor antagonists, nor by ejection of AMPA or glutamate at currents that otherwise produced vigorous excitation. These results suggest that one functional role for GABAA-receptor-mediated synaptic inhibition in the somatosensory thalamus is the intramodal regulation of the form of expression of phasically responding neurons. Other thalamic inhibitory processes not mediated by GABAA or GABAB receptors that help to shape the expression of the responses of certain phasic neurons to maintained stimulation may exist. Overall, these mechanisms appear to mediate the precision of timing of thalamic neuronal firing in response to the rat's tactile environment.
Collapse
Affiliation(s)
- Christiane Vahle-Hinz
- Institut für Neurophysiologie und Pathophysiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
18
|
Detsch O, Kochs E, Siemers M, Bromm B, Vahle-Hinz C. Differential effects of isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurones in vivo. Br J Anaesth 2002; 89:294-300. [PMID: 12378670 DOI: 10.1093/bja/aef170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mechanosensory thalamocortical relay neurones (TCNs) receive glutamatergic excitatory input and are subjected to gamma-aminobutyric acid (GABA)Aergic inhibitory input. This study assessed the effects of an increase in concentration of isoflurane on thalamic excitatory and inhibitory mechanisms. METHODS TCNs (n = 15) of the thalamic ventral posteromedial nucleus responding to mechanical stimulation of whiskers were investigated in rats anaesthetized with end-tidal concentrations of isoflurane of approximately 0.9% (ISOlow, baseline) and approximately 1.9% (ISOhigh). Response activity induced by controlled vibratory movement of single whiskers was recorded before, during and after iontophoretic administration of the GABAA receptor antagonist bicuculline to the vicinity of the recorded neurone. RESULTS The increase in concentration of isoflurane induced a suppression of vibratory responses to 14 (4)% [mean (SEM)] of baseline activity. Blockade of GABAA receptors by bicuculline during ISOlow and ISOhigh caused increases in response activity to 259 (32)% and 116 (25)% of baseline activity, respectively. The increase in isoflurane concentration enhanced overall inhibitory inputs by 102 (38)%, whilst overall excitatory inputs were reduced by 54 (7)%. CONCLUSIONS These data suggest that doubling the concentration of isoflurane doubles the strength of GABAAergic inhibition and decreases the excitatory drive of TCNs by approximately 50%. The isoflurane-induced enhancement of GABAAergic inhibition led to a blockade of thalamocortical information transfer which was not accomplished by the effects of isoflurane on glutamatergic synaptic transmission alone. Thus, it appears that, with respect to transmission of information in the thalamus, the most prominent action of isoflurane is an enhancement of GABAAergic synpatic inhibition, and that effects on glutamatergic neurotransmission may contribute to a lesser extent.
Collapse
Affiliation(s)
- O Detsch
- Klinik für Anaesthesiologie, Technische Universität München, München, Germany
| | | | | | | | | |
Collapse
|
19
|
Wörgötter F, Eysel UT. Topographical Aspects of Intracortical Excitation and Inhibition Contributing to Orientation Specificity in Area 17 of the Cat Visual Cortex. Eur J Neurosci 2002; 3:1232-1244. [PMID: 12106222 DOI: 10.1111/j.1460-9568.1991.tb00057.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracortical mechanisms contributing to orientation and direction specificity were investigated with a method of local cortical inactivation. Single-unit activity was recorded in area 17 of the anaesthetized cat while a small volume of cortical tissue 400 - 2900 microm lateral to the recorded cell was inactivated by gamma-aminobutyric acid (GABA) microiontophoresis. Cells were stimulated with moving bars of variable orientation and changes of the response were monitored. Recording and inactivation sites were histologically verified. Statistically significant changes in orientation tuning during GABA-induced remote inactivation were observed in 80 of 145 cells (55%), and consisted in a reduced orientation specificity due to either increased (36%) or decreased (19%) responses. Increases of responses were more pronounced for the non-optimal orientations. This effect mainly occurred with GABA application at distances around 500 microm and is interpreted as loss of inhibition. Reduced orientation specificity as a result of decreasing response mainly to the optimal orientation was interpreted as loss of excitation. This effect most frequently occurred with inactivation at distances around 1000 microm. Loss of inhibition was also elicited from a distance of 1000 microm; such inhibition, however, affected only directionality, without inducing changes in orientation tuning. For several cells at distances >1000 microm from the inactivation site a temporal sequence consisting of a change in direction specificity followed by a reduction of orientation specificity, and finally by direct GABAergic inhibition of the cell under study, could be induced with gradually increasing ejecting currents. The results indicate that excitation and inhibition originating from populations of neurons at different horizontal distances differentially contribute to direction and orientation specificity of a given visual cortical cell.
Collapse
Affiliation(s)
- Florentin Wörgötter
- Institute of Physiology, Department of Neurophysiology, Ruhr-Universität Bochum, D-4630 Bochum, FRG
| | | |
Collapse
|
20
|
Vahle-Hinz C, Detsch O. What can in vivo electrophysiology in animal models tell us about mechanisms of anaesthesia? Br J Anaesth 2002; 89:123-42. [PMID: 12173225 DOI: 10.1093/bja/aef166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- C Vahle-Hinz
- Institut für Physiologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | |
Collapse
|
21
|
Abstract
We present a technique for stimulating post-synaptic receptors with neurotransmitter locally at a single synapse and with a concentration profile that is comparable to endogenous stimulation. We modify the technique of iontophoresis to use a 0.1 microm electrode tip for local stimulation, and we combine it with fast capacitance compensation to achieve high-speed application from a high-resistance tip. Ejection of fluorescent dye from the electrode shows that transmitter can be limited to the width of a single synapse and to a time scale similar to an endogenous event. The speed and localization of transmitter is confirmed by iontophoretically stimulating single labeled synapses in cultured hippocampal neurons held under voltage clamp. The amount of transmitter ejected is linear and reproducible over a physiologically relevant range, making this technique useful for examining receptor kinetics and receptor insertion/removal. The system should be capable of delivering any charged neurotransmitter, and we show examples using glutamate and GABA. The technique is also combined with computer-controlled manipulation to study the strength and plasticity of multiple synapses in real-time.
Collapse
Affiliation(s)
- Jonathan G Murnick
- Department of Biology, RIKEN-MIT Neuroscience Research Center, Center for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
22
|
Mitrovic I, Napier TC. Mu and kappa opioid agonists modulate ventral tegmental area input to the ventral pallidum. Eur J Neurosci 2002; 15:257-68. [PMID: 11849293 DOI: 10.1046/j.0953-816x.2001.01860.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ventral pallidum (VP) is situated at the convergence of midbrain dopamine and accumbal opioid efferent projections. Using in vivo electrophysiological procedures in chloral hydrate-anaesthetized rats, we examined whether discrete application of mu- [D-Ala2,N-Me-Phe4,Gly-ol5 (DAMGO)] or kappa- (U50488) opioid receptor agonists could alter VP responses to electrical stimulation of ventral tegmental area. Rate suppressions occurred frequently following ventral tegmental area stimulation. Consistent with an involvement of dopamine in this effect, none of the 12 spontaneously active ventral pallidal neurons recorded in rats that had monoamines depleted by reserpine responded to electrical stimulation of ventral tegmental area. Moreover, in intact rats, the dopamine antagonist flupenthixol attenuated evoked suppression in 100% of the neurons tested; however, the GABAA antagonist bicuculline was able to slightly attenuate the response in 50% of the neurons tested. These observations concur with our previous studies in indicating that ventral tegmental area stimulation releases dopamine (and sometimes GABA) onto ventral pallidal neurons. Both DAMGO and U50488 decreased the inhibitory effects of ventral tegmental area stimulation. These effects on the endogenously released transmitter differed from those seen with exogenously applied dopamine, for DAMGO did not alter the efficacy or potency of microiontophoretically applied dopamine. Taken together, these observations suggest that the interaction between DAMGO and dopamine does not occur at a site that is immediately postsynaptic to the dopaminergic input within the VP, but rather that opioid modulation involves mechanisms governing presynaptically released dopamine. These modulatory processes would enable ventral pallidal opioids to gate the influence of ventral tegmental area dopamine transmission on limbic system outputs at the level of the VP.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Dopamine/metabolism
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Globus Pallidus/cytology
- Iontophoresis
- Male
- Neural Pathways
- Nucleus Accumbens/cytology
- Nucleus Accumbens/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Igor Mitrovic
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago Stritch School of Medicine, Building 102, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
23
|
Vahle-Hinz C, Detsch O, Siemers M, Kochs E, Bromm B. Local GABAA Receptor Blockade Reverses Isoflurane’s Suppressive Effects on Thalamic Neurons In Vivo. Anesth Analg 2001; 92:1578-84. [PMID: 11375850 DOI: 10.1097/00000539-200106000-00046] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many in vitro effects of volatile anesthetics are known, but the mechanisms of action are still under debate. Because suppression of sensory perception is one of the major goals of general anesthesia, we studied the effects of isoflurane on the processing of somatosensory information in anesthetized rats. Local iontophoretic administration of the gamma-aminobutyric acid-A (GABA(A)) receptor antagonist bicuculline in the thalamic ventral posteromedial nucleus reversed suppressive effects of isoflurane on thalamocortical relay neurons (TCNs). The action potential discharges of TCNs (n = 23) in response to defined mechanical stimulation of receptive fields seen with small concentrations of isoflurane (0.79% +/- 0.01%, mean +/- SEM) were suppressed under large concentrations (1.44% +/- 0.04%). In addition, the tonic response pattern was lost, which initially encoded the information about the stimulus features. In 70% of TCNs, bicuculline administration reestablished the initially present tonic response pattern under large isoflurane concentrations. These results indicate that isoflurane suppresses somatosensory information transfer at the thalamic level in vivo, apparently by enhancing thalamic GABA(A) receptor-mediated inhibition.
Collapse
Affiliation(s)
- C Vahle-Hinz
- Institut für Physiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Specific roles of NMDA and AMPA receptors in direction-selective and spatial phase-selective responses in visual cortex. J Neurosci 2001. [PMID: 11222660 DOI: 10.1523/jneurosci.21-05-01710.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cells in the superficial layers of primary visual cortex (area 17) are distinguished by feedforward input from thalamic-recipient layers and by massive recurrent excitatory connections between neighboring cells. The connections use glutamate as transmitter, and the postsynaptic cells contain both NMDA and AMPA receptors. The possible role of these receptor types in generating emergent responses of neurons in the superficial cortical layers is unknown. Here, we show that NMDA and AMPA receptors are both involved in the generation of direction-selective responses in layer 2/3 cells of area 17 in cats. NMDA receptors contribute prominently to responses in the preferred direction, and their contribution to responses in the nonpreferred direction is reduced significantly by GABAergic inhibition. AMPA receptors decrease spatial phase-selective simple cell responses and generate phase-invariant complex cell responses.
Collapse
|
25
|
Stein C, Davidowa H, Albrecht D. 5-HT(1A) receptor-mediated inhibition and 5-HT(2) as well as 5-HT(3) receptor-mediated excitation in different subdivisions of the rat amygdala. Synapse 2000; 38:328-37. [PMID: 11020236 DOI: 10.1002/1098-2396(20001201)38:3<328::aid-syn12>3.0.co;2-t] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The techniques of extracellular single cell recording and microiontophoresis were used to study the effects of serotonin (5-HT) and of 5-HT(1A), 5-HT(2A/2C) and 5-HT(3) receptor agonists on the spontaneous activity of amygdaloid neurons in rats anesthetized with urethane. The background discharge rate was modified by 5-HT as well as by 5-HT agonists in about two-thirds of neurons tested in different nuclei of the amygdaloid complex. Whereas the 5-HT(2) and 5-HT(3) agonists significantly increased the neuronal discharge rate in nearly all subdivisions of the amygdala, the 5-HT(1A) agonist significantly inhibited the firing rate. Co-administration of bicuculline and 5-HT receptor agonists prevented the 8-OH-DPAT-induced increases in the firing rate in most cases tested, as well as the inhibitory effects of DOI or 2-methyl-5HT. Therefore, GABAergic interneurons seem to be involved in the mediation of serotonergic effects. The action of 5-HT agonists on the neuronal discharge rate was blocked by different receptor-specific antagonists. The results support the hypothesis that 5-HT exerts control throughout the amygdala by acting at least on 5-HT(1A), 5-HT(2A/2C) and 5-HT(3) receptors seemingly located both on projection and interneurons.
Collapse
Affiliation(s)
- C Stein
- Institute of Physiology, Faculty of Medicine (Charité), Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
26
|
Albrecht D, Nitschke T, Von Bohlen Und Halbach O. Various effects of angiotensin II on amygdaloid neuronal activity in normotensive control and hypertensive transgenic [TGR(mREN-2)27] rats. FASEB J 2000; 14:925-31. [PMID: 10783146 DOI: 10.1096/fasebj.14.7.925] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of iontophoretically ejected angiotensin II (Ang II) on the firing rate of neurons in the basolateral complex and the central and cortical amygdala were investigated in two strains of urethane anesthetized rats. In normotensive Sprague-Dawley rats, Ang II induced a significant increase in the discharge rate of responsive amygdaloid neurons. In contrast, in the hypertensive transgenic [TGR(mREN-2)27] rats with higher brain Ang II level, Ang II more often caused inhibitory effects on the amygdaloid firing rate in comparison with controls. The distribution of nonresponsive, excited, and inhibited neurons differed significantly in the two rat strains. Moreover, the responsiveness of amygdaloid neurons was significantly higher in transgenic rats in comparison with controls. Both the increase and the decrease in the firing rate caused by Ang II could be blocked either by angiotensin AT(1) or by AT(2) receptor-specific antagonists. In many cases, the Ang II-induced decrease in the firing rate was antagonized by bicuculline, a gamma-aminobutyric acid (GABA(A)) antagonist. The higher responsiveness of amygdaloid neurons in transgenic rats as well as the predominance of inhibitory effects, presumedly mediated by GABAergic interneurons, could change the output of the amygdala and its influence on thirst, kidney, and cardiovascular function or on processes of learning and anxiety.
Collapse
Affiliation(s)
- D Albrecht
- Institute of Physiology, Faculty of Medicine (Charité), Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
27
|
Pernberg J, Jirmann KU, Eysel UT. Structure and dynamics of receptive fields in the visual cortex of the cat (area 18) and the influence of GABAergic inhibition. Eur J Neurosci 1998; 10:3596-606. [PMID: 9875339 DOI: 10.1046/j.1460-9568.1998.00364.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Receptive fields (RFs) in the visual cortex are characterized by spatiotemporal profiles that have been described in detail for area 17 simple cells. In this study, we analyse spatial and temporal RF properties of simple and complex cells in layer II/III of area 18 of the anaesthetized adult cat, using the reverse correlation method with brief 50 ms presentations of flashing bright and dark bars. Stimuli were presented with preferred orientation as previously determined by moving bars. Simple cell RFs were characterized by spatially and temporally separable ON and OFF subfields, while in complex cells ON and OFF subfields were superimposed. To discriminate possible contributions of GABAergic inhibition to RF structure and response dynamics in area 18, we have used three-barrelled micropipettes for single cell recordings and microiontophoresis, and have documented ON and OFF responses before, during and after application of bicuculline methiodide for blockade of GABAA receptors. During blockade of GABAergic inhibition, the stimulus-induced and resting discharge frequency increased, and in about 50% of the cells both ON and OFF subfields changed significantly in space and/or time in a reversible manner. In space, blockade of inhibition widened RF subfields, whereas in time, it shortened the duration of the excitatory cell response in simple and complex cells. ON and OFF subfields separated in space and time (simple cells), or time (complex cells) became less isolated or even superimposed. The results indicate substantial local inhibitory processing contributing to spatiotemporal RF properties in layers II/III of area 18 of the cat.
Collapse
Affiliation(s)
- J Pernberg
- Abteilung für Neurophysiologie, Fakultät für Medizin, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
28
|
Chen J, Wise KD, Hetke JF, Bledsoe SC. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng 1997; 44:760-9. [PMID: 9254989 DOI: 10.1109/10.605435] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A bulk-micromachined multichannel silicon probe capable of selectively delivering chemicals at the cellular level as well as electrically recording from and stimulating neurons in vivo has been developed. The process buries multiple flow channels in the probe substrate, resulting in a hollow-core device. Microchannel formation requires only one mask in addition to those normally used for probe fabrication and is compatible with on-chip signal-processing circuitry. Flow in these microchannels has been studied theoretically and experimentally. For an effective channel diameter of 10 microns, a channel length of 4 mm, and water as the injected fluid, the flow velocity at 11 torr is about 1.3 mm/s, delivering 100 pl in 1 s. Intermixing of chemicals with the tissue fluid due to natural diffusion through the outlet orifice becomes significant for dwell times in excess of about 30 min, and a shutter is proposed for chronic use. The probe has been used for acute monitoring of the neural responses to various chemical stimuli in guinea pig superior and inferior colliculus.
Collapse
Affiliation(s)
- J Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109-2122, USA
| | | | | | | |
Collapse
|
29
|
Albrecht D, Broser M, Krüger H, Bader M. Effects of angiotensin II and IV on geniculate activity in nontransgenic and transgenic rats. Eur J Pharmacol 1997; 332:53-63. [PMID: 9298925 DOI: 10.1016/s0014-2999(97)01062-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microiontophoretic ejection of angiotensin II and angiotensin IV in the vicinity of geniculate neurons was used to study the effects of these peptides on the discharge rate and the discharge pattern of extracellularly recorded activity. The main aim of the experiments was to study the effects of angiotensins in different strains of rats anesthetized with urethane (normotensive Wistar, normotensive Sprague-Dawley and hypertensive, transgenic (TGR(mREN2)27) rats). Both angiotensins mostly increased the spontaneous activity of angiotensin-sensitive geniculate neurons in all strains. Angiotensin II reduced the number of bursts in most neurons, whereas angiotensin IV significantly enhanced it. Inhibitory effects of angiotensins on spontaneous as well as on light-evoked activity could be effectively blocked by GABA(A) or GABA(B) receptor antagonists. Therefore, it can be supposed that angiotensin-containing afferent fibers innervate both projection and local circuit neurons of the dorsal lateral geniculate nucleus. In addition, angiotensin II suppressed excitation induced by glutamate receptor agonists in most neurons tested. Angiotensin-induced effects could be blocked by specific receptor antagonists. There were no significant differences in the effects of angiotensins in the various strains of rats, except for the latencies of the neuronal responses to the iontophoretic ejection of angiotensins.
Collapse
Affiliation(s)
- D Albrecht
- Institute of Physiology, Faculty of Medicine (Charité), Humboldt University, Berlin, Germany.
| | | | | | | |
Collapse
|
30
|
Johnson PI, Napier TC. Morphine modulation of GABA- and glutamate-induced changes of ventral pallidal neuronal activity. Neuroscience 1997; 77:187-97. [PMID: 9044386 DOI: 10.1016/s0306-4522(96)00482-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microiontophoresis was used to investigate the influence of morphine on the GABA- and glutamate-evoked responses of ventral pallidal neurons recorded extracellularly from chloral hydrate-anesthetized rats. Of the GABA-sensitive neurons (50 of 69 tested) in the ventral pallidum, all displayed a decreased firing rate when GABA was applied, whereas all of the glutamate-sensitive neurons (29 of 40 tested) increased neuronal activity in the presence of glutamate. The majority of ventral pallidal cells tested (65 of 83) were sensitive to iontophoretically applied morphine, and both increases and decreases in neuronal activity were observed. The ability of morphine to alter the ratio between amino acid-evoked activity ("signal") and spontaneous firing ("noise") was used as an indicator of morphine modulation. A morphine subthreshold ejection current, i.e. one that did not change spontaneous firing rate, and a morphine ejection current that produced approximately 50% of the maximum opioid-induced neuronal response were chosen for this evaluation. When morphine was co-iontophoresed with GABA or glutamate, attenuation of the amino acid signal-to-noise ratio was generally seen, though some potentiations were observed. These changes were independent of the direction of morphine-induced changes in spontaneous firing rate. Both sub- and suprathreshold ejection currents were capable of affecting GABA- and glutamate-evoked responses. These data suggest that morphine is a robust ventral pallidal neuromodulator. As ventral pallidal amino acid activity is important in the integration of sensorimotor information, opioid modulation of amino acid transmission in the ventral pallidum may have a profound effect on this integration.
Collapse
Affiliation(s)
- P I Johnson
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood IL 60153, USA
| | | |
Collapse
|
31
|
Fu J, Lorden JF. An easily constructed carbon fiber recording and microiontophoresis assembly. J Neurosci Methods 1996; 68:247-51. [PMID: 8912197 DOI: 10.1016/0165-0270(96)82061-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Traditional multibarreled pipette electrodes are still widely used in microiontophoresis studies. Although better electrodes have been introduced, they are difficult and time-consuming to make. Construction of a carbon fiber recording and microiontophoresis assembly is described here. The construction of a carbon fiber electrode assembly is easy and carbon fibers have excellent characteristics for recording extracellular single unit activity. Signal-to-noise ratio of the carbon fiber electrode is maintained when combined with microiontophoresis. The electrode assembly can be used repeatedly, if cleaned properly, and it can be used to make marking lesions upon completion of an experiment.
Collapse
Affiliation(s)
- J Fu
- Department of Psychology, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
32
|
Habbicht H, Vater M. A microiontophoretic study of acetylcholine effects in the inferior colliculus of horseshoe bats: implications for a modulatory role. Brain Res 1996; 724:169-79. [PMID: 8828565 DOI: 10.1016/0006-8993(96)00224-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of acetylcholine (ACh) in processing acoustical information in the inferior colliculus (IC) of awake horseshoe bats (Rhinolophus rouxi) were examined with single cell recordings and microiontophoresis. Cholinergic agonists, acetylcholine and carbachol raised the stimulus evoked discharge in 37% and suppressed responses in 16% of the sample. They did not alter the shapes of tuning curves and rate-intensity functions but the latter showed parallel shifting. The nicotinic antagonist, hexamethonium raised neuronal activity in 52% of neurons without affecting discharge patterns. The nonspecific muscarinic antagonist atropine was mostly inhibitory (62% of units) and caused changes in temporal discharge patterns by affecting the tonic response component. The selective muscarinic ml antagonist pirenzepine, also had an inhibitory effect (37% of units) and predominantly influenced the tonic response component. The selective m2 antagonist, gallamine however produced mainly excitatory effects (64% of units) and changed temporal discharge patterns by adding tonic response components. These findings may indicate a differential pre- and postsynaptic synaptic distribution of m1/m2 receptors in the inferior colliculus as reported for other brain structures. The results indicate that ACh plays a neuromodulatory transmitter role in the auditory midbrain by setting the level of neuronal activity. Its exact function in particular behavioral contexts remains to be determined, since the origin of cholinergic innervation of the mammalian IC is still unclear.
Collapse
Affiliation(s)
- H Habbicht
- Institut für Zoologie, Universität Regensburg, Germany
| | | |
Collapse
|
33
|
Ying SW, Rusak B, Delagrange P, Mocaer E, Renard P, Guardiola-Lemaitre B. Melatonin analogues as agonists and antagonists in the circadian system and other brain areas. Eur J Pharmacol 1996; 296:33-42. [PMID: 8720474 DOI: 10.1016/0014-2999(95)00684-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We studied the effects of drugs related to melatonin on neuronal firing activity in the suprachiasmatic nucleus, intergeniculate leaflet and other brain areas in urethane-anesthetized Syrian hamsters. We tested melatonin and two naphthalenic derivatives of melatonin, a putative agonist (S20098: N-[2-(7-methoxy-1-naphthyl)ethyl]acetamide), and a putative antagonist (S20928: N-[2-(1-naphthyl)ethyl]cyclobutyl carboxamide). Both melatonin and S20098 given intraperitoneally (i.p.) were able to suppress firing rates of cells in a similar dose-dependent manner, but the effects of S20098 were longer lasting. Iontophoresis of melatonin dose dependently depressed spontaneous and light-evoked activity of cells in the suprachiasmatic nucleus and intergeniculate leaflet, while iontophoresis of S20098 was relatively ineffective, probably because it is a poorly charged compound. S20928 (2.0-10 mg/kg, i.p.) alone decreased firing rates of light-sensitive cells by 25-50% for 5-30 min in the suprachiasmatic nucleus and intergeniculate leaflet; however, low doses (< 2.0 mg/kg) of S20928 partially blocked the effects of melatonin agonists on most cells. The non-selective serotonin antagonist metergoline did not block the effects of either melatonin agonist. Both melatonin agonists and antagonists were less effective when applied to cells in the hippocampus and dorsal lateral geniculate nucleus. These results indicate that S20098 is an agonist acting probably on melatonin receptors in the Syrian hamster brain. S20928 may have mixed agonist/antagonist properties, but at low doses appears to function as an antagonist at melatonin receptors in the suprachiasmatic nucleus and intergeniculate leaflet.
Collapse
Affiliation(s)
- S W Ying
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Vahle-Hinz C, Hicks TP, Gottschaldt KM. Amino acids modify thalamo-cortical response transformation expressed by neurons of the ventrobasal complex. Brain Res 1994; 637:139-55. [PMID: 8180791 DOI: 10.1016/0006-8993(94)91227-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The hypothesis has been tested that inhibitory mechanisms, active spatially and temporally between the input and the output of thalamic neurons, determine the nature of the information transmitted to the cerebral cortex. To enable this assessment, in barbiturate-anesthetized cats and urethane-anesthetized rats juxtacellular recordings were performed together with microiontophoretic ejection of transmitter agonists and antagonists. The effects of these drugs were studied on responses evoked by mechanical stimulation of cutaneous receptive fields (RFs) of neurons in the thalamic ventrobasal complex (VB). Neurons from different parts of the VB were investigated: 29 units were located medially, in the ventral posteromedial nucleus (VPM; facial RFs), and 11 units were located laterally, in the ventral posterolateral nucleus (VPL; forepaw and body RFs). A further eleven VB units had no detectable RF. Twenty-six neurons were tested with electrical stimulation of the somatosensory cortex (SI), 17 of these being identified as thalamo-cortical relay neurons and 5 being classified as presumed interneurons; the remaining 4 could not be activated. Four additional recordings were from trigemino-thalamic or thalamo-cortical fibers. For the quantitative assessment of the neurons' input and output, neuronal activity was induced by feedback-controlled, mechanical trapezoidal and/or sinusoidal stimuli applied to sinus hairs, fur or skin and the numbers of prepotentials and soma spikes were compared in peristimulus time histograms (PSTHs) generated simultaneously for both types of signal from 'DC' recordings. Iontophoretic administration of excitatory amino acids (EAAs) or bicuculline methiodide (BMI) increased output-input ratios in 87% of the cases tested, due to a higher rate of conversion of prepotentials into soma spikes taking place. In cases of neurons exhibiting a sustained-to-transient response pattern, changes to sustained-to-sustained patterns were demonstrated. Tests with gamma-aminobutyric acid (GABA) produced decreased output-input ratios in 90% of the neurons, due to a lower conversion rate of prepotentials into soma spikes taking place. In cases of neurons exhibiting high output-input ratios (sustained-to-sustained type), the responses changed to the sustained-to-transient pattern. For cortically evoked antidromic spikes of VB neurons, GABA produced a failure of the initial segment (IS-) spike to invade the soma, whereas BMI and glutamate (Glu) facilitated soma depolarization. When ejected with relatively higher currents than those needed to alter output-input ratios, EAAs decreased prepotential amplitudes while GABA produced increases in 16 of 18 neurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C Vahle-Hinz
- Abt. Neurobiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | | | | |
Collapse
|
35
|
Godwin DW. A tungsten-in-glass iontophoresis assembly for studying input-output relationships in central neurons. J Neurosci Methods 1993; 49:211-23. [PMID: 8271840 DOI: 10.1016/0165-0270(93)90126-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A method is described for the production of an electrode capable of monitoring and modulating the input-output relationship of thalamic neurons. Tungsten-in-glass electrodes were manufactured with the ability to simultaneously record lateral geniculate nucleus action potentials and associated, retinally evoked S-potentials. The recording electrodes were mounted onto multibarreled micropipettes with iontophoretic capability. The completed electrode assembly permitted micropharmacological modulation of the fraction of lateral geniculate nucleus output spikes to retinal input spikes (the transfer ratio). Iontophoretically applied gamma-aminobutyric acid (GABA) decreased the transfer ratio, an effect countered by the GABAA antagonist, bicuculline. Elevated transfer ratios produced by stimulation of an afferent pathway originating in the parabrachial region of the brainstem were decreased by concurrently applied GABA. The fabrication of this electrode assembly employs simple modifications of existing techniques and separate construction of recording and iontophoretic elements to provide high-quality single-unit recordings coupled with micropharmacological function.
Collapse
Affiliation(s)
- D W Godwin
- Department of Psychology, University of Alabama at Birmingham 35294
| |
Collapse
|
36
|
Cumming-Hood PA, Strahlendorf HK, Strahlendorf JC. Effects of serotonin and the 5-HT2/1C receptor agonist DOI on neurons of the cerebellar dentate/interpositus nuclei: possible involvement of a GABAergic interneuron. Eur J Pharmacol 1993; 236:457-65. [PMID: 8359203 DOI: 10.1016/0014-2999(93)90485-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study was designed to examine the effects of iontophoretically applied serotonin (5-HT) on neurons of the cerebellar dentate/interpositus nuclei in an in vitro slice preparation and to determine if the 5-HT2/1C receptor subtype could be responsible for mediating any effects noted with 5-HT. 5-HT and the 5-HT2/1C-selective agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) were iontophoretically applied alone and during superfusion of the 5-HT2/1C-selective antagonist, ritanserin. 5-HT and DOI elicited either inhibition or excitation of the spontaneous activity of dentate/interpositus neurons. An inhibitory response was induced by both compounds in the majority of cells responding. Ritanserin significantly attenuated the inhibitory response elicited by both 5-HT and DOI. In addition, the inhibitory response to DOI was significantly attenuated by the gamma-aminobutyric acid (GABA) antagonists, bicuculline and picrotoxin. Our results suggest that the 5-HT2/1C receptor subtype may be partially responsible for mediating 5-HT-induced inhibition of dentate/interpositus neurons, possibly via activation of GABAergic interneurons.
Collapse
Affiliation(s)
- P A Cumming-Hood
- Texas Tech University Health Sciences Center, Department of Physiology, Lubbock 79430
| | | | | |
Collapse
|
37
|
Hicks TP, Albus K, Kaneko T, Baumfalk U. Examination of the effects of cholecystokinin 26-33 and neuropeptide Y on responses of visual cortical neurons of the cat. Neuroscience 1993; 52:263-79. [PMID: 8450946 DOI: 10.1016/0306-4522(93)90155-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellular recordings were made from 160 neurons in area 17 (n = 120) and area 18 (n = 40) of the visual cortex of anesthetized cats. Cells were classified according to their receptive field properties and their intracortical positions were evaluated histologically. Cholecystokinin 26-33, antagonists, (cholecystokinin 27-32, cholecystokinin 27-33 and proglumide), amino acids, neuropeptide Y and solvent vehicle (control), were administered to cells by microiontophoresis (cholecystokinin and neuropeptide Y) or by pressure (neuropeptide Y). The results of the tests with cholecystokinin 26-33 fell into four categories: enhancement (31%), suppression (24%), mixed, i.e. either biphasic responses or dose-related alterations in the direction of effect (20%), and no effect (25%). Enhancements of the visually elicited response were more prevalent in simple (43%) and unimodal/movement-sensitive (34%) cells than in complex (7%) cells. The converse was true for suppressions: 19% of simple cells, 24% of unimodal/movement-sensitive cells, and 31% of complex cells were suppressed. Thirty per cent of the unaffected cells were complex or unimodal/movement-sensitive; only 14% were simple. Cells in layers II-IV were more likely to have firing enhanced than suppressed by cholecystokinin 26-33. The converse was true for cells in layers V and VI, where 50% of responses were suppressed and only 22% were enhanced. Unaffected cells were found predominantly in layer III of areas 17, and the lower part of layer III and layer IV of area 18. Cholecystokinin 26-33 sometimes exerted delayed, response-suppressant effects; it also occasionally elevated responsiveness preferentially within the upper ranges (10-20 degrees/s) of velocity tuning curves. Cholecystokinin 26-33 altered the response-suppressant action of GABA in 11 of 19 visually sensitive cells. The peptide potentiated the visual responsiveness in half of the cells where cholecystokinin 26-33 diminished the GABA-induced suppressions (n = 8). The presumed antagonists either exerted no effect on firing or on cholecystokinin 26-33-induced effects, or had cholecystokinin 26-33-like actions themselves. There was a reversible partial antagonism of the effects of cholecystokinin 26-33 on only two of 11 cells tested. Neuropeptide Y injected by pressure or administered iontophoretically had variable and inconsistent effects on the visually evoked responses of 29 additional neurons from those described above. These effects were indistinguishable from those of the vehicle whether spontaneous activity, magnitude of the visually elicited response, spatial integrity of the RF substructure, orientation or velocity tuning was assessed.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T P Hicks
- Department of Biology, College of Arts and Sciences, University of North Carolina, Greensboro 27412-5001
| | | | | | | |
Collapse
|
38
|
Johansen PA, Hu XT, White FJ. Relationship between D1 dopamine receptors, adenylate cyclase, and the electrophysiological responses of rat nucleus accumbens neurons. J Neural Transm (Vienna) 1991; 86:97-113. [PMID: 1683241 DOI: 10.1007/bf01250571] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electrophysiological effects of three selective D1 dopamine (DA) receptor agonists, which exhibit different potencies and efficacies for stimulation of adenylate cyclase, were compared in the rat nucleus accumbens (NAc) using single unit recording and microiontophoretic techniques. The partial agonists SKF75670 and SKF38393, and the full agonist SKF81297 produced nearly identical current-response curves for the inhibition of firing of NAc neurons. In rats acutely depleted of DA by alpha-methyl-p-tyrosine (AMPT) pretreatment, all three D1 agonists enabled the inhibition of firing produced by the selective D2 receptor agonist quinpirole, with SKF38393 exerting the greatest efficacy, followed by SKF81297 and SKF75670. Thus, no apparent relationship was found between the previously reported ability of these compounds to stimulate cyclic adenosine monophosphate (cAMP) production and their ability either to inhibit the firing of NAc neurons or to enable quinpirole-mediated inhibition of firing in DA-depleted rats. In addition, the membrane-permeable cAMP analog 8-bromo-cAMP also caused a current-dependent inhibition of the firing of NAc neurons, but failed to enable quinpirole-mediated inhibition in AMPT-pretreated animals. These results suggest either that only a small percentage of D1 receptors need to be stimulated to produce these electrophysiological effects, or that D1 receptors exist within the rat NAc which are linked to transduction mechanisms other than, or in addition to, adenylate cyclase.
Collapse
Affiliation(s)
- P A Johansen
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI
| | | | | |
Collapse
|
39
|
Bouthillier A, Blier P, de Montigny C. Flerobuterol, a beta-adrenoceptor agonist, enhances serotonergic neurotransmission: an electrophysiological study in the rat brain. Psychopharmacology (Berl) 1991; 103:357-65. [PMID: 1676181 DOI: 10.1007/bf02244290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The two beta-adrenoceptor agonists salbutamol and clenbuterol have been shown to be effective antidepressant drugs. Flerobuterol, a new beta-adrenoceptor agonist, exhibits antidepressant activity in animal models. Given the long-standing notion that the serotonergic (5-HT) system might be involved in the etiology and/or the therapeutics of affective disorders and that this class of adrenergic agents can alter factors regulating 5-HT transmission, the effects of acute and repeated administrations of flerobuterol on the 5-HT system were studied. Acute administration of flerobuterol (up to 2 mg/kg, IV) did not modify the firing rate of dorsal raphe 5-HT neurons. However, the sustained administration of flerobuterol for two days (0.5 mg/kg/day, SC. delivered by an osmotic minipump) produced a marked decrease of the firing rate of 5-HT neurons. The reversal of this effect of flerobuterol by the somatodendritic 5-HT autoreceptor antagonist spiperone suggests that this decrease in the firing activity of 5-HT neurons in rats treated for 2 days with flerobuterol resulted from an enhanced synaptic availability of 5-HT. This initial decrease in firing activity of 5-HT neurons was followed by a progressive recovery to normal after 14 days of treatment with flerobuterol. At this point in time, the effect of intravenous lysergic acid diethylamide on the firing of 5-HT neurons was attenuated, indicating that the somatodendritic 5-HT autoreceptors had desensitized. The effectiveness of the electrical stimulation of the ascending 5-HT pathway in suppressing the firing activity of dorsal hippocampus pyramidal neurons was markedly enhanced in rats treated with flerobuterol for 14 days.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Bouthillier
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
40
|
Irreversible receptor inactivation reveals differences in dopamine receptor reserve between A9 and A10 dopamine systems: an electrophysiological analysis. Brain Res 1990; 534:273-82. [PMID: 1981482 DOI: 10.1016/0006-8993(90)90139-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Partial receptor inactivation was used as a tool to examine whether differences in receptor reserve exist between the dopamine receptor populations which mediate responses of substantia nigra (A9) and ventral tegmental area (A10) dopamine neurons to dopamine agonist drugs. The irreversible receptor inactivator, N-ethoxycarbonyl-2-ethoxy-1,2- dihydroquinoline (EEDQ), was administered to rats intraperitoneally at a dose of 6 mg/kg (in an ethanol-water vehicle). Approximately 24 h after EEDQ treatments, extracellular, single-unit recording experiments were carried out. In the first series of experiments, dose-response curves were constructed for the inhibition of A9 and A10 dopamine cell firing by intravenous administration of the potent dopamine agonist, R-(-)-N-n-propylnorapomorphine (NPA). For the A9 dopamine cell group, EEDQ pretreatments caused a 3-fold rightward shift in the NPA dose-response curve (ED50S, 0.3 vs 0.8 micrograms/kg for vehicle- and EEDQ-treated rats, respectively), but there was no change in the maximum attainable response (greater than 95% inhibition of cell firing). For A10 neurons, the same EEDQ treatments produced a greater rightward shift in the dose-response curve to NPA (ED50s, 0.6 vs 5.4 micrograms/kg for vehicle- and EEDQ-treated rats), and also depressed the maximum response by about 25% relative to the control (vehicle) curve. The dose-response curves from each region were subjected to Furchgott analysis to determine relative receptor occupancy-response relationships for NPA. For the A9 system, a steep, hyperbolic occupancy-response plot revealed that a 50% inhibitory response required only 4% receptor occupancy, while complete (greater than 95%) inhibition of cell firing required about 30% occupancy. This suggests about a 70% receptor reserve for this agonist in inhibiting A9 dopamine cell firing. The occupancy-response curve for A10 cells was less steep with 50% and maximal (greater than 95%) responses occurring when 11 and 70% of receptors were occupied by the agonist, indicating only about a 30% reserve for A10 cell responses to NPA. While the level of 'spare' receptors differed substantially between the two areas, calculated pseudo-KA values were similar (7.7 micrograms/kg for A9 cells and 5.5 micrograms/kg for A10 cells), suggesting no regional differences in receptor affinity. To explore where the differences in receptor reserve might reside, a second series of studies evaluated the effects of iontophoretically applied dopamine and NPA on both cell groups in vehicle- and EEDQ-treated rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
41
|
Tsumoto T. Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex. Neurosci Res 1990; 9:79-102. [PMID: 1980528 DOI: 10.1016/0168-0102(90)90025-a] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In 1954, L-glutamate (Glu) and L-aspartate (Asp) were first suggested as being excitatory synaptic transmitters in the cerebral cortex. Since then, evidence has mounted steadily in favor of the view that Glu and Asp are major excitatory transmitters in the neocortex. Many of the experimental studies which reported how Glu/Asp came to satisfy the criteria for transmitters in the neocortex are reviewed here, according to the methods employed. Since the question of which particular synaptic sites in cortical neural circuits Glu/Asp operate as excitatory transmitters has not previously been reviewed, particular attention is given to efferent, afferent and intrinsic neural circuits of the visual and somatosensory cortices, where circuitry is relatively clearly delineated. Recent studies using chemical assays of released amino acids, high-affinity uptake mechanisms of Glu/Asp from nerve terminals, the direct micro-iontophoretic administration of Glu/Asp antagonists, and immunocytochemical techniques have demonstrated that almost all corticofugal efferent projections employ Glu/Asp as excitatory synaptic transmitters. Evidence indicating that thalamocortical afferent projections, including geniculocortical projections and some intrinsic connections are glutamatergic, is also reviewed. Thus, the results highlighted here indicate that the main framework of neocortical circuitry is operated by Glu/Asp. Pharmacological studies indicate that synaptic receptors for Glu/Asp can be classified into a few subtypes, including N-methyl-D-aspartate (NMDA) and quisqualate/kainate (non-NMDA) types. Some evidence indicating the sites of operation of NMDA and non-NMDA receptors in neocortical circuitry is reviewed, and the distinct, functional significance of these two types of Glu/Asp receptors in information processing in the neocortex is proposed.
Collapse
Affiliation(s)
- T Tsumoto
- Department of Neurophysiology, Osaka University Medical School, Japan
| |
Collapse
|
42
|
Kaneko T, Hicks TP. GABA(B)-related activity involved in synaptic processing of somatosensory information in S1 cortex of the anaesthetized cat. Br J Pharmacol 1990; 100:689-98. [PMID: 2207494 PMCID: PMC1917593 DOI: 10.1111/j.1476-5381.1990.tb14077.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. The possible role of GABA(B) receptor mechanisms in information processing in primary somatosensory (S1) cortex was assessed by use of extracellular recording combined with microiontophoretic methods from 161 neurones in anaesthetized, paralysed cats. 2. Baclofen-induced suppressions of cell responses were reversible and stereoselective, the (+)-isomer being inactive and the (-)-isomer having two to three times the apparent potency of gamma-aminobutyric acid (GABA). The responses measured were threshold to natural stimulation of receptive fields (RFs), responsiveness to thalamic electrical stimulation, change in RF size and magnitude of firing elicited by iontophoretic glutamate. 3. The action of GABA always was mimicked by muscimol or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) but not always by (-)-baclofen; in certain cases (-)-baclofen enhanced neuronal responses while the opposite occurred with GABA or with the other GABA(A) agonists. The elevation of response thresholds by (-)-baclofen was relatively stronger in peripheral than in central subregions of cutaneous RFs, by contrast with the action of muscimol which was relatively non-selective as to the area in which it was effective. 4. Glutamate-induced and thalamically-evoked cortical responses as well as spontaneous activity were differentially sensitive to the suppressant effects of muscimol and (-)-baclofen. 5. Bicuculline methiodide reversibly blocked THIP- and muscimol-induced suppressions of tactile- (air puffer)-induced S1 responses but spared those produced by (-)-baclofen. Phaclofen and delta-amino-n-valeric acid were essentially inactive as blockers of (-)-baclofen-induced effects and in fact often acted as (-)-baclofen-like agonists, phaclofen being considerably weaker than delta-amino-n-valeric acid in this respect. 6. The range of suppressant effects produced by GABA as well as by muscimol and THIP, considered in conjunction with the actions of bicuculline methiodide, suggest that the effects observed by ejected GABA are likely to be due principally to GABA(A) processes, those mediated by GABA(B) receptors largely being masked. However, GABA(B) mechanisms are extant and do appear to be active, probably presynaptically and probably at sites distal to the soma.
Collapse
Affiliation(s)
- T Kaneko
- Department of Psychology, College of Arts and Sciences, University of North Carolina, Greensboro 27412-5001
| | | |
Collapse
|
43
|
Hellier M, Boers P, Lambert GA. Fabrication of a metal-cored multi-barrelled microiontophoresis assembly. J Neurosci Methods 1990; 32:55-61. [PMID: 2335967 DOI: 10.1016/0165-0270(90)90071-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method is described for fabrication of 7-barrelled microiontophoresis electrodes with a center barrel of platinum-coated tungsten. The electrodes require a minimum of expensive apparatus and can be fabricated in an hour or two. The electrodes have low recording impedance (typically 100 k omega and low resistance iontophoresis barrels (typically 20-50 M omega). Compared to electrodes with a micropipette recording barrel, these electrodes are practically noise-free and can pass ionotophoretic currents of up to 200 nA without an appreciable increase in recording noise.
Collapse
Affiliation(s)
- M Hellier
- Department of Neurology, Prince Henry Hospital and School of Medicine, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
44
|
Hicks TP, Kaneko T, Oka JI. Receptive-field size of S1 cortical neurones is altered by methaqualone via a GABA mechanism. Neurol Sci 1990; 17:30-4. [PMID: 2311013 DOI: 10.1017/s031716710002998x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methaqualone (Mtq; quaaludes or 'ludes) is a controlled substance, having a molecular structure related to the imidiazobenzodiazepine series of drugs, that has gained some notoriety recently due to its history of widespread abuse on the street. Users report experiencing peripheral paresthesia and transient numbness on body parts receiving dense cutaneous innervation (lips, fingertips, etc.). Since the receptive-field (RF)-sizes of many primary somatosensory (S1) cortical neurones are controlled by local, gamma-aminobutyric acid (GABA)-mediated inhibitory processes, we tested Mtq to see whether its clinical symptoms might have a basis in an action through central GABA-mediated synaptic processes. This report supports this contention and describes a likely pharmacological mechanism involved as one being related to the Ro 15-1788-sensitive benzodiazepine (Bzd) recognition site(s) of the GABA receptor complex.
Collapse
Affiliation(s)
- T P Hicks
- Department of Psychology, University of North Carolina, Greensboro 27412-5001
| | | | | |
Collapse
|
45
|
Mirmiran M, Dijcks FA, Bos NP, Gorter JA, Van der Werf D. Cortical neuron sensitivity to neurotransmitters following neonatal noradrenaline depletion. Int J Dev Neurosci 1990; 8:217-21. [PMID: 1970221 DOI: 10.1016/0736-5748(90)90014-s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to test the functional significance of rapid eye movement (REM)-sleep and noradrenergic activity for cerebral cortex maturation, rat pups were daily injected with clonidine from 8 to 21 days of life. Previous studies have shown that this treatment reduces the amount of time spent in REM-sleep and the level of noradrenaline turnover in the brain. For long-term consequences of such treatment in adulthood, cortical neuron responses to micro-iontophoretically applied neurotransmitters were studied. No significant differences were found in the single cell responses to glutamate, GABA or noradrenaline in the cerebral cortex of clonidine treated rats as compared with age matched controls. However, the magnitude of GABAergic depression of glutamate induced neuronal responses was greater in the clonidine than in the control group.
Collapse
Affiliation(s)
- M Mirmiran
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Tremblay N, Warren R, Dykes RW. The effects of strychnine on neurons in cat somatosensory cortex and its interaction with the inhibitory amino acids, glycine, taurine and beta-alanine. Neuroscience 1988; 26:745-62. [PMID: 3143925 DOI: 10.1016/0306-4522(88)90096-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In area 3b of primary somatosensory cortex, neurons may be classified as either rapidly adapting or slowly adapting to sustained stimuli and may be differentiated further by the presence or absence of a receptive field and by their threshold of activation. It is also possible to use the rate of adaptation of the background activity to a sustained stimulus to divide the cortex into slowly adapting regions or rapidly adapting regions. By blocking GABA-mediated inhibition with iontophoretically administered bicuculline methiodide, others have observed an increase in receptive field size in rapidly adapting regions but not in slowly adapting regions. The present study was designed to look for a different inhibitory transmitter which might control receptive field size in slowly adapting regions. Iontophoretically delivered strychnine was employed as an antagonist because it interferes with glycine-like inhibitory transmitters such as glycine, taurine and beta-alanine. Pharmacological tests were performed on 157 neurons in two series of experiments. In the first series three effects were documented. (i) In rapidly adapting regions, the size of the receptive field increased in 11 out of 25 cases whereas none of the 20 receptive fields tested in slowly adapting regions enlarged. (ii) In 13 of 24 cases a receptive field was revealed for previously unresponsive neurons in rapidly adapting regions whereas only 5 of 22 unresponsive cells tested in slowly adapting regions developed a receptive field. (iii) In 15 of 25 cells with receptive fields tested in rapidly adapting zones, strychnine reduced the threshold for somatic stimuli but only 8 of 20 cells isolated in slowly adapting zones showed this effect. In a second series of experiments, the effect of beta-alanine, glycine and taurine was examined on neurons of the rapidly adapting regions. beta-Alanine and taurine reduced the excitability of all neurons tested. Glycine inhibited most neurons. However, strychnine only antagonized the inhibitory effects of beta-alanine on responses to peripheral stimuli (9 of 11 cases). When neurons could not be driven by peripheral stimuli, the inhibition of spontaneous or glutamate-induced activity could not be blocked by strychnine (0 of 18 cases). We suggest that glycine-like amino acids contribute to the control of receptive field size and the control of neuronal excitability in rapidly adapting regions but not in slowly adapting regions. Our data suggest that strychnine-sensitive synapses are limited only to a subset of cortical neurons driven by somatic inputs.
Collapse
Affiliation(s)
- N Tremblay
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
47
|
Gottschaldt KM, Hicks TP, Vahle-Hinz C. A combined recording and microiontophoresis technique for input-output analysis of single neurons in the mammalian CNS. J Neurosci Methods 1988; 23:233-9. [PMID: 3367660 DOI: 10.1016/0165-0270(88)90007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method is described for producing electrolytically sharpened and lacquer-insulated steel microelectrodes and for their attachment to a multibarrel micropipet assembly by light-curing bonding compound. This electrode complex is specially designed for recordings from deep brain structures. It permits the analysis of the input signals to and the output signals from a single neuron recorded simultaneously from an extracellular electrode position, termed juxtacellular recording. Furthermore it provides the ability to manipulate pharmacologically the input-output ratio expressed by the neuron under varying sequences of natural stimulation.
Collapse
Affiliation(s)
- K M Gottschaldt
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, F.R.G
| | | | | |
Collapse
|
48
|
Kaneko T, Hicks TP. Baclofen and gamma-aminobutyric acid differentially suppress the cutaneous responsiveness of primary somatosensory cortical neurones. Brain Res 1988; 443:360-6. [PMID: 3359275 DOI: 10.1016/0006-8993(88)91634-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extracellular recordings from neurones in the cat's primary somatosensory cortex (S1) have been made with carbon fibre-filled multibarrel pipettes used for microiontophoresis. gamma-Aminobutyric acid (GABA) and baclofen elevated the thresholds to tactile and airpuffer stimulation, reduced the sizes of cutaneous receptive fields (RFs), depressed spontaneous activity and decreased the magnitudes of thalamically evoked responses. However, the manner in which baclofen produced its alterations in response properties could be differentiated from that of GABA in several respects. Specifically, responses which reflected spatially integrated driving of cutaneous RFs across peripheral and central regions were suppressed more readily by GABA than by baclofen. Furthermore, baclofen was observed to exert suppressions of responses which were evoked from the peripheral regions of cutaneous RFs more effectively than it could those responses which were evoked from the central regions. GABA affected central and peripheral RF subregions relatively indiscriminately. These results suggest that not only bicuculline-sensitive processes, but also those activated by baclofen, are involved in controlling the sensitivity of S1 cortical neurones to afferent stimuli.
Collapse
Affiliation(s)
- T Kaneko
- Department of Medical Physiology, University of Calgary, Alta, Canada
| | | |
Collapse
|
49
|
Chiodo LA. Dopamine-containing neurons in the mammalian central nervous system: electrophysiology and pharmacology. Neurosci Biobehav Rev 1988; 12:49-91. [PMID: 3287242 DOI: 10.1016/s0149-7634(88)80073-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A decade of research culminated in the late 1950's with the demonstration that dopamine was a chemical neurotransmitter within the mammalian brain. Since this time, dopaminergic neuronal systems have been extensively studied using numerous techniques. This paper will review the last 14 years of electrophysiological investigation on neurochemically identified dopamine-containing neurons in the central nervous system. This will include an examination of both the electrophysiological and pharmacological characteristics in these cells, as well as the resulting insights into the regulation of dopamine cell electrical activity which is derived from this work.
Collapse
Affiliation(s)
- L A Chiodo
- Center for Cell Biology, Sinai Research Institute, Detroit, MI 48235
| |
Collapse
|
50
|
Hori T, Shibata M, Kiyohara T, Nakashima T, Asami A. Responses of anterior hypothalamic-preoptic thermosensitive neurons to locally applied capsaicin. Neuropharmacology 1988; 27:135-42. [PMID: 3352871 DOI: 10.1016/0028-3908(88)90162-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of local application of capsaicin on the activity of single thermosensitive neurons in the anterior hypothalamic-preoptic area were studied in the urethane-anesthetized rat. Local injection of capsaicin through a cannula to the vicinity of the neurons increased the activity in 15 of 28 warm-units, decreased the activity in 2 of 4 cold-units and had no effect on 5 of 10 thermally-insensitive units. Electrophoretic application of capsaicin with the use of multibarrelled microelectrodes excited 16 of 27 warm-units, inhibited 12 of 17 cold-units and had no effect on 35 of 60 thermally-insensitive units. Progressive decreases in the responsiveness of the neurons to both capsaicin and the hypothalamic temperature were observed with repeated applications of capsaicin. Many neurons ceased firing after showing excitatory or inhibitory responses to single or repeated applications of capsaicin either by local injection or electrophoretic application. The results may explain the acute thermolytic response, as well as the subsequent decrease in responsiveness to the injection of capsaicin into the anterior hypothalamic-preoptic area, on the basis of changes in the activity of thermosensitive neurons in the anterior hypothalamic-preoptic area.
Collapse
Affiliation(s)
- T Hori
- Department of Physiology, Saga Medical College, Japan
| | | | | | | | | |
Collapse
|