1
|
Tyszkiewicz C, Hwang SK, Manickam B, Jakubczak B, Walters KM, Bolt MW, Santos R, Liu CN. Sex-related differences in retinal function in Wistar rats: implications for toxicity and safety studies. FRONTIERS IN TOXICOLOGY 2023; 5:1176665. [PMID: 37313214 PMCID: PMC10259507 DOI: 10.3389/ftox.2023.1176665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction: Wistar Han rats are a preferred strain of rodents for general toxicology and safety pharmacology studies in drug development. In some of these studies, visual functional tests that assess for retinal toxicity are included as an additional endpoint. Although the influence of gender on human retinal function has been documented for more than 6 decades, preclinically it is still uncertain if there are differences in retinal function between naïve male and female Wistar Han rats. Methods: In this study, sex-related differences in the retinal function were quantified by analyzing electroretinography (ERG) in 7-9-week-old (n = 52 males and 51 females) and 21-23-week-old Wistar Han rats (n = 48 males and 51 females). Optokinetic tracking response, brainstem auditory evoked potential, ultrasonic vocalization and histology were tested and evaluated in a subset of animals to investigate the potential compensation mechanisms of spontaneous blindness. Results/Discussion: Absence of scotopic and photopic ERG responses was found in 13% of 7-9-week-old (7/52) and 19% of 21-23-week-old males (9/48), but none of female rats (0/51). The averaged amplitudes of rod- and cone-mediated ERG b-wave responses obtained from males were significantly smaller than the amplitudes of the same responses from age-matched females (-43% and -26%, respectively) at 7-9 weeks of age. There was no difference in the retinal and brain morphology, brainstem auditory responses, or ultrasonic vocalizations between the animals with normal and abnormal ERGs at 21-23 weeks of age. In summary, male Wistar Han rats had altered retinal responses, including a complete lack of responses to test flash stimuli (i.e., blindness), when compared with female rats at 7-9 and 21-23 weeks of age. Therefore, sex differences should be considered when using Wistar Han rats in toxicity and safety pharmacology studies with regards to data interpretation of retinal functional assessments.
Collapse
Affiliation(s)
| | | | | | - Ben Jakubczak
- Comparative Medicine, Pfizer, Groton, CT, United States
| | - Karen M. Walters
- Drug Safety Research and Development, Pfizer, Groton, CT, United States
| | - Michael W. Bolt
- Drug Safety Research and Development, Pfizer, Cambridge, Massachusetts, United States
| | | | | |
Collapse
|
2
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Möckel D, Groulx T, Faure PA. Development of hearing in the big brown bat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:27-42. [PMID: 33200279 DOI: 10.1007/s00359-020-01452-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
We studied the development of hearing in newborn pups of the big brown bat, Eptesicus fuscus. In the majority of pups, the opening of both outer auditory canals occurred on or before postnatal day (PND) 7, but in some, it extended to PND 11. Using repeated auditory brainstem response (ABR) recordings, we tracked the progressive development and maturation of auditory sensitivity in 22 E. fuscus pups every 3 days, from PND 10 to PND 31, with additional recordings in a subset of bats at 2 months, 3 months and 1 year of life. There was a profound increase in auditory sensitivity across development for frequencies between 4 and 100 kHz, with the largest threshold shifts occurring early in development between PND 10 and 19. Prior to PND 13-16 and when pups were still non-volant, most bats were unable to hear frequencies above 48 kHz; however, sensitivity to these higher ultrasonic frequencies increased with age. Notably, this change occurred near the age when young bats started learning how to fly and echolocate.
Collapse
Affiliation(s)
- Doreen Möckel
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Thomas Groulx
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
4
|
Ramírez T, Soto E, Vega R. Opioid modulation of cochlear auditory responses in the rat inner ear. Synapse 2019; 74:e22128. [DOI: 10.1002/syn.22128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Teresa Ramírez
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Enrique Soto
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Rosario Vega
- Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| |
Collapse
|
5
|
Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus. J Neurosci 2019; 39:7037-7048. [PMID: 31217330 DOI: 10.1523/jneurosci.2536-18.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
The auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this maturation process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells. In this work, we used an α9 cholinergic nicotinic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9'T, L9'T) to further understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) was smaller in L9'T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analyzed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a mediolateral (ML) axis. The topographic organization of MNTB physiological properties observed in wildtype (WT) was abolished in L9'T mice. Additionally, electrophysiological recordings in slices indicated MNTB synaptic alterations. In vivo multielectrode recordings showed that the overall level of MNTB activity was reduced in the L9'T The present results indicate that the transient cochlear efferent innervation to inner hair cells during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the properties of synaptic transmission at a central auditory nucleus.SIGNIFICANCE STATEMENT Cochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells are crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the CNS contacts the hair cells during this developmental window. The present work shows that genetic enhancement of efferent function disrupts the orderly topographic distribution of biophysical and synaptic properties in the auditory brainstem and causes severe synaptic dysfunction. This work adds to the notion that the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.
Collapse
|
6
|
Prado-Gutierrez P, Martínez-Montes E, Weinstein A, Zañartu M. Estimation of auditory steady-state responses based on the averaging of independent EEG epochs. PLoS One 2019; 14:e0206018. [PMID: 30677031 PMCID: PMC6345467 DOI: 10.1371/journal.pone.0206018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
The amplitude of auditory steady-state responses (ASSRs) generated in the brainstem of rats exponentially decreases over the sequential averaging of EEG epochs. This behavior is partially due to the adaptation of the ASSR induced by the continuous and monotonous stimulation. In this study, we analyzed the potential clinical relevance of the ASSR adaptation. ASSR were elicited in eight anesthetized adult rats by 8-kHz tones, modulated in amplitude at 115 Hz. We called independent epochs to those EEG epochs acquired with sufficiently long inter-stimulus interval, so the ASSR contained in any given epoch is not affected by the previous stimulation. We tested whether the detection of ASSRs is improved when the response is computed by averaging independent EEG epochs, containing only unadapted auditory responses. The improvements in the ASSR detection obtained with standard, weighted and sorted averaging were compared. In the absence of artifacts, when the ASSR was elicited by continuous acoustic stimulation, the computation of the ASSR amplitude relied upon the averaging method. While the adaptive behavior of the ASSR was still evident after the weighting of epochs, the sorted averaging resulted in under-estimations of the ASSR amplitude. In the absence of artifacts, the ASSR amplitudes computed by averaging independent epochs did not depend on the averaging procedure. Averaging independent epochs resulted in higher ASSR amplitudes and halved the number of EEG epochs needed to be acquired to achieve the maximum detection rate of the ASSR. Acquisition protocols based on averaging independent EEG epochs, in combination with appropriate averaging methods for artifact reduction might contribute to develop more accurate hearing assessments based on ASSRs.
Collapse
Affiliation(s)
- Pavel Prado-Gutierrez
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- * E-mail:
| | | | - Alejandro Weinstein
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Biomedical Engineering School, Universidad de Valparaíso, Valparaíso, Chile
| | - Matías Zañartu
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
7
|
Geissler DB, Weiler E, Ehret G. Adaptation and spectral enhancement at auditory temporal perceptual boundaries - Measurements via temporal precision of auditory brainstem responses. PLoS One 2018; 13:e0208935. [PMID: 30571726 PMCID: PMC6301773 DOI: 10.1371/journal.pone.0208935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
In human and animal auditory perception the perceived quality of sound streams changes depending on the duration of inter-sound intervals (ISIs). Here, we studied whether adaptation and the precision of temporal coding in the auditory periphery reproduce general perceptual boundaries in the time domain near 20, 100, and 400 ms ISIs, the physiological origin of which are unknown. In four experiments, we recorded auditory brainstem responses with five wave peaks (P1 –P5) in response to acoustic models of communication calls of house mice, who perceived these calls with the mentioned boundaries. The newly introduced measure of average standard deviations of wave latencies of individual animals indicate the waves’ temporal precision (latency jitter) mostly in the range of 30–100 μs, very similar to latency jitter of single neurons. Adaptation effects of response latencies and latency jitter were measured for ISIs of 10–1000 ms. Adaptation decreased with increasing ISI duration following exponential or linear (on a logarithmic scale) functions in the range of up to about 200 ms ISIs. Adaptation effects were specific for each processing level in the auditory system. The perceptual boundaries near 20–30 and 100 ms ISIs were reflected in significant adaptation of latencies together with increases of latency jitter at P2-P5 for ISIs < ~30 ms and at P5 for ISIs < ~100 ms, respectively. Adaptation effects occurred when frequencies in a sound stream were within the same critical band. Ongoing low-frequency components/formants in a sound enhanced (decrease of latencies) coding of high-frequency components/formants when the frequencies concerned different critical bands. The results are discussed in the context of coding multi-harmonic sounds and stop-consonants-vowel pairs in the auditory brainstem. Furthermore, latency data at P1 (cochlea level) offer a reasonable value for the base-to-apex cochlear travel time in the mouse (0.342 ms) that has not been determined experimentally.
Collapse
Affiliation(s)
| | - Elke Weiler
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
8
|
Leon MI, Miasnikov AA, Wright EJ, Weinberger NM. CS-specific modifications of auditory evoked potentials in the behaviorally conditioned rat. Brain Res 2017; 1670:235-247. [PMID: 28673481 DOI: 10.1016/j.brainres.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
The current report provides a detailed analysis of the changes in the first two components of the auditory evoked potential (AEP) that accompany associative learning. AEPs were recorded from the primary auditory cortex before and after training sessions. Experimental subjects underwent one (n=5) or two (n=7) days of conditioning in which a tone, serving as a conditioned stimulus (CS), was paired with mild foot shock. Control subjects received one (n=5) or two (n=7) days of exposure to the same stimuli delivered randomly. Only animals receiving paired CS-US training developed a conditioned tachycardia response to the tone. Our analyses demonstrated that both early components of the AEP recorded from the granular layer of the cortex undergo CS-specific associative changes: (1) the first, negative component (occurring ∼21ms following tone onset) was significantly augmented after one and two days of training while maintaining its latency, and (2) the second, positive component (occurring ∼50ms following tone onset) was augmented after two days of training, and showed a significant reduction in latency after one and two days of training. We view these changes as evidence of increased cortical synchronization, thereby lending new insight into the temporal dynamics of neural network activity related to auditory learning.
Collapse
Affiliation(s)
- Matthew I Leon
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States; Department of Psychology, California State University, Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, United States.
| | - Alexandre A Miasnikov
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| | - Ernest J Wright
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| | - Norman M Weinberger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697-3800, United States
| |
Collapse
|
9
|
Abstract
A fundamental adaptive mechanism of auditory function is inhibitory gating (IG), which refers to the attenuation of neural responses to repeated sound stimuli. IG is drastically impaired in individuals with emotional and cognitive impairments (i.e. posttraumatic stress disorder). The objective of this study was to test whether chronic stress impairs the IG of the auditory cortex (AC). We used the standard two-tone stimulus paradigm and examined the parametric qualities of IG in the AC of rats by recording the electrophysiological signals of a single-unit and local field potential (LFP) simultaneously. The main results of this study were that most of the AC neurons showed a weaker response to the second tone than to the first tone, reflecting an IG of the repeated input. A fast negative wave of LFP showed consistent IG across the sampled AC sites, whereas a slow positive wave of LFP had less IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level, due to the increase in response to the second tone. This study provided new evidence that chronic stress disrupts the physiological function of the AC. Lay Summary The effects of chronic stress on IG were investigated by recording both, single-unit spike and LFP activities, in the AC of rats. In normal rats, most of the single-unit and N25 LFP activities in the AC showed an IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level.
Collapse
Affiliation(s)
- Lanlan Ma
- a Department of Physiology, College of Basic Medical Science , China Medical University , Shenyang , Liaoning Province , P.R. China
| | - Wai Li
- a Department of Physiology, College of Basic Medical Science , China Medical University , Shenyang , Liaoning Province , P.R. China
| | - Sibin Li
- a Department of Physiology, College of Basic Medical Science , China Medical University , Shenyang , Liaoning Province , P.R. China
| | - Xuejiao Wang
- a Department of Physiology, College of Basic Medical Science , China Medical University , Shenyang , Liaoning Province , P.R. China
| | - Ling Qin
- a Department of Physiology, College of Basic Medical Science , China Medical University , Shenyang , Liaoning Province , P.R. China
| |
Collapse
|
10
|
Towell TL, Shell L, Inzana KD, Jortner BS, Ehrich M. Electrophysiological Detection of the Neurotoxic Effects of Acrylamide and 2,5-Hexanedione on the Rat Sensory System. Int J Toxicol 2016. [DOI: 10.1080/10915810050074955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Brain stem auditory evoked potentials (BAEP) and somatosensory evoked potentials (SEP), recorded from subcutaneously placed electrodes in anesthetized rats, were used to detect neurotoxic effects of acrylamide and 2,5-hexanedione on the sensory nervous system. Both neurotoxicants were administered for 21 days by the intraperitoneal route, using dosages of 20 mg/kg/day for acrylamide and 350 mg/kg/day for 2,5-hexanedione. Recordings were made before and 1, 2, and 3 weeks after dosing was initiated. Both food-restricted and ad libitum-fed rats served as controls. Results demonstrated that SEP waveforms generated in rats were sufficiently variable that differences among the groups were not detected. However, BAEP latencies were longer than those seen in control rats after 3 weeks of acrylamide treatment and after both 2 and 3 weeks of 2,5-hexanedione treatment. The effects of 2,5-hexanedione were more pronounced than those of acrylamide, and increased with length of the dosing period.
Collapse
Affiliation(s)
- Todd L. Towell
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Linda Shell
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Karen Dyer Inzana
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Bernard S. Jortner
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Marion Ehrich
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
King J, Shehu I, Roland JT, Svirsky MA, Froemke RC. A physiological and behavioral system for hearing restoration with cochlear implants. J Neurophysiol 2016; 116:844-58. [PMID: 27281743 DOI: 10.1152/jn.00048.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Cochlear implants are neuroprosthetic devices that provide hearing to deaf patients, although outcomes are highly variable even with prolonged training and use. The central auditory system must process cochlear implant signals, but it is unclear how neural circuits adapt-or fail to adapt-to such inputs. The knowledge of these mechanisms is required for development of next-generation neuroprosthetics that interface with existing neural circuits and enable synaptic plasticity to improve perceptual outcomes. Here, we describe a new system for cochlear implant insertion, stimulation, and behavioral training in rats. Animals were first ensured to have significant hearing loss via physiological and behavioral criteria. We developed a surgical approach for multichannel (2- or 8-channel) array insertion, comparable with implantation procedures and depth in humans. Peripheral and cortical responses to stimulation were used to program the implant objectively. Animals fitted with implants learned to use them for an auditory-dependent task that assesses frequency detection and recognition in a background of environmentally and self-generated noise and ceased responding appropriately to sounds when the implant was temporarily inactivated. This physiologically calibrated and behaviorally validated system provides a powerful opportunity to study the neural basis of neuroprosthetic device use and plasticity.
Collapse
Affiliation(s)
- Julia King
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York; Neuroscience Institute, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Ina Shehu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Biology, Hunter College, New York, New York; and
| | - J Thomas Roland
- Department of Otolaryngology, New York University School of Medicine, New York, New York
| | - Mario A Svirsky
- Neuroscience Institute, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Center for Neural Science, New York University, New York, New York. *, co-senior authors
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York; Neuroscience Institute, New York University School of Medicine, New York, New York; Department of Otolaryngology, New York University School of Medicine, New York, New York; Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Center for Neural Science, New York University, New York, New York. *, co-senior authors.
| |
Collapse
|
12
|
Fitzroy AB, Krizman J, Tierney A, Agouridou M, Kraus N. Longitudinal maturation of auditory cortical function during adolescence. Front Hum Neurosci 2015; 9:530. [PMID: 26539092 PMCID: PMC4611058 DOI: 10.3389/fnhum.2015.00530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 12/03/2022] Open
Abstract
Cross-sectional studies have demonstrated that the cortical auditory evoked potential (CAEP) changes substantially in amplitude and latency from childhood to adulthood, suggesting that these aspects of the CAEP continue to mature through adolescence. However, no study to date has longitudinally followed maturation of these CAEP measures through this developmental period. Additionally, no study has examined the trial-to-trial variability of the CAEP during adolescence. Therefore, we longitudinally tracked changes in the latency, amplitude, and variability of the P1, N1, P2, and N2 components of the CAEP in 68 adolescents from age 14 years to age 17 years. Latency decreased for N1 and N2, and did not change for P1 or P2. Amplitude decreased for P1 and N2, increased for N1, and did not change for P2. Variability decreased with age for all CAEP components. These findings provide longitudinal support for the view that the human auditory system continues to mature through adolescence. Continued auditory system maturation through adolescence suggests that CAEP neural generators remain plastic during this age range and potentially amenable to experience-based enhancement or deprivation.
Collapse
Affiliation(s)
- Ahren B Fitzroy
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Auditory Neuroscience Laboratory, Northwestern University Evanston, IL, USA
| | - Jennifer Krizman
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Auditory Neuroscience Laboratory, Northwestern University Evanston, IL, USA
| | - Adam Tierney
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Auditory Neuroscience Laboratory, Northwestern University Evanston, IL, USA
| | - Manto Agouridou
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Auditory Neuroscience Laboratory, Northwestern University Evanston, IL, USA
| | - Nina Kraus
- Department of Communication Sciences and Disorders, Northwestern University Evanston, IL, USA ; Auditory Neuroscience Laboratory, Northwestern University Evanston, IL, USA ; Institute for Neuroscience, Northwestern University Evanston, IL, USA ; Department of Neurobiology and Physiology, Northwestern University Evanston, IL, USA ; Department of Otolaryngology, Northwestern University Evanston, IL, USA
| |
Collapse
|
13
|
Guex AA, Vachicouras N, Hight AE, Brown MC, Lee DJ, Lacour SP. Conducting polymer electrodes for auditory brainstem implants. J Mater Chem B 2015; 3:5021-5027. [PMID: 26207184 PMCID: PMC4507441 DOI: 10.1039/c5tb00099h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The auditory brainstem implant (ABI) restores hearing in patients with damaged auditory nerves. One of the main ideas to improve the efficacy of ABIs is to increase spatial specificity of stimulation, in order to minimize extra-auditory side-effects and to maximize the tonotopy of stimulation. This study reports on the development of a microfabricated conformable electrode array with small (100 μm diameter) electrode sites. The latter are coated with a conducting polymer, PEDOT:PSS, to offer high charge injection properties and to safely stimulate the auditory system with small stimulation sites. We report on the design and fabrication of the polymer implant, and characterize the coatings in physiological conditions in vitro and under mechanical deformation. We characterize the coating electrochemically and during bending tests. We present a proof of principle experiment where the auditory system is efficiently activated by the flexible polymeric interface in a rat model. These results demonstrate the potential of using conducting polymer coatings on small electrode sites for electrochemically safe and efficient stimulation of the central auditory system.
Collapse
Affiliation(s)
- Amélie A. Guex
- Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Nicolas Vachicouras
- Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Ariel E. Hight
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - M. Christian Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Daniel J. Lee
- Eaton-Peabody Laboratories and Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | - Stéphanie P. Lacour
- Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration. Proc Natl Acad Sci U S A 2015; 112:E3431-40. [PMID: 26080415 DOI: 10.1073/pnas.1501835112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson's disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts.
Collapse
|
15
|
Tziridis K, Ahlf S, Jeschke M, Happel MFK, Ohl FW, Schulze H. Noise Trauma Induced Neural Plasticity Throughout the Auditory System of Mongolian Gerbils: Differences between Tinnitus Developing and Non-Developing Animals. Front Neurol 2015; 6:22. [PMID: 25713557 PMCID: PMC4322711 DOI: 10.3389/fneur.2015.00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/27/2015] [Indexed: 12/29/2022] Open
Abstract
In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development.
Collapse
Affiliation(s)
- Konstantin Tziridis
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Sönke Ahlf
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Marcus Jeschke
- Leibniz Institute for Neurobiology , Magdeburg , Germany
| | - Max F K Happel
- Leibniz Institute for Neurobiology , Magdeburg , Germany ; Institute of Biology, Otto-von-Guericke-University , Magdeburg , Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology , Magdeburg , Germany ; Institute of Biology, Otto-von-Guericke-University , Magdeburg , Germany ; Center for Behavioral Brain Sciences , Magdeburg , Germany
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
16
|
Arakaki X, Galbraith G, Pikov V, Fonteh AN, Harrington MG. Altered brainstem auditory evoked potentials in a rat central sensitization model are similar to those in migraine. Brain Res 2014; 1563:110-21. [PMID: 24680742 DOI: 10.1016/j.brainres.2014.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 01/04/2023]
Abstract
Migraine symptoms often include auditory discomfort. Nitroglycerin (NTG)-triggered central sensitization (CS) provides a rodent model of migraine, but auditory brainstem pathways have not yet been studied in this example. Our objective was to examine brainstem auditory evoked potentials (BAEPs) in rat CS as a measure of possible auditory abnormalities. We used four subdermal electrodes to record horizontal (h) and vertical (v) dipole channel BAEPs before and after injection of NTG or saline. We measured the peak latencies (PLs), interpeak latencies (IPLs), and amplitudes for detectable waveforms evoked by 8, 16, or 32 kHz auditory stimulation. At 8 kHz stimulation, vertical channel positive PLs of waves 4, 5, and 6 (vP4, vP5, and vP6), and related IPLs from earlier negative or positive peaks (vN1-vP4, vN1-vP5, vN1-vP6; vP3-vP4, vP3-vP6) increased significantly 2h after NTG injection compared to the saline group. However, BAEP peak amplitudes at all frequencies, PLs and IPLs from the horizontal channel at all frequencies, and the vertical channel stimulated at 16 and 32 kHz showed no significant/consistent change. For the first time in the rat CS model, we show that BAEP PLs and IPLs ranging from putative bilateral medial superior olivary nuclei (P4) to the more rostral structures such as the medial geniculate body (P6) were prolonged 2h after NTG administration. These BAEP alterations could reflect changes in neurotransmitters and/or hypoperfusion in the midbrain. The similarity of our results with previous human studies further validates the rodent CS model for future migraine research.
Collapse
Affiliation(s)
- Xianghong Arakaki
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, CA 91101, USA.
| | - Gary Galbraith
- Mental Retardation Research Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, USA
| | - Victor Pikov
- Neural Engineering Program, Huntington Medical Research Institutes, 734 Fair mount Avenue, Pasadena, CA 91101, USA
| | - Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, CA 91101, USA
| | - Michael G Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 North El Molino Avenue, Pasadena, CA 91101, USA.
| |
Collapse
|
17
|
Lanting CP, Briley PM, Sumner CJ, Krumbholz K. Mechanisms of adaptation in human auditory cortex. J Neurophysiol 2013; 110:973-83. [PMID: 23719212 DOI: 10.1152/jn.00547.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigates the temporal properties of adaptation in the late auditory-evoked potentials in humans. The results are used to make inferences about the mechanisms of adaptation in human auditory cortex. The first experiment measured adaptation by single adapters as a combined function of the adapter duration and the stimulus onset asynchrony (SOA) and interstimulus interval (ISI) between the adapter and the adapted sound ("probe"). The results showed recovery from adaptation with increasing ISI, as would be expected, but buildup of adaptation with increasing adapter duration and thus SOA. This suggests that adaptation in auditory cortex is caused by the ongoing, rather than the onset, response to the adapter. Quantitative modeling indicated that the rate of buildup of adaptation is almost an order of magnitude faster than the recovery rate of adaptation. The recovery rate suggests that cortical adaptation is caused by synaptic depression and slow afterhyperpolarization. The P2 was more strongly affected by adaptation than the N1, suggesting that the two deflections originate from different cortical generators. In the second experiment, the single adapters were replaced by trains of two or four identical adapters. The results indicated that adaptation decays faster after repeated presentation of the adapter. This increase in the recovery rate of adaptation might contribute to the elicitation of the auditory mismatch negativity response. It may be caused by top-down feedback or by local processes such as the buildup of residual Ca(2+) within presynaptic neurons.
Collapse
|
18
|
Budd TW, Nakamura T, Fulham WR, Todd J, Schall U, Hunter M, Hodgson DM, Michie PT. Repetition suppression of the rat auditory evoked potential at brief stimulus intervals. Brain Res 2013; 1498:59-68. [DOI: 10.1016/j.brainres.2012.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/22/2012] [Accepted: 12/25/2012] [Indexed: 01/29/2023]
|
19
|
Alvarado JC, Fuentes-Santamaría V, Jareño-Flores T, Blanco JL, Juiz JM. Normal variations in the morphology of auditory brainstem response (ABR) waveforms: a study in Wistar rats. Neurosci Res 2012; 73:302-11. [PMID: 22595234 DOI: 10.1016/j.neures.2012.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
Auditory brainstem evoked responses (ABR) have been used for decades to assess auditory function. Surprisingly, despite the fact that rats are one of the most widely used experimental models in hearing, there have been no studies that have characterized in detail the normal morphological variations that occur in ABR waves. Therefore, the goal of this study was to characterize the patterns of ABR waves in rats to establish baseline criteria that could be used to identify abnormalities. Rats were stimulated with pure tone sounds at different frequencies and ABR waves were classified based on morphology. The most definitive finding was that, unlike what is observed in human ABRs, wave II of the rat ABR was the most prominent. Additionally, wave III was the smallest and, in many cases, was not apparent at low frequencies. Wave III was frequently involved in the formation of complexes, often appearing as a small wave or adjoining primarily wave IV. Complexes were common at low and medium frequencies and rare at high frequencies. These results indicate that knowledge of the different wave patterns in normal rats is fundamental to understanding how the wave morphology changes in pathological conditions that could lead to hearing impairment.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), 02006 Albacete, Spain.
| | | | | | | | | |
Collapse
|
20
|
Protective effects of vitamins E, B and C and l-carnitine in the prevention of cisplatin-induced ototoxicity in rats. The Journal of Laryngology & Otology 2012; 126:464-9. [DOI: 10.1017/s0022215112000382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjective:This experimental study aimed to investigate the effects of vitamins E, B and C and l-carnitine in preventing cisplatin-induced ototoxicity.Methods:Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or l-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I–IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration.Results:The following statistically significant differences were seen: control group pre- vs post-treatment wave I–IV interval values (p < 0.05); control vs vitamin E and B groups' I–IV interval values (p < 0.05); control vs other groups' hearing thresholds; vitamin E vs vitamin B and C and l-carnitine groups' hearing thresholds (p < 0.05); and vitamin B vs vitamin C and l-carnitine groups' hearing thresholds (p < 0.05). Statistically significant decreases were seen when comparing the initial and final signal-to-noise ratios in the control, vitamin B and l-carnitine groups (2000 and 3000 Hz; p < 0.01), and the initial and final signal-to-noise ratios in the control group (at 4000 Hz; p < 0.01).Conclusion:Vitamins B, E and C and l-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.
Collapse
|
21
|
Effects of hyperbaric oxygen treatment on auditory hair cells after acute noise damage. Eur Arch Otorhinolaryngol 2010; 268:49-56. [PMID: 20652293 DOI: 10.1007/s00405-010-1338-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
Abstract
Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss caused by exposure of the hearing organ to acoustic overstimulation, typically an intense sound impulse, hyperbaric oxygen therapy (HOT), which favors repair of the microcirculation, can be potentially used to treat it. Hence, this study aimed to assess the effects of HOT on guinea pigs exposed to acoustic trauma. Fifteen guinea pigs were exposed to noise in the 4-kHz range with intensity of 110 dB sound level pressure for 72 h. They were assessed by brainstem auditory evoked potential (BAEP) and by distortion product otoacoustic emission (DPOAE) before and after exposure and after HOT at 2.0 absolute atmospheres for 1 h. The cochleae were then analyzed using scanning electron microscopy (SEM). There was a statistically significant difference in the signal-to-noise ratio of the DPOAE amplitudes for the 1- to 4-kHz frequencies and the SEM findings revealed damaged outer hair cells (OHC) after exposure to noise, with recovery after HOT (p = 0.0159), which did not occur on thresholds and amplitudes to BAEP (p = 0.1593). The electrophysiological BAEP data did not demonstrate effectiveness of HOT against AAT damage. However, there was improvement of the anatomical pattern of damage detected by SEM, with a significant reduction of the number of injured cochlear OHC and their functionality detected by DPOAE.
Collapse
|
22
|
Reimer A, Hubka P, Engel AK, Kral A. Fast propagating waves within the rodent auditory cortex. ACTA ACUST UNITED AC 2010; 21:166-77. [PMID: 20444841 DOI: 10.1093/cercor/bhq073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Central processing of acoustic signals is assumed to take place in a stereotypical spatial and temporal pattern involving different fields of auditory cortex. So far, cortical propagating waves representing such patterns have mainly been demonstrated by optical imaging, repeatedly in the visual and somatosensory cortex. In this study, the surface of rat auditory cortex was mapped by recording local field potentials (LFPs) in response to a broadband acoustic stimulus. From the peak amplitudes of LFPs, cortical activation maps were constructed over 4 cortical auditory fields. Whereas response onset had same latencies across primary auditory field (A1), anterior auditory field (AAF), and ventral auditory field and longer latencies in posterior auditory field, activation maps revealed a reproducible wavelike pattern of activity propagating for ∼45 ms poststimulus through all cortical fields. The movement observed started with 2 waves within the primary auditory fields A1 and AAF moving from ventral to dorsal followed by a motion from rostral to caudal, passing continuously through higher-order fields. The pattern of propagating waves was well reproducible and showed only minor changes if different anesthetics were used. The results question the classical "hierarchical" model of cortical areas and demonstrate that the different fields process incoming information as a functional unit.
Collapse
Affiliation(s)
- Antonia Reimer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
23
|
Sekiya T, Matsumoto M, Kojima K, Ono K, Kikkawa YS, Kada S, Ogita H, Horie RT, Viola A, Holley MC, Ito J. Mechanical stress-induced reactive gliosis in the auditory nerve and cochlear nucleus. J Neurosurg 2010; 114:414-25. [PMID: 20367075 DOI: 10.3171/2010.2.jns091817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hearing levels following microsurgical treatment gradually deteriorate in a number of patients treated for vestibular schwannoma (VS), especially in the subacute postoperative stage. The cause of this late-onset deterioration of hearing is not completely understood. The aim of this study was to investigate the possibility that reactive gliosis is a contributory factor. METHODS Mechanical damage to nerve tissue is a feature of complex surgical procedures. To explore this aspect of VS treatment, the authors compressed rat auditory nerves with 2 different degrees of injury while monitoring the compound action potentials of the auditory nerve and the auditory brainstem responses. In this experimental model, the axons of the auditory nerve were quantitatively and highly selectively damaged in the cerebellopontine angle without permanent compromise of the blood supply to the cochlea. The temporal bones were processed for immunohistochemical analysis at 1 week and at 8 weeks after compression. RESULTS Reactive gliosis was induced not only in the auditory nerve but also in the cochlear nucleus following mechanical trauma in which the general shape of the auditory brainstem response was maintained. There was a substantial outgrowth of astrocytic processes from the transitional zone into the peripheral portion of the auditory nerve, leading to an invasion of dense gliotic tissue in the auditory nerve. The elongated astrocytic processes ran in parallel with the residual auditory neurons and entered much further into the cochlea. Confocal images disclosed fragments of neurons scattered in the gliotic tissue. In the cochlear nucleus, hypertrophic astrocytic processes were abundant around the soma of the neurons. The transverse diameter of the auditory nerve at and proximal to the compression site was considerably reduced, indicating atrophy, especially in rats in which the auditory nerve was profoundly compressed. CONCLUSIONS The authors found for the first time that mechanical stress to the auditory nerve causes substantial reactive gliosis in both the peripheral and central auditory pathways within 1-8 weeks. Progressive reactive gliosis following surgical stress may cause dysfunction in the auditory pathways and may be a primary cause of progressive hearing loss following microsurgical treatment for VS.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
von der Behrens W, Bäuerle P, Kössl M, Gaese BH. Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 2009; 29:13837-49. [PMID: 19889995 PMCID: PMC6666711 DOI: 10.1523/jneurosci.3475-09.2009] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 11/21/2022] Open
Abstract
Changes in the sensory environment are good indicators for behaviorally relevant events and strong triggers for the reallocation of attention. In the auditory domain, violations of a pattern of repetitive stimuli precipitate in the event-related potentials as mismatch negativity (MMN). Stimulus-specific adaptation (SSA) of single neurons in the auditory cortex has been proposed to be the cellular substrate of MMN (Nelken and Ulanovsky, 2007). However, until now, the existence of SSA in the awake auditory cortex has not been shown. In the present study, we recorded single and multiunits in parallel with evoked local field potentials (eLFPs) in the primary auditory cortex of the awake rat. Both neurons and eLFPs in the awake animal adapted in a stimulus-specific manner, and SSA was controlled by stimulus probability and frequency separation. SSA of isolated units was significant during the first stimulus-evoked "on" response but not in the following inhibition and rebound of activity. The eLFPs exhibited SSA in the first negative deflection and, to a lesser degree, in a slower positive deflection but no MMN. Spike adaptation correlated closely with adaptation of the fast negative deflection but not the positive deflection. Therefore, we conclude that single neurons in the auditory cortex of the awake rat adapt in a stimulus-specific manner and contribute to corresponding changes in eLFP but do not generate a late deviant response component directly equivalent to the human MMN. Nevertheless, the described effect may reflect a certain part of the process needed for sound discrimination.
Collapse
Affiliation(s)
- Wolfger von der Behrens
- Institute for Cell Biology and Neuroscience, Department of Biological Sciences, Goethe University, D-60323 Frankfurt am Main, Germany
| | - Peter Bäuerle
- Institute for Cell Biology and Neuroscience, Department of Biological Sciences, Goethe University, D-60323 Frankfurt am Main, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Department of Biological Sciences, Goethe University, D-60323 Frankfurt am Main, Germany
| | - Bernhard H. Gaese
- Institute for Cell Biology and Neuroscience, Department of Biological Sciences, Goethe University, D-60323 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Bickel S, Javitt DC. Neurophysiological and neurochemical animal models of schizophrenia: focus on glutamate. Behav Brain Res 2009; 204:352-62. [PMID: 19433116 DOI: 10.1016/j.bbr.2009.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
Deficits in N-methyl-d-aspartate receptor (NMDAR) function play a critical role in the pathophysiology of schizophrenia. Animal models are needed to investigate possible mechanisms underlying NMDA dysfunction in schizophrenia as well as development of new therapeutic approaches. A major difficulty in developing animal models for schizophrenia is the identification of quantifiable measures that can be tested in a similar fashion in both humans and animals. The majority of animal models utilize analogous measures, wherein species-specific behaviors are used as presumed parallel manifestations of a common underlying construct. In vivo microdialysis and electrophysiology represent two methodologies in which homologous measures can instead be obtained in both animals and humans. In both techniques, well-validated, NMDA-sensitive measures are analyzed in rodents using probes implanted directly into cortex or subcortical structures. We discuss the currently available data from studies that used these methods in non-human primate and rodent glutamate models. In addition, we emphasize the possible relevance of the amphetamine-challenge studies to positive symptoms and of EEG measures to cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Stephan Bickel
- Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA
| | | |
Collapse
|
26
|
Matsumoto M, Sekiya T, Kojima K, Ito J. An animal experimental model of auditory neuropathy induced in rats by auditory nerve compression. Exp Neurol 2007; 210:248-56. [PMID: 18178187 DOI: 10.1016/j.expneurol.2007.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/02/2007] [Accepted: 11/03/2007] [Indexed: 01/19/2023]
Abstract
Several animal models of auditory neuropathy (AN) have been produced by employing pharmacological agents to damage auditory neurons or hair cells selectively. The specificity of pharmacological lesions is generally assessed by observation of visible structural damage but it is difficult to localize the delivery, which could lead to functional side effects in other anatomical structures. Although genetic analyses of human AN patients have provided important information on the pathophysiology of AN, specific genetic defects have not been fully correlated with functional deficits in the auditory nervous system. To address this problem, we compressed rat auditory nerves to assess neural degeneration for up to 35 weeks. The method produced a good model of auditory neuropathy, including profound deterioration of the auditory brainstem response and preservation of both cochlear microphonics and distortion product otoacoustic emissions. Histological examination revealed that in spite of profound degeneration of the auditory nerve, the hair cells remained intact. The model provides a complementary alternative to those based on pharmacological lesions and genetic analyses of AN patients and should allow analysis of the pathophysiology of auditory neuropathy with less risk of the results being confounded by unknown deficits in other cell types.
Collapse
Affiliation(s)
- Masahiro Matsumoto
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
27
|
Takahashi H, Nakao M, Kaga K. Multiple neural origins of early auditory evoked potential of rat. Neuroscience 2007; 148:845-56. [PMID: 17825493 DOI: 10.1016/j.neuroscience.2007.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 07/12/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
The multiple-origin hypothesis has been often considered for an unclear neurogenesis of a characteristic wave in various evoked potentials, none of which has been verified so far. Auditory evoked potential (AEP) in the temporal cortex of rodents has typical slow positive/negative (P1/N1) biphasic waves, which are occasionally associated with an additional 2-4-ms earlier small deflection (P0/N0). Despite previous extensive efforts, P0/N0 deflection is still discussed within the multiple-origin hypothesis. In this historical perspective, we hypothesized that observable AEP is an additive mixture of mutually temporally independent signals from different origins, and that the balance of the mixture impacts on the waveform of AEP. We attempted to verify this hypothesis for the first time by independent component analysis (ICA) of epidurally densely mapped AEPs in the primary auditory cortex of rats. The mapping showed that low amplitude AEPs tended to have more P0/N0 deflections in both pentobarbital- and ketamine/xylazine-anesthesia preparations. ICA of these AEP maps suggested that AEP consisted of at least three independent components and that the deflection appeared when subcortical contribution to AEP was equal to or larger than cortical contribution. In epicranially measured evoked potentials, subcortical and cortical contributions are mixed together because distances from electrodes to cortical sources approximate distances to subcortical sources. In such conditions, e.g. in human scalp-recording experiments or routine clinical screenings, our idea is specifically worth considering for the interpretation of signals.
Collapse
Affiliation(s)
- H Takahashi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | |
Collapse
|
28
|
Herr DW, Graff JE, Moser VC, Crofton KM, Little PB, Morgan DL, Sills RC. Inhalational Exposure to Carbonyl Sulfide Produces Altered Brainstem Auditory and Somatosensory-Evoked Potentials in Fischer 344N Rats. Toxicol Sci 2006; 95:118-35. [PMID: 17079700 DOI: 10.1093/toxsci/kfl146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carbonyl sulfide (COS), a chemical listed by the original Clean Air Act, was tested for neurotoxicity by a National Institute of Environmental Health Sciences/National Toxicology Program and U.S. Environmental Protection Agency collaborative investigation. Previous studies demonstrated that COS produced cortical and brainstem lesions and altered auditory neurophysiological responses to click stimuli. This paper reports the results of expanded neurophysiological examinations that were an integral part of the previously published experiments (Morgan et al., 2004, Toxicol. Appl. Pharmacol. 200, 131-145; Sills et al., 2004, Toxicol. Pathol. 32, 1-10). Fisher 334N rats were exposed to 0, 200, 300, or 400 ppm COS for 6 h/day, 5 days/week for 12 weeks, or to 0, 300, or 400 ppm COS for 2 weeks using whole-body inhalation chambers. After treatment, the animals were studied using neurophysiological tests to examine: peripheral nerve function, somatosensory-evoked potentials (SEPs) (tail/hindlimb and facial cortical regions), brainstem auditory-evoked responses (BAERs), and visual flash-evoked potentials (2-week study). Additionally, the animals exposed for 2 weeks were examined using a functional observational battery (FOB) and response modification audiometry (RMA). Peripheral nerve function was not altered for any exposure scenario. Likewise, amplitudes of SEPs recorded from the cerebellum were not altered by treatment with COS. In contrast, amplitudes and latencies of SEPs recorded from cortical areas were altered after 12-week exposure to 400 ppm COS. The SEP waveforms were changed to a greater extent after forelimb stimulation than tail stimulation in the 2-week study. The most consistent findings were decreased amplitudes of BAER peaks associated with brainstem regions after exposure to 400 ppm COS. Additional BAER peaks were affected after 12 weeks, compared to 2 weeks of treatment, indicating that additional regions of the brainstem were damaged with longer exposures. The changes in BAERs were observed in the absence of altered auditory responsiveness in FOB or RMA. This series of experiments demonstrates that COS produces changes in brainstem auditory and cortical somatosensory neurophysiological responses that correlate with previously described histopathological damage.
Collapse
Affiliation(s)
- David W Herr
- Neurotoxicology Division, MD B105-05, NHEERL, ORD, USEPA, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Miasnikov AA, Chen JC, Weinberger NM. Rapid induction of specific associative behavioral memory by stimulation of the nucleus basalis in the rat. Neurobiol Learn Mem 2006; 86:47-65. [PMID: 16466937 PMCID: PMC3597412 DOI: 10.1016/j.nlm.2005.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/15/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
Hypothesized circuitry enabling behavioral memory formation can be tested by its direct activation in the absence of normal experience. Neuromodulation via the cortical release of acetylcholine by the nucleus basalis (NB) is hypothesized to be sufficient to induce specific, associative behavioral memory. Previously, we found that tone paired with stimulation of the nucleus basalis (NBs) for 3000 trials over 15 days induced such memory, supporting the hypothesis. However, as standard associative memory can be established much more rapidly, we asked whether NB-induced memory develops rapidly. Adult male Sprague-Dawley rats, trained and tested in the same calm, waking state, were divided into Paired (n=5) and control (n=4) groups, each of which received a single session of 200 trials of an 8.0 kHz conditioned stimulus (CS) either paired with NBs or with unpaired presentation of NBs. Respiration, cardiac activity, and evoked potentials in the primary auditory cortex (ACx) were recorded. Memory and its degree of specificity were assessed 24 h later by presenting tones of various frequencies (1-15 kHz) in the absence of NBs to yield behavioral frequency generalization gradients. Behavioral responses to test tones consisted of interruption of ongoing respiration and changes in heart rate. Post-training behavioral generalization gradients exhibited response peaks centered on the CS frequency for the Paired group alone. Tone evoked potentials from the ACx also developed CS-specific plasticity. The findings indicate that NB induction of specific behavioral associative memory, like normal memory, can develop rapidly and is accompanied by specific cortical plasticity, supporting the view that NB engagement during normal learning produces memory.
Collapse
Affiliation(s)
- Alexandre A. Miasnikov
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | - Jemmy C. Chen
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| | - Norman M. Weinberger
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-3800, USA
| |
Collapse
|
30
|
Takahashi H, Nakao M, Kaga K. Accessing Ampli-Tonotopic Organization of Rat Auditory Cortex by Microstimulation of Cochlear Nucleus. IEEE Trans Biomed Eng 2005; 52:1333-44. [PMID: 16041997 DOI: 10.1109/tbme.2005.847554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Auditory brainstem implants (ABI) that electrically stimulate the surface of cochlear nucleus have been clinically used for the rehabilitation of deaf patients with bilateral vestibular schwannomas. The change of pitch perception with an active electrode location is not as clear in ABIs as in cochlear implants, a factor which might play a role in poorer speech performance in ABIs. The objective of present work was to develop an animal ABI model that could provide physiological data for future ABI development and optimization. The experimental system included a penetrating microelectrode array for microstimulation of the cochlear nucleus and a surface microelectrode array for mapping evoked potentials over the auditory cortex. We first obtained tone-evoked cortical activation patterns, which represented a place code of the frequency and intensity of test tones, i.e., the ampli-tonotopic organization, and compared the patterns with those evoked by cochlear nuclear microstimulation. Our experimental results demonstrated that microstimulation of both the dorsal and ventral cochlear nucleus (DCN and VCN) could access the cortical ampli-tonotopic organization as acoustic stimuli did. We also found that the cortical dynamic range was wider for the DCN than VCN stimulation and for the low-frequency than for the high-frequency pathway. The present results have great implications for improved ABI performance.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Department of Engineering Synthesis, Graduate School of Engineering, the University of Tokyo, Tokyo 113-8656, Japan.
| | | | | |
Collapse
|
31
|
Verbny YI, Merriam EB, Banks MI. Modulation of gamma-aminobutyric acid type A receptor-mediated spontaneous inhibitory postsynaptic currents in auditory cortex by midazolam and isoflurane. Anesthesiology 2005; 102:962-9. [PMID: 15851883 PMCID: PMC1828872 DOI: 10.1097/00000542-200505000-00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Anesthetic agents that target gamma-aminobutyric acid type A (GABA(A)) receptors modulate cortical auditory evoked responses in vivo, but the cellular targets involved are unidentified. Also, for agents with multiple protein targets, the relative contribution of modulation of GABA(A) receptors to effects on cortical physiology is unclear. The authors compared effects of the GABA(A) receptor-specific drug midazolam with the volatile anesthetic isoflurane on spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal cells of auditory cortex. METHODS Whole cell recordings were obtained in murine brain slices at 34 degrees C. GABA(A) sIPSCs were isolated by blocking ionotropic glutamate receptors. Effects of midazolam and isoflurane on time course, amplitude, and frequency of sIPSCs were measured. RESULTS The authors detected no effect of midazolam at 0.01 microM on sIPSCs, whereas midazolam at 0.1 and 1 microM prolonged the decay of sIPSCs by approximately 25 and 70%, respectively. Isoflurane at 0.1, 0.25, and 0.5 mm prolonged sIPSCs by approximately 45, 150, and 240%, respectively. No drug-specific effects were observed on rise time or frequency of sIPSCs. Isoflurane at 0.5 mm caused a significant decrease in sIPSC amplitude. CONCLUSIONS The dose dependence of isoflurane effects on GABA(A) sIPSCs in pyramidal cells is consistent with effects on auditory evoked response in vivo. By contrast, comparable effects of midazolam on GABA(A) sIPSCs arise at concentrations exceeding those currently thought to be achieved in vivo, suggesting that the cellular targets of midazolam reside elsewhere in the thalamocortical circuit or that the concentration of midazolam reached in the brain is higher than currently believed.
Collapse
Affiliation(s)
- Yakov I Verbny
- Department of Anesthesiology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
32
|
Biessels GJ, ter Laak MP, Kamal A, Gispen WH. Effects of the Ca2+ antagonist nimodipine on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. Brain Res 2005; 1035:86-93. [PMID: 15713280 DOI: 10.1016/j.brainres.2004.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2004] [Indexed: 11/21/2022]
Abstract
Diabetes mellitus can lead to functional and structural deficits in both the peripheral and central nervous system. The pathogenesis of these deficits is multifactorial, probably involving, among others, microvascular dysfunction and alterations in intracellular calcium homeostasis. The present study examined the effects of treatment with the Ca2+ antagonist nimodipine (20 mg/kg, intraperitoneal injection, every 48 h) on functional deficits in the peripheral and central nervous system in streptozotocin-diabetic rats. In a prevention experiment, treatment was initiated immediately after diabetes induction and continued for 10 weeks. In a reversal experiment, treatment was initiated 16 weeks after diabetes induction and continued for 12 weeks. Sciatic nerve motor and sensory conduction velocity, brainstem auditory-evoked potentials, and visual-evoked potentials were measured in control, untreated, and nimodipine-treated diabetic rats. In addition, long-term potentiation, a form of synaptic plasticity used as a model for learning and memory at the cellular level, was examined in hippocampal slices. Nimodipine treatment partially prevented deficits in nerve conduction velocity and hippocampal long-term potentiation in diabetic rats. However, nimodipine intervention treatment was unable to reverse established deficits in nerve conduction velocity, evoked potential latencies, or long-term potentiation. It is concluded that nimodipine can partially prevent early functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats but is unable to reverse late deficits.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Medical Pharmacology of the Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Jongsma MLA, Eichele T, Quian Quiroga R, Jenks KM, Desain P, Honing H, Van Rijn CM. Expectancy effects on omission evoked potentials in musicians and non-musicians. Psychophysiology 2005; 42:191-201. [PMID: 15787856 DOI: 10.1111/j.1469-8986.2005.00269.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract An expanded omitted stimulus paradigm was investigated to determine whether expectancy would modulate the amplitude of the omission evoked potentials (OEPs). In addition, we examined the effects of musical expertise on OEPs. Trials started with 3-7 beats randomly and contained 5 omitted beats. Three types of trials (n = 90) were presented with 1, 2, or 3 beats occurring between omissions. A tap response at the end of each trial was used to determine timing accuracy. Clear OEPs were observed over midline sites. We found main omission effects with respect to an N150 and a P400 OEPs component, such that peak amplitudes diminished whenever the occurrence of an omitted stimulus could be expected. In addition, an N600 OEPs component emerged in response to expectedly omitted stimuli toward the end of each trial within the group of musicians. Thus, musical training seems to lead to more efficient and more refined processing of auditory temporal patterns.
Collapse
Affiliation(s)
- Marijtje L A Jongsma
- Department of Biological Psychology, Nijmegen Institute of Cognition and Information, Radboud University Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Morgan DL, Little PB, Herr DW, Moser VC, Collins B, Herbert R, Johnson GA, Maronpot RR, Harry GJ, Sills RC. Neurotoxicity of carbonyl sulfide in F344 rats following inhalation exposure for up to 12 weeks. Toxicol Appl Pharmacol 2004; 200:131-45. [PMID: 15476866 DOI: 10.1016/j.taap.2004.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 04/12/2004] [Indexed: 11/26/2022]
Abstract
Carbonyl sulfide (COS), a high-priority Clean Air Act chemical, was evaluated for neurotoxicity in short-term studies. F344 rats were exposed to 75-600 ppm COS 6 h per day, 5 days per week for up to 12 weeks. In rats exposed to 500 or 600 ppm for up to 4 days, malacia and microgliosis were detected in numerous neuroanatomical regions of the brain by conventional optical microscopy and magnetic resonance microscopy (MRM). After a 2-week exposure to 400 ppm, rats were evaluated using a functional observational battery. Slight gait abnormality was detected in 50% of the rats and hypotonia was present in all rats exposed to COS. Decreases in motor activity, and forelimb and hindlimb grip strength were also detected. In rats exposed to 400 ppm for 12 weeks, predominant lesions were in the parietal cortex area 1 (necrosis) and posterior colliculus (neuronal loss, microgliosis, hemorrhage), and occasional necrosis was present in the putamen, thalamus, and anterior olivary nucleus. Carbonyl sulfide specifically targeted the auditory system including the olivary nucleus, nucleus of the lateral lemniscus, and posterior colliculus. Consistent with these findings were alterations in the amplitude of the brainstem auditory evoked responses (BAER) for peaks N3, P4, N4, and N5 that represented changes in auditory transmission between the anterior olivary nucleus to the medial geniculate nucleus in animals after exposure for 2 weeks to 400 ppm COS. A concentration-related decrease in cytochrome oxidase activity was detected in the posterior colliculus and parietal cortex of exposed rats as early as 3 weeks. Cytochrome oxidase activity was significantly decreased at COS concentrations that did not cause detectable lesions, suggesting that disruption of the mitochondrial respiratory chain may precede these brain lesions. Our studies demonstrate that this environmental air contaminant has the potential to cause a wide spectrum of brain lesions that are dependent on the degree and duration of exposure.
Collapse
Affiliation(s)
- Daniel L Morgan
- Laboratory of Molecular Toxicology, NIEHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kaur S, Lazar R, Metherate R. Intracortical Pathways Determine Breadth of Subthreshold Frequency Receptive Fields in Primary Auditory Cortex. J Neurophysiol 2004; 91:2551-67. [PMID: 14749307 DOI: 10.1152/jn.01121.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the basis of frequency receptive fields in auditory cortex (ACx), we have recorded intracellular (whole cell) and extracellular (local field potential, LFP) responses to tones in anesthetized rats. Frequency receptive fields derived from excitatory postsynaptic potentials (EPSPs) and LFPs from the same location resembled each other in terms of characteristic frequency (CF) and breadth of tuning, suggesting that LFPs reflect local synaptic (including subthreshold) activity. Subthreshold EPSP and LFP receptive fields were remarkably broad, often spanning five octaves (the maximum tested) at moderate intensities (40–50 dB above threshold). To identify receptive-field features that are generated intracortically, we microinjected the GABAA receptor agonist muscimol (0.2–5.1 mM, 1–5 μl) into ACx. Muscimol dramatically reduced LFP amplitude and reduced receptive-field bandwidth, implicating intracortical contributions to these features but had lesser effects on CF response threshold or onset latency, suggesting minimal loss of thalamocortical input. Reversal of muscimol's inhibition preferentially at the recording site by diffusion from the recording pipette of the GABAA receptor antagonist picrotoxin (0.01–100 μM) disinhibited responses to CF stimuli more than responses to spectrally distant, non-CF stimuli. We propose that thalamocortical and intracortical pathways preferentially contribute to responses evoked by CF and non-CF stimuli, respectively, and that intracortical projections linking frequency representations determine the breadth of receptive fields in primary ACx. Broad, subthreshold receptive fields may distinguish ACx from subcortical auditory relay nuclei, promote integrated responses to spectrotemporally complex stimuli, and provide a substrate for plasticity of cortical receptive fields and maps.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
36
|
Manschot SM, Gispen WH, Kappelle LJ, Biessels GJ. Nerve conduction velocity and evoked potential latencies in streptozotocin-diabetic rats: effects of treatment with an angiotensin converting enzyme inhibitor. Diabetes Metab Res Rev 2003; 19:469-77. [PMID: 14648806 DOI: 10.1002/dmrr.401] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Diabetes mellitus is associated with deficits in cerebral function. Vascular disorders may play a role in the pathogenesis and provide a potential target for treatment. The present study examined if prevention and intervention treatment with the angiotensin converting enzyme inhibitor enalapril could improve peripheral and central neurophysiological deficits in streptozotocin-diabetic rats. METHODS Sciatic nerve conduction velocities were measured prior to diabetes induction and again every three weeks. In the prevention study, the final nerve conduction measurements were performed at 15 weeks and in the intervention study at 24 weeks. Brain stem auditory and visual evoked potential latencies were measured every 3 weeks from 10 weeks after diabetes induction. In the prevention study, the final evoked potential measurements were performed at 16 weeks and in the intervention study at 25 weeks. Treatment with the angiotensin converting enzyme inhibitor enalapril was started directly after diabetes induction (prevention treatment) and after 15 weeks of diabetes (intervention treatment). RESULTS Nerve conduction velocity, brain stem auditory and visual evoked potential latencies were impaired in diabetic rats. Enalapril prevented deficits in nerve conduction velocity (p < 0.001), brain stem auditory evoked potential latencies (p < 0.01) and visual evoked potential latencies (p < 0.005). Enalapril intervention treatment had no effect on nerve conduction velocity and on visual evoked potential latencies, but improved brain stem auditory evoked potential latencies (p < 0.05) after 10 weeks of treatment. CONCLUSION Enalapril partially prevents the development of neurophysiological alterations in the peripheral and central nervous system and partially reverses deficits in brain stem auditory evoked potential latencies in STZ-diabetic rats.
Collapse
Affiliation(s)
- Sanne M Manschot
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Centre, Utrecht, Netherlands.
| | | | | | | |
Collapse
|
37
|
Helfert RH, Krenning J, Wilson TS, Hughes LF. Age-related synaptic changes in the anteroventral cochlear nucleus of Fischer-344 rats. Hear Res 2003; 183:18-28. [PMID: 13679134 DOI: 10.1016/s0378-5955(03)00194-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have demonstrated age-related decreases in the transmitters glycine and glutamate in the cochlear nucleus (CN) of the Fischer-344 (F344) rat, along with declining levels of binding for glycine receptors. The purpose of this study was to evaluate structural correlates to the transmitter and receptor losses that accompany aging in the anteroventral CN (AVCN). Thin sections were obtained from the middle-frequency area of the right AVCNs from five 3-month-, four 19-month-, and five 28-month-old F344 rats. Montages were constructed from electron micrographs taken of several sites in each AVCN section. The presynaptic terminals were classified by vesicle type and postsynaptic target, and their perimeters and synaptic lengths were traced using morphometry software. The calibers of all dendritic profiles were also measured, and cell counts were performed on semi-thin sections. The data were compared among the three age groups using analysis of variance followed by Tukey's Honestly Significant Difference for pairwise comparisons. There were significant age-related decreases in the size of terminals contacting small-caliber (<2 microm) dendrites. Dendrites of this size comprised the largest percentage of dendrites in the AVCN. On these targets, round and pleomorphic-vesicle terminals were reduced in volume by nearly 44% and 24%, respectively, in 28-month olds when compared to the 3-month olds. On the other hand, the densities and numbers of synaptic terminals and dendritic profiles did not differ among age groups, and no neuronal losses were evident in the older animals. Also, there were no detectable changes in synaptic area among groups. The decrease in terminal size may be related to age-associated reductions in neurotransmitter levels previously described in the F344 CN. The observations presented here contrast with those previously described in the inferior colliculus (IC), in which there were significant age-related losses of synaptic terminals and dendrites, but no change in the size of synaptic terminals. The lack of synaptic and dendritic losses suggests that the structural connectivity of the rat AVCN remains relatively intact during aging, which is interesting in light of the synaptic and dendritic changes evident in the IC, a major target of its projections.
Collapse
Affiliation(s)
- Robert H Helfert
- Department of Surgery, Southern Illinois University School of Medicine, PO Box 19638, Springfield, IL 62794-9638, USA.
| | | | | | | |
Collapse
|
38
|
Hyppolito MA, Oliveira JAAD, Rossato M, Holanda F. Ototoxicidade da cisplatina e otoproteção pelo extrato de ginkgo biloba às células ciliadas externas: estudo anatômico e eletrofisiológico. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s0034-72992003000400011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A Cisplatina é uma potente droga antineoplásica, largamente utilizada para o tratamento do câncer, tanto em adultos quanto em crianças. Dentre seus efeitos colaterais, a ototoxicidade se apresenta como um dos mais importantes e leva à perda auditiva irreversível, bilateral, para as altas freqüências (4KHz#8KHz). Estudos têm tentado identificar drogas que, associadas à cisplatina possam atuar como otoprotetores. Sabe-se que o mecanismo da ototoxicidade pela cisplatina está relacionado a alterações nos mecanismos antioxidantes das células ciliadas, principalmente as células ciliadas externas da cóclea. OBJETIVO: Nossa proposta foi de avaliar através de emissões otoacústicas, por produtos de distorção (EOAPD) e por microscopia eletrônica de superfície (ME), a ação do extrato de ginkgo biloba (EGB 761), que tem conhecida ação antioxidante, como possível otoprotetor, utilizando como modelo experimental cobaias albinas. FORMA DE ESTUDO: Experimental. MATERIAL E MÉTODO: Observamos EOAPD presentes pré e pós tratamento no grupo EGB (100 mg/Kg/dia via oral) e 90 minutos após cisplatina (80 mg/Kg/dia via intraperitoneal) por 8 dias. RESULTADO: Houve também manutenção da arquitetura ciliar nas células ciliadas externas em todas as espiras da cóclea, enquanto que no grupo tratado somente com cisplatina (80 mg/Kg/dia via intraperitoneal) por 8 dias, houve desaparecimento das EOAPD pós tratamento, com desaparecimento dos cilios das células ciliadas externas e distorção na arquitetura dos cílios remanescentes à ME. CONCLUSÃO: Concluímos que a EGB, por sua ação antioxidante, atua como fator otoprotetor à ototoxicidade pela cisplatina, devendo ser testada tal ação na prática clínica em pacientes que utilizam a cisplatina, pois o uso do EGB está extremamente difundido no tratamento de diferentes doenças.
Collapse
|
39
|
Rocinhol LF, Oliveira LM, Colafêmina JF. Malnutrition and environmental stimulation in rats: interpeak intervals of the brainstem auditory evoked potentials. Nutr Neurosci 2002; 4:189-98. [PMID: 11842888 DOI: 10.1080/1028415x.2001.11747362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to investigate the effects of malnutrition, nutritional recovery, environmental stimulation and click intensity on the interpeak intervals of the waves of the Brainstem Auditory Evoked Potentials (BAEPs). The animals were divided into Well-nourished (W) and Malnourished (M) groups. At weaning, half of the M rats were submitted to nutritional recovery (R) until the test day. These groups were further subdivided into Stimulated (S) and Non-stimulated (N) rats. The BAEPs interpeak intervals I-III, I-IV and III-IV were analysed in independent groups of rats on the 18th, 22nd, 32nd and 42nd days of age. During the lactation period, stimulated rats presented shorter I-III, I-IV and III-IV interpeak intervals than Non-stimulated animals. This analysis also indicated a diet x stimulation x age interaction during the lactation period. The WN and MN groups showed a longer I-IV interval than the WS and MS groups, respectively, on the 18th and 22nd day of age, and the MN group also presented a longer I-IV interpeak interval than the WN group on the 22nd day of age. During the post-lactation period, stimulated animals showed shorter I-III and I-IV intervals than non-stimulated rats. Post hoc analysis indicated longer I-III and I-IV interpeak intervals in the MN than in the WN, RN and MS groups. Additionally, malnourished animals showed longer I-III and I-IV intervals than well-nourished and recovered rats when exposed to clicks of 90, 80 or 70 dB intensity. Malnutrition resulted in a delay of normal development of the brainstem auditory pathway indicated by the increases in the interpeak intervals of BAEPs waves, and environmental stimulation reduced these intervals, promoting faster nervous impulse transmission.
Collapse
Affiliation(s)
- L F Rocinhol
- Department of the Psychology and Education, FFCLRP, University of the São Paulo, Ribeirão Preto, Brazil.
| | | | | |
Collapse
|
40
|
Vicente-Torres MA, Muñoz E, Dávila D, Gil-Loyzaga P. Changes in the cochlear dopaminergic system of the aged rat. Brain Res 2001; 917:112-7. [PMID: 11602235 DOI: 10.1016/s0006-8993(01)02931-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The levels of dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) have been quantified in cochleae of male and female rats aged 3, 6, 9, 12, 19 and 24 months. Animals were exposed for 1 h, under general anesthesia, to: (1) silence (basal conditions) or (2) white noise at 90 dB SPL. Afterwards, the concentrations of DA, DOPAC and HVA were determined by HPLC with electrochemical detection in homogenates of individual cochleae. In basal conditions, the cochlear concentrations of DA, DOPAC and HVA in aged females were higher than in adult ones. The concentrations of DA and DOPAC were also higher in aged males with respect to adult ones. A decrease in DA and an increase in DOPAC and HVA concentrations, with respect to silence, were detected when adult animals were exposed to noise. Meanwhile, aged animals showed either a noise-induced increase or no modification of DA and DOPAC with respect to basal levels. Present results suggest age-related failures in DA release and metabolizing mechanisms within the cochlea, together with a compensatory DA synthesis increase. However, the possibility of an initial damage in the primary auditory neurons which could also stimulate the synthesis of DA must not be excluded. Present age-related changes could indicate that the cochlear dopaminergic innervation is affected during the aging process. Since this innervation plays an important role in both the modulation and the protection of the primary auditory neurons, its metabolic alteration could profoundly modify the auditory process.
Collapse
Affiliation(s)
- M A Vicente-Torres
- Center of Cell Culture (CAI-UCM) Faculty of Medicine, Complutense University of Madrid, 28080 Madrid, Spain
| | | | | | | |
Collapse
|
41
|
Meeren HK, van Cappellen van Walsum AM, van Luijtelaar EL, Coenen AM. Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat. Brain Res 2001; 898:321-31. [PMID: 11306019 DOI: 10.1016/s0006-8993(01)02209-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Click auditory evoked potentials (AEP) were simultaneously recorded from the auditory cortex (ACx), the medial geniculate nucleus (MGN), and the inferior colliculus (IC) in the freely moving WAG/Rij rat, to investigate state-dependent changes of the AEP in different anatomical locations along the auditory pathway. METHODS AEPs obtained during active (AW) and passive wakefulness (PW), slow wave sleep (SWS), rapid-eye-movement sleep (REM) and generalized spike-wave discharges (SWD; a specific trait of the WAG/Rij rat, a genetic model for absence epilepsy), were compared. RESULTS The early components in ACx, MGN and IC were stable throughout the sleep-wake cycle and SWD, apart from a slight increase in the IC during SWD. At all three locations a prominent enlargement of a later component (i.e., N32 in IC, N33 in MGN, and N44 in ACx) was found during SWS and SWD. CONCLUSIONS The early AEP components are not modulated by the normal sleep-wake states, and are not impaired during SWD. A strong state-dependent modulation of a later AEP component occurs at all three anatomical locations investigated. This suggests that apart from the thalamic burst firing mode, additional mechanisms must exist for the enlargement of the AEP during EEG-synchronized states at the prethalamic and cortical level.
Collapse
Affiliation(s)
- H K Meeren
- Department of Comparative and Physiological Psychology, Nijmegen Institute of Cognition and Information (NICI), University of Nijmegen, P.O. Box 9104, 6500 HE, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Jongsma ML, van Rijn CM, van Schaijk WJ, Coenen AM. Effects of diazepam on auditory evoked potentials of rats elicited in a ten-tone paradigm. Neuropsychobiology 2001; 42:158-62. [PMID: 11015034 DOI: 10.1159/000026686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of diazepam on sensory gating was studied in rats by measuring diazepam effects on auditory evoked potentials (AEPs) elicited in a ten-tone paradigm. Trains of 10 repetitive tone-pip stimuli were presented. Rats (n = 8) received 4 mg x kg(-1) diazepam subcutaneously or vehicle, counterbalanced over two sessions. Diazepam decreased the amplitude of the middle-latency P30 component and increased the amplitudes of the late-latency N60 and P67 components. The increase in the late-latency components might be due to a diazepam-induced decrease in arousal. Stimulus repetition decreased the amplitudes of the middle-latency N18 and P30 components in both conditions. This suggests that automated neuronal recovery functions underlying sensory gating remain intact with diazepam. In the vehicle condition, the amplitude of the late-latency P67 decreased with stimulus repetition, but not in the diazepam condition. This suggests a diazepam-induced decrease of behaviourally mediated habituation.
Collapse
Affiliation(s)
- M L Jongsma
- Department of Anaesthesiology, Njimegen Institute for Cognition and Information, University of Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Biessels GJ, Smale S, Duis SE, Kamal A, Gispen WH. The effect of gamma-linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. J Neurol Sci 2001; 182:99-106. [PMID: 11137514 DOI: 10.1016/s0022-510x(00)00456-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus can lead to functional and structural deficits in both the peripheral and central nervous system. The pathogenesis of these deficits is multifactorial, probably involving, among others, microvascular dysfunction and oxidative stress. The present study examined the effects of 12 weeks of treatment with a conjugate of the essential fatty acid gamma-linolenic acid and the anti-oxidant alpha-lipoic acid (GLA-LA) on functional deficits in the peripheral and central nervous system in streptozotocin-diabetic rats. Treatment was initiated 16 weeks after diabetes induction. Sciatic nerve motor and sensory conduction velocity, brainstem auditory evoked potentials and visual evoked potentials were measured in control, untreated and GLA-LA treated diabetic rats. Also, long-term potentiation, a form of synaptic plasticity used as a model for learning and memory at the cellular level, was examined in hippocampal slices. GLA-LA treatment (50 mg/kg/day) did not reverse established deficits in nerve conduction velocity or in evoked potential latencies in diabetic rats. However, GLA-LA treatment did improve long-term potentiation in the hippocampus. It is concluded that GLA-LA, which is known to improve early deficits in peripheral nerve conduction in diabetic rats, is unable to reverse late deficits. However, the compound does reverse established deficits in long-term potentiation, suggesting that at least part of its activity is specifically directed at synaptic plasticity.
Collapse
Affiliation(s)
- G J Biessels
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Roncagliolo M, Benítez J, Eguibar JR. Progressive deterioration of central components of auditory brainstem responses during postnatal development of the myelin mutant taiep rat. Audiol Neurootol 2000; 5:267-75. [PMID: 10899697 DOI: 10.1159/000013891] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Auditory brainstem responses (ABRs) were evaluated during the postnatal development (P10-P180) of taiep rats, neurological mutants characterized by early abnormal myelin development and subsequent demyelination of the CNS. The disorder is produced by an autosomal recessive mutation trait that affects the oligodendrocytes but not the Schwann cells. After onset of ABRs (P12-P14), taiep rats and their nonaffected heterozygous littermates that served as controls showed a similar pattern of maturation for wave I. The central waves (In-IV) showed significantly longer latencies in the mutants. By P60-P180, the later waves (III and IV) were frequently difficult to discern. From the onset of ABRs, the interpeak latency I-IV, corresponding to the central conduction time (CCT) of the auditory pathway, showed in taiep rats significantly longer values than controls. After an initial reduction, proportional to that of control rats, the CCT value increased progressively during the second month of the mutants' lives. The electrophysiological results of the present study strongly support the hypothesis that mutation in the taiep rat impairs neuromaturation of the central auditory pathway in the brainstem by affecting the myelination process in the CNS.
Collapse
Affiliation(s)
- M Roncagliolo
- Departamento de Fisiología, Instituto de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad de Valparaíso, Chile.
| | | | | |
Collapse
|
45
|
Chen TJ, Chen SS, Hsieh YL. Evaluating the protective role of the olivocochlear bundle against acoustic overexposure in rats by using Fos immunohistochemistry. J Neurol Sci 2000; 177:104-13. [PMID: 10980306 DOI: 10.1016/s0022-510x(00)00346-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efferent inhibition on the cochlea is suggested as a possible function of the olivocochlear bundle (OCB). Substantial evidence supports the finding that the OCB may protect the inner ear from noise-induced damage. However, there is relatively less known about the effects of noise on the central auditory transmission compared to the effects on the periphery. In the present animal study, two experimental paradigms were designed to analyze the influence of OCB lesion on the central auditory transmission following acoustic overexposure. In order to evaluate the animal's auditory function, its hearing threshold and the tone-evoked Fos expression shown in auditory nuclei were examined. Fos is a protein product of proto-oncogene c-fos. Via appropriate acoustic stimulation, Fos expression reveals the activated neuronal elements along the ascending auditory pathway. Thus, in experiment 1, no exposure sound was introduced and therefore no significant differences were shown in hearing thresholds and Fos expression among all rats, regardless of the status of their OCB. This result indicates that, without acoustic overexposure, OCB lesion caused no significant effect on brainstem auditory transmission. In contrast, in experiment 2, rats were exposed to continuous 8 kHz tones at 85 dB sound pressure level (SPL). A significantly increasing threshold was observed in rats with OCB lesion following an exposure period of 5 or 10 days. In addition, Fos expression was invisible first in rats with OCB lesion following 5-day exposure and almost no Fos expression could be examined in all rats after 10-day exposure. Taken together, the present data demonstrate that damaging the OCB renders an animal more easily vulnerable to acoustic damage than that of rat with intact OCB, and then reduces its cochlear activities, which eventually leads to increasing difficulty to induce tone-evoked Fos expression along the ascending auditory pathway.
Collapse
Affiliation(s)
- T J Chen
- Department of Physiology, Kaohsiung Medical University, Shih-Chuan 1st Road, 807, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
46
|
Ohl FW, Scheich H, Freeman WJ. Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex. J Neurophysiol 2000; 83:3123-32. [PMID: 10805706 DOI: 10.1152/jn.2000.83.5.3123] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the tonotopic organization of pure-tone-evoked middle latency auditory evoked potentials (MAEPs) recorded at the auditory cortical surface in unanesthetized gerbils. Multielectrode array recording and multiple linear regression analysis of the MAEP demonstrated different degrees of tonotopic organization of early and late MAEP components. The early MAEP components P1 and N1 showed focal topography and clear dependence in location and size of cortical area covered on pure-tone frequency. The later components P2 and N2 showed a widespread topography which was largely unaffected in location and size of cortical area covered by pure-tone frequency. These results allow delimitation of the neural generators of the early and late MAEP components in terms of the spectral properties of functionally defined neural populations.
Collapse
Affiliation(s)
- F W Ohl
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
47
|
Biessels GJ, Cristino NA, Rutten GJ, Hamers FP, Erkelens DW, Gispen WH. Neurophysiological changes in the central and peripheral nervous system of streptozotocin-diabetic rats. Course of development and effects of insulin treatment. Brain 1999; 122 ( Pt 4):757-68. [PMID: 10219786 DOI: 10.1093/brain/122.4.757] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus can affect both the peripheral and the central nervous system. However, central deficits are documented less well than peripheral deficits. We therefore compared the course of development of neurophysiological changes in the central and peripheral nervous systems in streptozotocin-diabetic rats. Sciatic nerve conduction velocities and auditory and visual evoked potentials were measured prior to diabetes induction, and then monthly after diabetes induction for 6 months. In addition, the effect of insulin treatment was examined. Treatment was initiated after a diabetes duration of 6 months and was continued for 3 months. During treatment, evoked potentials and nerve conduction were measured monthly. In a third experiment, conduction velocities in ascending and descending pathways of the spinal cord were examined after 3 and 6 months of diabetes. Impairments of sciatic nerve conduction velocities developed fully during the first 2-3 months of diabetes. In contrast, increased latencies of auditory and visual evoked potentials developed only after 3-4 months of diabetes, and progressed gradually thereafter. Insulin treatment, initiated 6 months after induction of diabetes, improved both nerve conduction velocities and evoked potential latencies. Conduction velocities in the spinal cord tended to be reduced after 3 months of diabetes and were significantly reduced after 6 months of diabetes. The present study demonstrates that in streptozotocin-diabetic rats the course of development of peripheral and central neurophysiological changes differs. Peripheral impairments develop within weeks after diabetes induction, whereas central impairments take months to develop. Insulin can reverse both peripheral and central neurophysiological alterations.
Collapse
Affiliation(s)
- G J Biessels
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Utrecht University, and University Hospital, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Ashkenazi A, Freeman S, Argov Z. Effects of cholinergic blockers on auditory brain-stem evoked potentials in rats. J Neurol Sci 1999; 164:124-8. [PMID: 10402022 DOI: 10.1016/s0022-510x(99)00070-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The pharmacology of auditory brain-stem evoked potentials (ABEP) pathways is poorly understood. There are anecdotal reports on the involvement of various neurotransmitters but they were not investigated systematically. The aim of this study was to investigate the effects on ABEP of muscarinic and nicotinic blockers, administered into the cerebral ventricles. Atropine sulfate, d-Tubocurarine and saline were injected stereotactically into the lateral cerebral ventricle of anesthetized male rats. Auditory clicks were given at a rate of 20 s(-1). ABEP recording was performed before and 30 min after injection. Pre- and post-injection peak latencies and peak-to-peak amplitudes of positive waves were compared for each animal. Atropine reduced the amplitudes of waves P1, P3 and P4 and increased mildly the brain stem transmission time. d-Tubocurarine reduced the amplitudes of P1 and P4 with no significant effect on the peak latencies. Saline injection had no effect on any of the parameters. These results show that both cholinergic systems are involved in ABEP generation or transmission. Mechanism of action could be either direct inhibition of afferent pathways or indirect effect, via modulating efferent pathways.
Collapse
Affiliation(s)
- A Ashkenazi
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel.
| | | | | |
Collapse
|
49
|
Miyazato H, Skinner RD, Cobb M, Andersen B, Garcia-Rill E. Midlatency auditory-evoked potentials in the rat: effects of interventions that modulate arousal. Brain Res Bull 1999; 48:545-53. [PMID: 10372516 DOI: 10.1016/s0361-9230(99)00034-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vertex-recorded P13 midlatency auditory-evoked potential in the rat shows the same characteristics as the P1 potential in the human, namely, sleep-state dependence, rapid habituation and blockade by the cholinergic antagonist scopolamine. The P13 potential appears to be generated, at least in part, by projections of the pedunculopontine nucleus, the cholinergic arm of the reticular activating system. On the other hand, the auditory cortex-recorded P7 potential appears to be of primary cortical origin. Simultaneous recordings from the vertex and the auditory cortex showed that (1) the P13 potential was suppressed by administration of the anesthetics ketamine, pentobarbital or halothane in a dose-dependent manner, but the P7 potential was not; (2) the P13 potential was suppressed by intragastric injections of ethanol in a dose-dependent manner, but the P7 potential was not; (3) the amplitude of the P13 potential was negatively correlated with blood ethanol levels; (4) both the P13 and P7 potentials were still present following injections of the neuromuscular blocker pancuronium bromide; and (5) both the P13 and P7 potentials were decreased by diffuse brain injury induced by a weight-drop device in a weight-dependent manner. These findings suggest that the P13 potential is more sensitive than the P7 potential to changes in arousal and that the P13 and P7 potentials are not of myogenic but of neural origin.
Collapse
Affiliation(s)
- H Miyazato
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | |
Collapse
|
50
|
Conti G, Santarelli R, Grassi C, Ottaviani F, Azzena GB. Auditory steady-state responses to click trains from the rat temporal cortex. Clin Neurophysiol 1999; 110:62-70. [PMID: 10348322 DOI: 10.1016/s0168-5597(98)00045-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to investigate the mechanisms underlying the generation of steady-state responses (SSRs), auditory evoked potentials elicited by click trains presented at several stimulation rates (30, 40, 50, 60 Hz) were recorded in 7 awake rats by means of epidural electrodes placed over the temporal cortex. Mean amplitude-rate function calculated on the recorded responses appeared almost flat and showed the maximum value at 50 Hz, while mean phases showed a linear increase when increasing the stimulation rate. In each rat, predictions of the recorded responses at 30, 40, 50 and 60 Hz were synthesized by superimposing middle-latency auditory evoked potentials (MAEPs) at suitable time intervals at each rate. Mean amplitudes calculated on the predicted curves decreased linearly when increasing the stimulation rate and appeared higher in comparison to those obtained from the recorded SSRs. Predicted phases showed a linear increase when increasing the stimulation rate and were leading with respect to corresponding phase values calculated for recorded SSRs. Our findings indicate that the MAEP superimposition mechanism does not adequately predict the generation of temporal recorded SSRs in rats. This was explained by admitting that phenomena related to the recovery cycle and, to a lesser extent, to rate-dependent facilitating effects come into play.
Collapse
Affiliation(s)
- G Conti
- Institute of ENT Clinic, Università Cattolica del S. Cuore, Rome, Italy
| | | | | | | | | |
Collapse
|