1
|
Leusch FDL, MacLatchy DL. In vivo implants of beta-sitosterol cause reductions of reactive cholesterol pools in mitochondria isolated from gonads of male goldfish (Carassius auratus). Gen Comp Endocrinol 2003; 134:255-63. [PMID: 14636632 DOI: 10.1016/s0016-6480(03)00265-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
beta-Sitosterol, a phytosterol found in high concentrations in pulp mill effluents, has been proposed as one of the causative agents for steroid depressions observed in fish exposed to pulp mill effluents. Previous studies have suggested a cholesterol-mediated mechanism; however, it is unknown how beta-sitosterol depresses gonadal steroidogenesis. In this study, adult male goldfish (Carassius auratus) were exposed for 24-31 days to beta-sitosterol (55% of a phytosterol mixture or 96% pure; 150 microg/g; Silastic implant) after which gonadal mitochondria were isolated. Pregnenolone production, an indicator of the size of the pool of reactive cholesterol, was then measured in the isolated mitochondria. Sterol exposure did not affect P450 side-chain cleavage enzyme (converts cholesterol to pregnenolone) activity but did decrease the size of the mitochondrial pool of reactive cholesterol, suggesting beta-sitosterol is impeding cholesterol transfer across the mitochondrial membrane. This finding is supported by the observation that 25-hydroxycholesterol, which passes through mitochondrial membranes without need for a membrane transporter, restores beta-sitosterol-induced reductions in pregnenolone production.
Collapse
Affiliation(s)
- Frédéric D L Leusch
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, E2L 4L5 New Brunswick, Canada
| | | |
Collapse
|
2
|
Martínez F, Uribe A, Espinosa-García MT, Flores-Herrera O, García-Pérez C, Milán R. Calcium modulates the ATP and ADP hydrolysis in human placental mitochondria. Int J Biochem Cell Biol 2002; 34:992-1003. [PMID: 12007637 DOI: 10.1016/s1357-2725(02)00020-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated the effect of Ca2+ on the extramitochondrial hydrolysis of ATP and ADP by the extramitochondrial ATPase in isolated mitochondria and submitochondrial particles (SMPs) from human term placenta. The effect of different oxidizable substrates on the hydrolysis of ATP and ADP in the presence of sucrose or K+ was evaluated. Ca2+ increased phosphate release from ATP and ADP, but this stimulation showed different behavior depending on the oxidizable substrate present in the incubation media. Ca2+ stimulated the hydrolysis of ATP and ADP in the presence of sucrose. However, Ca2+ did not stimulate the hydrolysis of ADP in the medium containing K+. Ca2+ showed inhibition depending on the respiratory substrate. This study suggests that the energetic state of mitochondria controls the extramitochondrial ATPase activity, which is modulated by Ca2+ and respiratory substrates.
Collapse
Affiliation(s)
- Federico Martínez
- Departamento de Bioquimica, Facultad de Medicina, UNAM Apdo., Postal 70-159, 04510, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
3
|
Martínez F, Uribe A, Milán R, Teresa Espinosa-García M, Gracía-Pérez C, Flores-Herrera O. Differential effects of magnesium on the hydrolysis of ADP and ATP in human term placenta. Effect of substrates and potassium. Int J Biochem Cell Biol 2002; 34:1004-16. [PMID: 12007638 DOI: 10.1016/s1357-2725(02)00021-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study evaluates the effect of Mg2+ on the extramitochondrial hydrolysis of ATP and ADP by human term placental mitochondria (HPM) and submitochondrial particle (SMP). Extramitochondrial ATPase and ADPase activities were evaluated in the presence or absence of K+, and different oxidizable substrates. Mg2+ increased both ATP and ADP hydrolysis according to the experimental conditions, and this stimulation was related to the mitochondrial intactness. The ADPase activity in intact mitochondria is 100-fold higher in presence of K+, succinate and 1mM Mg2+ while this activity is only increased by two-fold on the SMP when compared to the sample without Mg2+. It is clearly demonstrated that up-regulation of these enzyme activities occur in intact mitochondria and not on the enzyme itself. The results suggest that the regulation of ATP and ADP hydrolysis is complex, and Mg2+ plays an important role in the modulation of the extramitochondrial ATPase and ADPase activities in HPM
Collapse
Affiliation(s)
- Federico Martínez
- Departamento de Bioquímica, Facultad de Medicina, UNAM Apdo, Postal 70-159, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- F Martínez
- Department of Biochemistry, Faculty of Medicine, UNAM, Mexico
| | | |
Collapse
|
5
|
Brand C, Cherradi N, Defaye G, Chinn A, Chambaz EM, Feige JJ, Bailly S. Transforming growth factor beta1 decreases cholesterol supply to mitochondria via repression of steroidogenic acute regulatory protein expression. J Biol Chem 1998; 273:6410-6. [PMID: 9497372 DOI: 10.1074/jbc.273.11.6410] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-betas (TGF-betas) constitute a family of dimeric proteins that affect growth and differentiation of many cell types. TGF-beta1 has also been proposed to be an autocrine regulator of adrenocortical steroidogenesis, acting mainly by decreasing the expression of cytochrome P450c17. Here, we demonstrate that TGF-beta1 has a second target in bovine adrenocortical cells, namely the steroidogenic acute regulatory protein (StAR). Indeed, supplying cells with steroid precursors revealed that TGF-beta1 inhibited two steps in the steroid synthesis pathway, one prior to pregnenolone production and another corresponding to P450c17. More specifically, TGF-beta1 inhibited pregnenolone production but neither the conversion of 25-hydroxycholesterol to pregnenolone nor P450scc activity. Thus, TGF-beta1 must decrease the cholesterol supply to P450scc. We therefore examined the effect of TGF-beta1 on the expression of StAR, a mitochondrial protein implicated in intramitochondrial cholesterol transport. TGF-beta1 decreased the steady state level of StAR mRNA in a time- and concentration-dependent manner. This inhibition occurs at the level of StAR transcription and depends on RNA and protein synthesis. It is likely that the TGF-beta1-induced decrease of StAR expression that we report here may be expanded to other steroidogenic cells in which a decrease of cholesterol accessibility to P450scc by TGF-beta1 has been hypothesized.
Collapse
Affiliation(s)
- C Brand
- Commissariat à l'Energie Atomique, Département de Biologie Moléculaire et Structurale, Biochìmìe des Régulations Cellulaires Endocrines, INSERM Unité 244, 17 rue des Martyrs, F-38054 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Kim YC, Ariyoshi N, Artemenko I, Elliott ME, Bhattacharyya KK, Jefcoate CR. Control of cholesterol access to cytochrome P450scc in rat adrenal cells mediated by regulation of the steroidogenic acute regulatory protein. Steroids 1997; 62:10-20. [PMID: 9029709 DOI: 10.1016/s0039-128x(96)00153-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholesterol conversion to pregnenolone by cytochrome P450scc in steroidogenic cells, including those of the adrenal cortex, is determined by hormonal control of cholesterol availability. Intramitochondrial cholesterol movement to P450scc, which retains hormonal activation in isolated mitochondria, is apparently dependent on peripheral benzodiazepine receptor and the recently cloned steroidogenic acute regulatory (StAR) protein. In rat adrenal cells, StAR is formed as a 37-kDa precursor that is transferred to the mitochondrial inner membrane following phosphorylation by hormonally activated protein kinase A, and processed to multiple forms, some of which turn over very rapidly. In bovine cells, StAR undergoes three modifications forming a set of eight proteins seen in both glomerulosa and fasciculata cells. In the former, cyclic AMP and angiotensin II each decrease two forms and elevate six forms. Significantly, the major change seen after activation may not involve phosphorylation of StAR. Cholesterol transfer across mitochondrial membranes is also activated in isolated mitochondria by GTP and low concentrations of Ca2+, apparently prior to activation by StAR. Depletion of StAR by cycloheximide inhibits cholesterol transfer but is overcome by uptake of Ca2+ into the matrix. This activation of cellular cholesterol transport is sustained in adrenal cells permeabilized by Streptolysin O. In rat adrenal cells cAMP elevates 3.5- and 1.6-kb mRNA, hybridized by a 1.0-kb StAR cDNA. A 3.5-kb rat adrenal cDNA that encodes all except the 5' end of the longest StAR mRNA has been characterized. The corresponding gene sequence is distributed across seven exons. The shorter mRNA may arise from polyadenylation signals early in exon 7. However, the 3.5-kb mRNA comprises 80-90% of untreated rat adrenal StAR mRNA and may therefore provide the prime source for in vivo translation of StAR protein.
Collapse
Affiliation(s)
- Y C Kim
- Department of Pharmacology, University of Wisconsin-Madison Medical School 53706, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The first and rate-limiting step of steroidogenesis is catalyzed by the mitochondrial cholesterol side chain cleavage system that is dependent on NADPH. The pathways of NADPH generation in steroidogenic mitochondria include three major routes catalyzed by: 1. NADP-linked malic enzyme, 2. NADP-linked isocitrate dehydrogenase, and 3. nicotinamide nucleotide transhydrogenase. The main route may differ among cell types and across species. Generally operation of alternative routes, with different substrates is not excluded. The oxidation of NADPH by the mitochondrial P450 systems is not tightly coupled with substrate metabolism, as these systems can reduce O2 by a single electron to produce harmful superoxide radical. To minimize such futile NADPH oxidation, NADPH generation may be regulated by two types of mechanisms: 1. Feedback mechanisms that maintain the ratio of NADPH/NADP+ at a steady-state level by enhancing the rate of NADPH production to keep up with its rate of oxidation, e.g., allosteric regulation of enzymes involved in NADPH production. 2. Hormonal signals that enhance the level of NADPH production in coordination with steroidogenesis. One major hypothesis with experimental evidence is that stimulation of mitochondrial NAD(P)H synthesis is mediated by Ca++ as a second messenger of tropic factors. Tropic stimulation of cells increases the levels of Ca++ in the cytosol and then in the mitochondrial matrix, and the rise in Ca++ activates enzymes involved in NAD(P)H synthesis. These regulatory mechanisms most probably operate in concert adjusted to the steroidogenic activity of the cell.
Collapse
Affiliation(s)
- I Hanukoglu
- Research Institute, College of Judea and Samaria, Ariel, Israel
| | | |
Collapse
|
8
|
Kowluru R, Yamazaki T, McNamara BC, Jefcoate CR. Metabolism of exogenous cholesterol by rat adrenal mitochondria is stimulated equally by physiological levels of free Ca2+ and by GTP. Mol Cell Endocrinol 1995; 107:181-8. [PMID: 7539386 DOI: 10.1016/0303-7207(94)03441-u] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adrenal mitochondria metabolize cholesterol at inner membrane (IM) cytochrome P450scc. Exogenous and outer membrane (OM) cholesterol are metabolized more slowly due to a limiting transfer of cholesterol from OM to IM. This process is stimulated by in vivo ACTH treatment and inhibited by cycloheximide (CX)-induced depletion of labile regulatory proteins. In isolated rat adrenal mitochondria, GTP enhances the metabolism of exogenous cholesterol, consistent with enhanced intermembrane cholesterol transfer (Xu et al. (1989) J. Biol Chem. 264, 17674), but metabolism of 20 alpha-hydroxycholesterol, which readily traverses mitochondrial membranes, is not affected. The non-hydrolyzable analog, GTP gamma S, completely inhibits the activation of cholesterol metabolism by GTP, suggesting a requirement for GTP hydrolysis. Low concentrations of Ca2+ (0.4-4 microM) stimulate two independent cholesterol transport processes. For exogenous cholesterol, a Ca(2+)-mediated process can replace GTP since each produces comparable stimulation and the combination produces little additional activity. This Ca2+ stimulation is insensitive to GTP gamma S and also to Ruthenium Red (RR), which prevents Ca2+ entry into the matrix. Ca2+ also enhances availability to P450 scc of endogenous OM cholesterol, which accumulates during in vivo CX-inhibition. This stimulation is, however, distinguished by insensitivity to GTP and complete inhibition by RR. Ca2+, therefore, enhances intermembrane transfer of exogenous cholesterol from OM without entry into the matrix through a process which is independently stimulated by GTP. Ca2+ induces transfer of endogenous OM cholesterol through a completely different mechanism involving RR-inhibited matrix changes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Kowluru
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
9
|
Abstract
To search for genes that are induced by ACTH in adrenocortical cells, we screened adrenal cortex cDNA libraries by a differential hybridization method using cDNA probes representing mRNAs from cells with or without ACTH stimulation. Forty clones were identified as ACTH induced (yielding a frequency of about 1/2500 plaques screened), and two clones as ACTH repressed. The cDNAs isolated and sequenced include nuclear genes for microsomal steroidogenic enzymes and novel proteins of yet unidentified functions, and mitochondrial genes encoding subunits of oxidative phosphorylation enzymes. Northern blot analysis of RNA from cells stimulated with ACTH confirmed the induction of these genes by ACTH, yet revealed important differences in the relative responses of the respective mRNAs. The time courses showed the major increase in the initial 6 h; and a decline after 24-36 h. The enhancement of the levels of the mRNAs could be ascribed to transcriptional activation. Since the mitochondrial genome is transcribed as a single polycistronic unit, to account for the > 20-fold differences in the levels of the mitochondrial mRNAs it is necessary to invoke differential stabilities of these mRNAs. The synchronous increase in the expression of both the steroidogenic enzymes and the mitochondrial oxidative phosphorylation system subunits, provides evidence for coregulation of steroidogenic and energy producing capacities of adrenal cells to meet the metabolic needs of steroid hormone production. Suppression of beta-actin gene expression may be related to changes in actin polymerization during ACTH-dependent cytoskeletal reorganization.
Collapse
Affiliation(s)
- M Raikhinstein
- Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
10
|
Raikhinstein M, Hanukoglu I. Mitochondrial-genome-encoded RNAs: differential regulation by corticotropin in bovine adrenocortical cells. Proc Natl Acad Sci U S A 1993; 90:10509-13. [PMID: 7504267 PMCID: PMC47806 DOI: 10.1073/pnas.90.22.10509] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Differential screening of an adrenal cortex cDNA library for corticotropin (ACTH)-inducible genes led to the isolation of a group of cDNAs representing mitochondrial genes that encode subunits of cytochrome oxidase, ATPase, and NADH dehydrogenase. Northern blot analysis of RNA from cells stimulated by ACTH confirmed the induction of these genes by ACTH yet revealed major differences in the relative responses of the respective mRNAs. The levels of mRNAs for cytochrome oxidase subunit I and ATPase increased 2- to 4-fold and for NADH dehydrogenase subunit 3 increased 20-fold, whereas the levels of the mitochondrial 16S rRNA showed no change within 6 h of ACTH stimulation. These effects of ACTH on mitochondrial mRNA levels probably result from both activation of the H2 transcription unit that encodes mitochondrial mRNAs and alteration of mRNA stability. ACTH also increased the activity of cytochrome oxidase after 12 h of stimulation. Examination of the tissue specificity of expression of five mitochondrial genes showed a wide range of RNA levels among 11 tissues but high correlations between individual RNA levels, consistent with a coordinated expression of the mitochondrial genes, although at different levels in each cell type. Proportionately high levels of mitochondrial mRNAs were found in adrenal cortex, probably reflecting a stimulatory effect of ACTH in vivo. Overall, the results indicate that ACTH enhances the energy-producing capacity of adrenocortical cells.
Collapse
Affiliation(s)
- M Raikhinstein
- Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
11
|
Yamazaki T, McNamara BC, Jefcoate CR. Competition for electron transfer between cytochromes P450scc and P45011 beta in rat adrenal mitochondria. Mol Cell Endocrinol 1993; 95:1-11. [PMID: 8243798 DOI: 10.1016/0303-7207(93)90023-d] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rat adrenal mitochondria contain approximately equal levels of P450scc and P45011 beta, each reduced by NADPH through adrenodoxin reductase (ADX-reductase) and adrenodoxin (ADX). Constitutive cholesterol side-chain cleavage (SCC) can be increased over 20-fold through a combination of hormonal activation and inhibition of cholesterol metabolism in vivo prior to isolation of the mitochondria. This stimulation, which results from accumulated reactive cholesterol, does not significantly affect either the dependence of activities on the concentration of isocitrate (IC) and succinate (SU) or the ratio of maximum activities [3:1] supported by these reductants. Thus, the rate of cholesterol SCC is determined independently by electron transfer and the amount of reactive cholesterol. Hydroxylation of deoxycorticosterone (11 beta and 18 positions) required much higher levels of each reductant, indicating less effective reductant transfer to P45011 beta. Reactions at P450scc and P45011 beta, mediated by IC, are enhanced by low concentrations of various dicarboxylates anions (fumarate, SU). The actions of SU dehydrogenase inhibitors and the activity of fumarate, a poor direct reductant, suggest that higher production of NADPH results from malate-enhanced uptake of isocitrate. Only synergistic combinations of reductants are sufficient to sustain maximum rates of 11-deoxycorticosterone (DOC) metabolism, whereas IC is fully effective for P450scc. Increased reaction at P450scc (cholesterol loading or addition of 20 alpha-hydroxycholesterol) decreased simultaneous DOC metabolism at P45011 beta in inverse proportion to the estimated intramitochondrial generation of NADPH (1 mM or 10 mM SU > 1 mM IC > 10 mM IC). These decreases were reversed by inhibition of P450scc. Crossover inhibition caused by maximum DOC metabolism was less pronounced. EGTA/albumin treatment, which enhanced activities at both P450scc and P45011 beta, presumably via increased NADPH, diminished this cross-competition. The differential dependence on reductants and the characteristics of crossover competition are consistent with a roughly three-fold more favorable partitioning of electron transfer to P450scc, possibly caused by preferential interaction of reduced adrenodoxin with P450scc.
Collapse
Affiliation(s)
- T Yamazaki
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706
| | | | | |
Collapse
|
12
|
Jefcoate CR, McNamara BC, Artemenko I, Yamazaki T. Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J Steroid Biochem Mol Biol 1992; 43:751-67. [PMID: 22217822 DOI: 10.1016/0960-0760(92)90305-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transfer of cholesterol to cytochrome P450scc is generally the rate-limiting step in steroid synthesis. Depending on the steroidogenic cell, cholesterol is supplied from low or high density lipoproteins (LDL or HDL) or de novo synthesis. ACTH and gonadotropins stimulate this cholesterol transfer prior to activation of gene transcription, both through increasing the availability of cytosolic free cholesterol and through enhanced cholesterol transfer between the outer and inner mitochondrial membranes. Cytosolic free cholesterol from LDL or HDL is primarily increased through enhanced cholesterol ester hydrolysis and suppressed esterification, but increased de novo synthesis can be significant. Elements of the cytoskeleton, probably in conjunction with sterol carrier protein(2) (SCP(2)), mediate cholesterol transfer to the mitochondrial outer membranes. Several factors contribute to the transfer of cholesterol between mitochondrial membranes; steroidogenesis activator peptide acts synergistically with GTP and is supplemented by SCP(2). 5-Hydroperoxyeicosatrienoic acid, endozepine (at peripheral benzodiazepine receptors), and rapid changes in outer membrane phospholipid content may also contribute stimulatory effects at this step. It is suggested that hormonal activation, through these factors, alters membrane structure around mitochondrial intermembrane contact sites, which also function to transfer ADP, phospholipids, and proteins to the inner mitochondria. Cholesterol transfer may occur following a labile fusion of inner and outer membranes, stimulated through involvement of cardiolipin and phosphatidylethanolamine in hexagonal phase membrane domains. Ligand binding to benzodiazepine receptors and the mitochondrial uptake of 37 kDa phosphoproteins that uniquely characterize steroidogenic mitochondria could possibly facilitate these changes. ACTH activation of rat adrenals increases the susceptibility of mitochondrial outer membranes to digitonin solubilization, suggesting increased cholesterol availability. Proteins associated with contact sites were not solubilized, indicating that this part of the outer membrane is resistant to this treatment. Two pools of reactive cholesterol within adrenal mitochondria have been distinguished by different isocitrate- and succinate-supported metabolism. These pools appear to be differentially affected in vitro by the above stimulatory factors.
Collapse
Affiliation(s)
- C R Jefcoate
- Department of Pharmacology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
13
|
Brown AS, Hall PF, Shoyab M, Papadopoulos V. Endozepine/diazepam binding inhibitor in adrenocortical and Leydig cell lines: absence of hormonal regulation. Mol Cell Endocrinol 1992; 83:1-9. [PMID: 1312958 DOI: 10.1016/0303-7207(92)90189-d] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the many effects which have been attributed to the peptide endozepine/diazepam binding inhibitor (Ep/DBI) is the stimulation of adrenocortical and testicular Leydig cell mitochondrial steroidogenesis. We have used two cell lines (Y-1 mouse adrenal cell tumour and MA-10 mouse Leydig cell tumour), both of which exhibit hormone stimulated steroid production, to investigate the role of Ep/DBI in acute hormone stimulated steroidogenesis. The time course of incorporation of 35S-translabel into Ep/DBI and its turnover rate when the isotope was removed were examined. Cell samples were extracted and separated on Sep-Pak C18 columns and analysed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis followed by fluorography as well as by direct scintillation counting. This allowed us to estimate the in vivo half-life of Ep/DBI and also to investigate the hormonal dependence of the peptide. Data presented here suggest that (i) Ep/DBI levels are not regulated by trophic hormones in these steroidogenic cell lines, and (ii) that the peptide has a relatively long half-life (greater than 3 h), a finding incompatible with suggestions of it having a rapid turnover. Therefore, it seems unlikely that control of Ep/DBI steroidogenic effects is via hormonal modulation of the peptide levels.
Collapse
Affiliation(s)
- A S Brown
- Department of Endocrinology, Prince of Wales Hospital, Randwick, NSW, Australia
| | | | | | | |
Collapse
|