1
|
Jordan VC. Turning scientific serendipity into discoveries in breast cancer research and treatment: a tale of PhD students and a 50-year roaming tamoxifen team. Breast Cancer Res Treat 2021; 190:19-38. [PMID: 34398352 PMCID: PMC8557169 DOI: 10.1007/s10549-021-06356-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE This retrospective, about a single "mobile" laboratory in six locations on two continents, is intended as a case study in discovery for trainees and junior faculty in the medical sciences. Your knowledge of your topic is necessary to expect the unexpected. HISTORICAL METHOD In 1972, there was no tamoxifen, only ICI 46, 474, a non-steroidal anti-estrogen with little chance of clinical development. No one would ever be foolish enough to predict that the medicine, 20 years later, would achieve legendary status as the first targeted treatment for breast cancer, and millions of women would benefit from long-term adjuvant tamoxifen therapy. The secret of tamoxifen's success was a translational research strategy proposed in the mid 1970's. This strategy was to treat only patients with estrogen receptor (ER)-positive breast cancer and deploy 5 or more years of adjuvant tamoxifen therapy to prevent recurrence. Additionally, tamoxifen prevented mammary cancer in animals. Could the medicine prevent breast cancer in women? RESULTS Tamoxifen and the failed breast cancer drug raloxifene became the first selective estrogen receptor modulators (SERMs): a new drug group, discovered at the University of Wisconsin, Comprehensive Cancer Center. Serendipity can play a fundamental role in discovery, but there must be a rigorous preparation for the investigator to appreciate the possibility of a pending discovery. This article follows the unanticipated discoveries when PhD students "get the wrong answer." The secret of success of my six Tamoxifen Teams was their technical excellence to create models, to decipher mechanisms, that drove the development of new medicines. Discoveries are listed that either changed women's health or allowed an understanding of originally opaque mechanisms of action of potential therapies. These advances in women's health were supported entirely by government-sponsored peer-reviewed funding and major philanthropy from the Lynn Sage Breast Cancer Foundation, the Avon Foundation, and the Susan G. Komen Breast Cancer Foundation. The resulting lives saved or extended, families aided in a time of crisis and the injection of billions of dollars into national economies by drug development, is proof of the value of Federal or philanthropic investment into unencumbered research aimed at saving millions of lives.
Collapse
Affiliation(s)
- V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Xu L, Gordon R, Farmer R, Pattanayak A, Binkowski A, Huang X, Avram M, Krishna S, Voll E, Pavese J, Chavez J, Bruce J, Mazar A, Nibbs A, Anderson W, Li L, Jovanovic B, Pruell S, Valsecchi M, Francia G, Betori R, Scheidt K, Bergan R. Precision therapeutic targeting of human cancer cell motility. Nat Commun 2018; 9:2454. [PMID: 29934502 PMCID: PMC6014988 DOI: 10.1038/s41467-018-04465-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Increased cancer cell motility constitutes a root cause of end organ destruction and mortality, but its complex regulation represents a barrier to precision targeting. We use the unique characteristics of small molecules to probe and selectively modulate cell motility. By coupling efficient chemical synthesis routes to multiple upfront in parallel phenotypic screens, we identify that KBU2046 inhibits cell motility and cell invasion in vitro. Across three different murine models of human prostate and breast cancer, KBU2046 inhibits metastasis, decreases bone destruction, and prolongs survival at nanomolar blood concentrations after oral administration. Comprehensive molecular, cellular and systemic-level assays all support a high level of selectivity. KBU2046 binds chaperone heterocomplexes, selectively alters binding of client proteins that regulate motility, and lacks all the hallmarks of classical chaperone inhibitors, including toxicity. We identify a unique cell motility regulatory mechanism and synthesize a targeted therapeutic, providing a platform to pursue studies in humans. In this study, the authors identify and validate a halogen-substituted isoflavanone able to inhibit prostate cancer cell motility, invasion and metastasis in vitro and in vivo. They demonstrate its ability to selectively inhibit activation of client proteins that stimulate cell motility.
Collapse
Affiliation(s)
- Li Xu
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Gastroenterology, Xiang'an Hospital of Xiamen University, Fujian, 361101, Xiamen, China
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Rebecca Farmer
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Abhinandan Pattanayak
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Andrew Binkowski
- Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Avram
- Department of Anesthesiology, Northwestern University, Chicago, IL, 60611, USA
| | - Sankar Krishna
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Eric Voll
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Janet Pavese
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Juan Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - James Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Andrew Mazar
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Antoinette Nibbs
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Wayne Anderson
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, IL, 60611, USA
| | - Lin Li
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Borko Jovanovic
- Department of Preventive Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sean Pruell
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matias Valsecchi
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Rick Betori
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Karl Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Jeong SY, Ahn HN, Bae GU, Chang M, Liu X, Rhee HK, Lee J, Chin YW, Oh SR, Song YS. Isoguaiacins, Arylnaphthalene Types Identified as Novel Potent Estrogenic Signaling Molecules from Larrea nitida. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Si-Yeon Jeong
- College of Pharmacy; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| | - Hye-na Ahn
- College of Pharmacy; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| | - Gyu-Un Bae
- College of Pharmacy; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| | - Minsun Chang
- Department of Medical and Pharmaceutical Science, College of Science; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| | - Xiyuan Liu
- Graduate School of Life Systems Sciences; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| | - Hee-Kyung Rhee
- Department of Medical and Pharmaceutical Science, College of Science; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| | - Joongku Lee
- International Biological Material Research Center; KRIBB; Daejeon 305-806 Republic of Korea
| | - Young-Won Chin
- College of Pharmacy; Dongguk University-Seoul; Goyang 410-820 Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center; KRIBB; ChungBuk 363-883 Republic of Korea
| | - Yun Seon Song
- College of Pharmacy; Sookmyung Women's University; Seoul 140-742 Republic of Korea
| |
Collapse
|
4
|
Molloy ME, White BEP, Gherezghiher T, Michalsen BT, Xiong R, Patel H, Zhao H, Maximov PY, Jordan VC, Thatcher GRJ, Tonetti DA. Novel selective estrogen mimics for the treatment of tamoxifen-resistant breast cancer. Mol Cancer Ther 2014; 13:2515-26. [PMID: 25205655 DOI: 10.1158/1535-7163.mct-14-0319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocrine-resistant breast cancer is a major clinical obstacle. The use of 17β-estradiol (E2) has reemerged as a potential treatment option following exhaustive use of tamoxifen or aromatase inhibitors, although side effects have hindered its clinical usage. Protein kinase C alpha (PKCα) expression was shown to be a predictor of disease outcome for patients receiving endocrine therapy and may predict a positive response to an estrogenic treatment. Here, we have investigated the use of novel benzothiophene selective estrogen mimics (SEM) as an alternative to E2 for the treatment of tamoxifen-resistant breast cancer. Following in vitro characterization of SEMs, a panel of clinically relevant PKCα-expressing, tamoxifen-resistant models were used to investigate the antitumor effects of these compounds. SEM treatment resulted in growth inhibition and apoptosis of tamoxifen-resistant cell lines in vitro. In vivo SEM treatment induced tumor regression of tamoxifen-resistant T47D:A18/PKCα and T47D:A18-TAM1 tumor models. T47D:A18/PKCα tumor regression was accompanied by translocation of estrogen receptor (ER) α to extranuclear sites, possibly defining a mechanism through which these SEMs initiate tumor regression. SEM treatment did not stimulate growth of E2-dependent T47D:A18/neo tumors. In addition, unlike E2 or tamoxifen, treatment with SEMs did not stimulate uterine weight gain. These findings suggest the further development of SEMs as a feasible therapeutic strategy for the treatment of endocrine-resistant breast cancer without the side effects associated with E2.
Collapse
Affiliation(s)
- Mary Ellen Molloy
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Bethany E Perez White
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Teshome Gherezghiher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Bradley T Michalsen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Rui Xiong
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hitisha Patel
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Huiping Zhao
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Philipp Y Maximov
- Department of Oncology, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - V Craig Jordan
- Department of Oncology, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Liu X, An BH, Kim MJ, Park JH, Kang YS, Chang M. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator. Biochem Biophys Res Commun 2014; 452:840-4. [DOI: 10.1016/j.bbrc.2014.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/03/2014] [Indexed: 11/17/2022]
|
6
|
Ahn HN, Jeong SY, Bae GU, Chang M, Zhang D, Liu X, Pei Y, Chin YW, Lee J, Oh SR, Song YS. Selective Estrogen Receptor Modulation by Larrea nitida on MCF-7 Cell Proliferation and Immature Rat Uterus. Biomol Ther (Seoul) 2014; 22:347-54. [PMID: 25143815 PMCID: PMC4131523 DOI: 10.4062/biomolther.2014.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 11/21/2022] Open
Abstract
Larrea nitida is a plant that belongs to the Zygophyllaceae family and is widely used in South America to treat inflammatory diseases, tumors and menstrual pain. However, its pharmacological activity remains unclear. In this study we evaluated the property of selective estrogen receptor modulator (SERM) of Larrea nitida extracts (LNE) as a phytoestrogen that can mimic, modulate or disrupt the actions of endogenous estrogens, depending on the tissue and relative amount of other SERMs. To investigate the property of SERM of LNE, we performed MCF-7 cell proliferation assays, estrogen response element (ERE)-luciferase reporter gene assay, human estrogen receptor (hER) binding assays and in vivo uterotrophic assay. To gain insight into the active principles, we performed a bioassay-guided analysis of LNE employing solvents of various polarities and using classical column chromatography, which yielded 16 fractions (LNs). LNE showed high binding affinities for hERα and hERβ with IC50 values of 1.20 ×10−7 g/ml and 1.00×10−7 g/ml, respectively. LNE induced 17β-estradiol (E2)-induced MCF-7 cell proliferation, however, it reduced the proliferation in the presence of E2. Furthermore, LNE had an atrophic effect in the uterus of immature rats through reducing the expression level of progesterone receptor (PR) proteins. LN08 and LN10 had more potent affinities for binding on hER α and β than other fractions. Our results indicate that LNE had higher binding affinities for hERβ than hERα, and showed SERM properties in MCF-7 breast cancer cells and the rat uterus. LNE may be useful for the treatment of estrogen-related conditions, such as female cancers and menopause.
Collapse
Affiliation(s)
- Hye-Na Ahn
- College of Pharmacy, College of Science, Sookmyung Women's University, Seoul 140-742
| | - Si-Yeon Jeong
- College of Pharmacy, College of Science, Sookmyung Women's University, Seoul 140-742
| | - Gyu-Un Bae
- College of Pharmacy, College of Science, Sookmyung Women's University, Seoul 140-742
| | - Minsun Chang
- Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University, Seoul 140-742
| | - Dongwei Zhang
- Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University, Seoul 140-742
| | - Xiyuan Liu
- Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University, Seoul 140-742
| | - Yihua Pei
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongwon 363-883, Republic of Korea
| | - Young-Won Chin
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongwon 363-883, Republic of Korea
| | - Joongku Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 410-820
| | - Sei-Ryang Oh
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806
| | - Yun Seon Song
- College of Pharmacy, College of Science, Sookmyung Women's University, Seoul 140-742
| |
Collapse
|
7
|
Li W, Ning M, Koh KH, Kim H, Jeong H. 17β-Estradiol induces sulfotransferase 2A1 expression through estrogen receptor α. Drug Metab Dispos 2014; 42:796-802. [PMID: 24492894 DOI: 10.1124/dmd.113.055178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sulfotransferase (SULT) 2A1 catalyzes sulfonation of drugs and endogenous compounds and plays an important role in xenobiotic metabolism as well as in the maintenance of steroid and lipid homeostasis. A recent study showed that 17β-estradiol (E2) increases the mRNA levels of SULT2A1 in human hepatocytes. Here we report the underlying molecular mechanisms. E2 enhanced SULT2A1 expression in human hepatocytes and HepG2-ER cells (HepG2 stably expressing ERα). SULT2A1 induction by E2 was abrogated by antiestrogen ICI 182,780, indicating a key role of ERα in the induction. Results from deletion and mutation assays of SULT2A1 promoter revealed three cis-elements located within -257/+140 region of SULT2A1 that are potentially responsible for the induction. Chromatin immunoprecipitation assay verified the recruitment of ERα to the promoter region. Electrophoretic mobility shift assays revealed that AP-1 proteins bind to one of the cis-elements. Interestingly, SULT2A1 promoter assays using ERα mutants revealed that the DNA-binding domain of ERα is indispensable for SULT2A1 induction by E2, suggesting that direct ERα binding to the SULT2A1 promoter is also necessary for the induction. Taken together, our results indicate that E2 enhances SULT2A1 expression by both the classical and nonclassical mechanisms of ERα action.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmacy Practice (W.L., K.H.K., H.K., H.J.) and Department of Biopharmaceutical Sciences (M.N., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and Medical College, Yangzhou University, Yangzhou, Jiangsu, China (W.L.)
| | | | | | | | | |
Collapse
|
8
|
Hajirahimkhan A, Simmler C, Yuan Y, Anderson JR, Chen SN, Nikolić D, Dietz BM, Pauli GF, van Breemen RB, Bolton JL. Evaluation of estrogenic activity of licorice species in comparison with hops used in botanicals for menopausal symptoms. PLoS One 2013; 8:e67947. [PMID: 23874474 PMCID: PMC3709979 DOI: 10.1371/journal.pone.0067947] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023] Open
Abstract
The increased cancer risk associated with hormone therapies has encouraged many women to seek non-hormonal alternatives including botanical supplements such as hops (Humulus lupulus) and licorice (Glycyrrhiza spec.) to manage menopausal symptoms. Previous studies have shown estrogenic properties for hops, likely due to the presence of 8-prenylnarigenin, and chemopreventive effects mainly attributed to xanthohumol. Similarly, a combination of estrogenic and chemopreventive properties has been reported for various Glycyrrhiza species. The major goal of the current study was to evaluate the potential estrogenic effects of three licorice species (Glycyrrhiza glabra, G. uralensis, and G. inflata) in comparison with hops. Extracts of Glycyrrhiza species and spent hops induced estrogen responsive alkaline phosphatase activity in endometrial cancer cells, estrogen responsive element (ERE)-luciferase in MCF-7 cells, and Tff1 mRNA in T47D cells. The estrogenic activity decreased in the order H. lupulus > G. uralensis > G. inflata > G. glabra. Liquiritigenin was found to be the principle phytoestrogen of the licorice extracts; however, it exhibited lower estrogenic effects compared to 8-prenylnaringenin in functional assays. Isoliquiritigenin, the precursor chalcone of liquiritigenin, demonstrated significant estrogenic activities while xanthohumol, a metabolic precursor of 8-prenylnaringenin, was not estrogenic. Liquiritigenin showed ERβ selectivity in competitive binding assay and isoliquiritigenin was equipotent for ER subtypes. The estrogenic activity of isoliquiritigenin could be the result of its cyclization to liquiritigenin under physiological conditions. 8-Prenylnaringenin had nanomolar estrogenic potency without ER selectivity while xanthohumol did not bind ERs. These data demonstrated that Glycyrrhiza species with different contents of liquiritigenin have various levels of estrogenic activities, suggesting the importance of precise labeling of botanical supplements. Although hops shows strong estrogenic properties via ERα, licorice might have different estrogenic activities due to its ERβ selectivity, partial estrogen agonist activity, and non-enzymatic conversion of isoliquiritigenin to liquiritigenin.
Collapse
Affiliation(s)
- Atieh Hajirahimkhan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Charlotte Simmler
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yang Yuan
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jeffrey R. Anderson
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shao-Nong Chen
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dejan Nikolić
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Birgit M. Dietz
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Guido F. Pauli
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Richard B. van Breemen
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Judy L. Bolton
- University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Yeo HL, Song YS, Ryu JH, Kim HD. Design, synthesis, and biological evaluation of cyclopropyl analogues of stilbene with raloxifene side chain as subtype-selective ligands for estrogen receptor. Arch Pharm Res 2013; 36:1096-103. [PMID: 23613312 DOI: 10.1007/s12272-013-0134-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
We have designed the cyclopropane analog of stilbene as subtype-selective ligands for estrogen receptor based on the bioisosterism that cyclopropane could act as alkene bioisoster. Three cyclopropane analogs were prepared efficiently starting from 4-benzyloxybenzaldehyde, and evaluated for their binding to estrogen receptors ERα and ERβ. These cyclopropane analogs were also found to be full agonists in estrogen receptor-mediated gene transcription assay. Compared to the stilbene analogs such as tamoxifen and raloxifene, the three cyclopropane analogs showed lower binding affinity for estrogen receptor, but higher subtype selectivity for ERα. The structure-activity relationship revealed from this study might provide clues for improving subtype selectivity for ERα.
Collapse
Affiliation(s)
- Hye Lim Yeo
- College of Pharmacy, Sookmyung Women's University, Seoul, 141-742, Korea
| | | | | | | |
Collapse
|
10
|
Peng KW, Chang M, Wang YT, Wang Z, Qin Z, Bolton JL, Thatcher GRJ. Unexpected hormonal activity of a catechol equine estrogen metabolite reveals reversible glutathione conjugation. Chem Res Toxicol 2011; 23:1374-83. [PMID: 20540524 DOI: 10.1021/tx100129h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN toward classical ERalpha mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN, and preformed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular nonenzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways.
Collapse
Affiliation(s)
- Kuan-Wei Peng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Botelho MC, Soares R, Vale N, Ribeiro R, Camilo V, Almeida R, Medeiros R, Gomes P, Machado JC, Correia da Costa JM. Schistosoma haematobium: identification of new estrogenic molecules with estradiol antagonistic activity and ability to inactivate estrogen receptor in mammalian cells. Exp Parasitol 2010; 126:526-35. [PMID: 20547157 DOI: 10.1016/j.exppara.2010.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 01/13/2023]
Abstract
We have previously identified the expression of an estradiol (E2)-related molecule by Schistosoma haematobium total antigen (Sh). We now show that this molecule has an antagonistic effect of estradiol in vitro. Our results are consistent with the existence of an estrogenic molecule that antagonizes the activity of estradiol. We found evidence for this molecule as we identified and characterized by mass spectrometry new estrogenic molecules previously unknown, present in schistosome worm extracts and sera of Schistosoma-infected individuals. We also show that Sh is able to interact in vitro with estrogen receptor (ER), explaining how host endocrine system can favor the establishment of schistosomes. These findings highlight the exploitation of the host endocrine system by schistosomes and represent an additional regulatory component of schistosome development that defines a novel paradigm enabling host-parasite interactions. The identification of these molecules opens new ways for the development of alternative drugs to treat schistosomiasis.
Collapse
|
12
|
Montaño M, Bakker EJ, Murk AJ. Meta-analysis of Supramaximal Effects in In Vitro Estrogenicity Assays. Toxicol Sci 2010; 115:462-74. [DOI: 10.1093/toxsci/kfq056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Chen H, Yang K, Choi S, Fischer JH, Jeong H. Up-regulation of UDP-glucuronosyltransferase (UGT) 1A4 by 17beta-estradiol: a potential mechanism of increased lamotrigine elimination in pregnancy. Drug Metab Dispos 2009; 37:1841-7. [PMID: 19546240 DOI: 10.1124/dmd.109.026609] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Oral clearance of lamotrigine, an antiepileptic drug commonly used in pregnant women, is increased in pregnancy by unknown mechanisms. In this study, we show that 17beta-estradiol (E(2)) up-regulates expression of UDP glucuronosyltransferase (UGT) 1A4, the major enzyme responsible for elimination of lamotrigine. Endogenous mRNA expression levels of UGT1A4 in estrogen receptor (ER) alpha-negative HepG2 cells were induced 2.3-fold by E(2) treatment in the presence of ER alpha expression. E(2) enhanced transcriptional activity of UGT1A4 in a concentration-dependent manner in HepG2 cells when ER alpha was cotransfected. Induction of UGT1A4 transcriptional activity by E(2) was also observed in ER alpha-positive MCF7 cells, which was abrogated by pretreatment with the antiestrogen fulvestrant (ICI 182,780). Analysis of UGT1A4 upstream regions using luciferase reporter assays identified a putative specificity protein-1 (Sp1) binding site (-1906 to -1901 base pairs) that is critical for the induction of UGT1A4 transcriptional activity by E(2). Deletion of the Sp1 binding sequence abolished the UGT1A4 up-regulation by E(2), and Sp1 bound to the putative Sp1 binding site as determined by a electrophoretic mobility shift assay. Analysis of ER alpha domains using ER alpha mutants revealed that the activation function (AF) 1 and AF2 domains but not the DNA binding domain of ER alpha are required for UGT1A4 induction by E(2) in HepG2 cells. Finally, E(2) treatment increased lamotrigine glucuronidation in ER alpha-transfected HepG2 cells. Together, our data indicate that up-regulation of UGT1A4 expression by E(2) is mediated by both ER alpha and Sp1 and is a potential mechanism contributing to the enhanced elimination of lamotrigine in pregnancy.
Collapse
Affiliation(s)
- Huiqing Chen
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang Y, Zhao H, Asztalos S, Chisamore M, Sitabkhan Y, Tonetti DA. Estradiol-induced regression in T47D:A18/PKCalpha tumors requires the estrogen receptor and interaction with the extracellular matrix. Mol Cancer Res 2009; 7:498-510. [PMID: 19372579 DOI: 10.1158/1541-7786.mcr-08-0415] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several breast cancer tumor models respond to estradiol (E(2)) by undergoing apoptosis, a phenomenon known to occur in clinical breast cancer. Before the application of tamoxifen as an endocrine therapy, high-dose E(2) or diethystilbesterol treatment was successfully used, albeit with unfavorable side effects. It is now recognized that such an approach may be a potential endocrine therapy option. We have explored the mechanism of E(2)-induced tumor regression in our T47D:A18/PKCalpha tumor model that exhibits autonomous growth, tamoxifen resistance, and E(2)-induced tumor regression. Fulvestrant, a selective estrogen receptor (ER) down-regulator, prevents T47D:A18/PKCalpha E(2)-induced tumor growth inhibition and regression when given before or after tumor establishment, respectively. Interestingly, E(2)-induced growth inhibition is only observed in vivo or when cells are grown in Matrigel but not in two-dimensional tissue culture, suggesting the requirement of the extracellular matrix. Tumor regression is accompanied by increased expression of the proapoptotic FasL/FasL ligand proteins and down-regulation of the prosurvival Akt pathway. Inhibition of colony formation in Matrigel by E(2) is accompanied by increased expression of FasL and short hairpin RNA knockdown partially reverses colony formation inhibition. Classic estrogen-responsive element-regulated transcription of pS2, PR, transforming growth factor-alpha, C3, and cathepsin D is independent of the inhibitory effects of E(2). A membrane-impermeable E(2)-BSA conjugate is capable of mediating growth inhibition, suggesting the involvement of a plasma membrane ER. We conclude that E(2)-induced T47D:A18/PKCalpha tumor regression requires participation of ER-alpha, the extracellular matrix, FasL/FasL ligand, and Akt pathways, allowing the opportunity to explore new predictive markers and therapeutic targets.
Collapse
Affiliation(s)
- Yiyun Zhang
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
15
|
Yin Y, Yuan H, Zeng X, Kopelovich L, Glazer RI. Inhibition of peroxisome proliferator-activated receptor gamma increases estrogen receptor-dependent tumor specification. Cancer Res 2009; 69:687-94. [PMID: 19147585 DOI: 10.1158/0008-5472.can-08-2446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that regulates gene transcription associated with intermediary metabolism, adipocyte differentiation, and tumor suppression and proliferation. To understand the role of PPARgamma in tumorigenesis, transgenic mice were generated with mammary gland-directed expression of the dominant-negative transgene Pax8PPARgamma. Transgenic mice were phenotypically indistinguishable from wild-type (WT) mice, but mammary epithelial cells expressed a greater percentage of CD29(hi)/CD24(neg), CK5(+), and double-positive CK14/CK18 cells. These changes correlated with reduced PTEN and increased Ras and extracellular signal-regulated kinase (ERK) and AKT activation. Although spontaneous tumorigenesis did not occur, transgenic animals were highly susceptible to progestin/7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis, which in contrast to WT mice resulted in a high tumor multiplicity and, most importantly, in the appearance of predominantly estrogen receptor alpha-positive (ER(+)) ductal adenocarcinomas. Tumors expressed a similar PTEN(lo)/pERK(hi)/pAKT(hi) phenotype as mammary epithelium and exhibited high activation of estrogen response element-dependent reporter gene activity. Tumorigenesis in MMTV-Pax8PPARgamma mice was insensitive to the chemopreventive effect of a PPARgamma agonist but was profoundly inhibited by the ER antagonist fulvestrant. These results reveal important new insights into the previously unrecognized role of PPARgamma in the specification of mammary lineage and the development of ER(+) tumors.
Collapse
Affiliation(s)
- Yuzhi Yin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | | | | | | | | |
Collapse
|
16
|
Overk CR, Yao P, Chen S, Deng S, Imai A, Main M, Schinkovitz A, Farnsworth NR, Pauli GF, Bolton JL. High-content screening and mechanism-based evaluation of estrogenic botanical extracts. Comb Chem High Throughput Screen 2008; 11:283-93. [PMID: 18473738 DOI: 10.2174/138620708784246022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Symptoms associated with menopause can greatly affect the quality of life for women. Botanical dietary supplements have been viewed by the public as safe and effective despite a lack of evidence indicating a urgent necessity to standardize these supplements chemically and biologically. Seventeen plants were evaluated for estrogenic biological activity using standard assays: competitive estrogen receptor (ER) binding assay for both alpha and beta subtypes, transient transfection of the estrogen response element luciferase plasmid into MCF-7 cells expressing either ER alpha or ER beta, and the Ishikawa alkaline phosphatase induction assay for both estrogenic and antiestrogenic activities. Based on the combination of data pooled from these assays, the following was determined: a) a high rate of false positive activity for the competitive binding assays, b) some extracts had estrogenic activity despite a lack of ability to bind the ER, c) one extract exhibited selective estrogen receptor modulator (SERM) activity, and d) several extracts show additive/synergistic activity. Taken together, these data indicate a need to reprioritize the order in which the bioassays are performed for maximal efficiency of programs involving bioassay-guided fractionation. In addition, possible explanations for the conflicts in the literature over the estrogenicity of Cimicifuga racemosa (black cohosh) are suggested.
Collapse
Affiliation(s)
- Cassia R Overk
- UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Estrogenic activity of the equine estrogen metabolite, 4-methoxyequilenin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:601-7. [PMID: 18497087 DOI: 10.1007/978-0-387-69080-3_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Oxidative metabolism of estrogens has been associated with genotoxicity. O-methylation of catechol estrogens is considered as a protective mechanism. 4-Methoxyequilenin (4-MeOEN) is the O-methylated product of 4-hydroxyequilenin (4-OHEN). 4-OHEN, the major catechol metabolite of the equine estrogens present in the most widely prescribed hormone replacement therapeutics, causes DNA damage via quinone formation. In this study, estrogen receptor (ERa) binding of 4-MeOEN was compared with estradiol (E2) and equilenin derivatives including 4-BrEN using computer modeling, estrogen response element (ERE)-luciferase induction in MCF-7 cells, and alkaline phosphatase (AP) induction in Ishikawa cells. 4-MeOEN induced AP and luciferase with nanomolar potency and displayed a similar profile of activity to E2. Molecular modeling indicated that MeOEN could be a ligand for ERa despite no binding being observed in the ERa competitive binding assay. Methylation of 4-OHEN may not represent a detoxification pathway, since 4-MeOEN is a full estrogen agonist with nanomolar potency.
Collapse
|
18
|
Jeong H, Choi S, Song JW, Chen H, Fischer JH. Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica 2008; 38:62-75. [PMID: 18098064 DOI: 10.1080/00498250701744633] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The authors recently reported the increased oral clearance of labetalol in pregnant women. To elucidate the mechanism of the elevated oral clearance, it was hypothesized that female hormones, at the high concentrations attainable during pregnancy, enhance hepatic metabolism of labetalol. Labetalol glucuronidation, which is the major elimination pathway of labetalol, was characterized by screening six recombinant human UGTs (UGT1A1, 1A4, 1A6, 1A9, 2B4, and 2B7) for their capacity to catalyse labetalol glucuronidation. The effect of female hormones (progesterone, oestradiol, oestriol, or oestrone) on the promoter activities of relevant UDP glucuronosyltransferases (UGT) was investigated using a luciferase reporter assay in HepG2 cells. The involvement of oestrogen receptor alpha (ERalpha) and pregnane X receptor (PXR) was examined by co-transfecting ERalpha- or PXR-constructs. UGT1A1 and UGT2B7 were identified as the major UGT enzymes producing labetalol glucuronides (trace amount of glucuronide conjugate was formed by UGT1A9). The activities of the UGT1A1 promoter containing PXR response elements were enhanced by progesterone, but not by oestrogens, indicating PXR-mediated induction of UGT1A1 promoter activity by progesterone. Results from semi-quantitative real-time polymerase chain reaction (PCR) assays are consistent with the above findings. This effect of progesterone on UGT1A1 promoter activities was concentration dependent. Promoter activities of UGT2B7 were not affected by either oestrogens or progesterone. The results suggest a potential role for progesterone in regulating labetalol elimination by modulating the expression of UGT1A1, leading to enhanced drug metabolism during pregnancy.
Collapse
Affiliation(s)
- H Jeong
- Department of Pharmacy Practice, College of Pharmacy, Universit of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Pannier AK, Ariazi EA, Bellis AD, Bengali Z, Jordan VC, Shea LD. Bioluminescence imaging for assessment and normalization in transfected cell arrays. Biotechnol Bioeng 2008; 98:486-97. [PMID: 17486653 PMCID: PMC2648395 DOI: 10.1002/bit.21477] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transfected cell arrays (TCAs) represent a high-throughput technique to correlate gene expression with functional cell responses. Despite advances in TCAs, improvements are needed for the widespread application of this technology. We have developed a TCA that combines a two-plasmid system and dual-bioluminescence imaging to quantitatively normalize for variability in transfection and increase sensitivity. The two-plasmids consist of: (i) normalization plasmid present within each spot, and (ii) functional plasmid that varies between spots, responsible for the functional endpoint of the array. Bioluminescence imaging of dual-luciferase reporters (renilla, firefly luciferase) provides sensitive and quantitative detection of cellular response, with minimal post-transfection processing. The array was applied to quantify estrogen receptor alpha (ERalpha) activity in MCF-7 breast cancer cells. A plasmid containing an ERalpha-regulated promoter directing firefly luciferase expression was mixed with a normalization plasmid, complexed with cationic lipids and deposited into an array. ER induction mimicked results obtained through traditional assays methods, with estrogen inducing luciferase expression 10-fold over the antiestrogen fulvestrant or vehicle. Furthermore, the array captured a dose response to estrogen, demonstrating the sensitivity of bioluminescence quantification. This system provides a tool for basic science research, with potential application for the development of patient specific therapies.
Collapse
Affiliation(s)
- Angela K. Pannier
- Department of Interdepartmental Biological Sciences, Northwestern University, Evanston, Illinois
| | | | - Abigail D. Bellis
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, Illinois 60208-3120; telephone: 847-491-7043; fax: 847-491-3728; e-mail:
| | - Zain Bengali
- Department of Interdepartmental Biological Sciences, Northwestern University, Evanston, Illinois
| | | | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, Illinois 60208-3120; telephone: 847-491-7043; fax: 847-491-3728; e-mail:
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
20
|
Abstract
Deregulated expression of HOXB13 in a subset of estrogen receptor-positive breast cancer patients treated with tamoxifen monotherapy is associated with an aggressive clinical course and poor outcome. Because the ovary is another hormone-responsive organ, we investigated whether HOXB13 plays a role in ovarian cancer progression. We show that HOXB13 is expressed in multiple human ovarian cancer cell lines and tumors and that knockdown of endogenous HOXB13 by RNA interference in human ovarian cancer cell lines is associated with reduced cell proliferation. Ectopic expression of HOXB13 is capable of transforming p53(-/-) mouse embryonic fibroblasts and promotes cell proliferation and anchorage-independent growth in mouse ovarian cancer cell lines that contain genetic alterations in p53, myc, and ras. In this genetically defined cell line model of ovarian cancer, we demonstrate that HOXB13 collaborates with activated ras to markedly promote tumor growth in vivo and that HOXB13 confers resistance to tamoxifen-mediated apoptosis. Taken together, our results support a pro-proliferative and pro-survival role for HOXB13 in ovarian cancer.
Collapse
|
21
|
Chang M, Peng KW, Kastrati I, Overk CR, Qin ZH, Yao P, Bolton JL, Thatcher GRJ. Activation of estrogen receptor-mediated gene transcription by the equine estrogen metabolite, 4-methoxyequilenin, in human breast cancer cells. Endocrinology 2007; 148:4793-802. [PMID: 17584965 DOI: 10.1210/en.2006-1568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
4-Methoxyequilenin (4-MeOEN) is an O-methylated metabolite in equine estrogen metabolism. O-methylation of catechol estrogens is considered as a protective mechanism; however, comparison of the properties of 4-MeOEN with estradiol (E(2)) in human breast cancer cells showed that 4-MeOEN is a proliferative, estrogenic agent that may contribute to carcinogenesis. 4-MeOEN results from O-methylation of 4-hydroxyequilenin, a major catechol metabolite of the equine estrogens present in hormone replacement therapeutics, which causes DNA damage via quinone formation, raising the possibility of synergistic hormonal and chemical carcinogenesis. 4-MeOEN induced cell proliferation with nanomolar potency and induced estrogen response element (ERE)-mediated gene transcription of an ERE-luciferase reporter and the endogenous estrogen-responsive genes pS2 and TGF-alpha. These estrogenic actions were blocked by the antiestrogen ICI 182,780. In the standard radioligand estrogen receptor (ER) binding assay, 4-MeOEN showed very weak binding. To test for alternate ligand-ER-independent mechanisms, the possibility of aryl hydrocarbon receptor (AhR) binding and ER-AhR cross talk was examined using a xenobiotic response element-luciferase reporter and using AhR small interfering RNA silencing in the ERE-luciferase reporter assay. The results negated the possibility of AhR-mediated estrogenic activity. Comparison of gene transcription time course, ER degradation, and rapid activation of MAPK/ERK in MCF-7 cells demonstrated that the actions of 4-MeOEN mirrored those of E(2) with potency for classical and nonclassical estrogenic pathways bracketing that of E(2). Methylation of 4-OHEN may not represent a detoxification pathway because 4-MeOEN is a full, potent estrogen agonist.
Collapse
Affiliation(s)
- Minsun Chang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia 2007; 8:896-904. [PMID: 17132221 PMCID: PMC1716010 DOI: 10.1593/neo.06538] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two flavonoids, genistein and apigenin, have been implicated as chemopreventive agents against prostate and breast cancers. However, the mechanisms behind their respective cancer-protective effects may vary significantly. The goal of this study was to determine whether the antiproliferative action of these flavonoids on prostate (DU-145) and breast (MDA-MB-231) cancer cells expressing only estrogen receptor (ER) beta is mediated by this ER subtype. It was found that both genistein and apigenin, although not 17beta-estradiol, exhibited antiproliferative effects and proapoptotic activities through caspase-3 activation in these two cell lines. In yeast transcription assays, both flavonoids displayed high specificity toward ERbeta transactivation, particularly at lower concentrations. However, in mammalian assay, apigenin was found to be more ERbeta-selective than genistein, which has equal potency in inducing transactivation through ERalpha and ERbeta. Small interfering RNA-mediated downregulation of ERbeta abrogated the antiproliferative effect of apigenin in both cancer cells but did not reverse that of genistein. Our data unveil, for the first time, that the anticancer action of apigenin is mediated, in part, by ERbeta. The differential use of ERalpha and ERbeta signaling for transaction between genistein and apigenin demonstrates the complexity of phytoestrogen action in the context of their anticancer properties.
Collapse
Affiliation(s)
- Paul Mak
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuet-Kin Leung
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wan-Yee Tang
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Charlotte Harwood
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
23
|
Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKC alpha. Nutr Cancer 2007; 58:222-9. [PMID: 17640169 DOI: 10.1080/01635580701328545] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soy supplements are often consumed by women for alleviating menopausal symptoms or for the perceived protective effects against breast cancer. More concerning is the concurrent consumption of soy isoflavones with tamoxifen (TAM) for prevention or treatment of breast cancer. We previously described a T47D:A18/protein kinase C (PKC)alpha TAM-resistant tumor model that exhibits autonomous growth and estradiol-induced tumor regression. We compared the estrogenicity of the isoflavones genistein, daidzein, and the daidzein metabolite equol in the parental T47D:A18 and T47D:A18/PKC alpha cell lines in vitro and in vivo. Whereas equol exerts estrogenic effects on T47D:A18 cells in vitro, none of the isoflavones stimulated T47D:A18 tumor growth. T47D:A18/PKC alpha tumor growth was partially stimulated by genistein, yet partially inhibited by daidzein. Interestingly, coadministration of TAM with either daidzein or genistein produced tumors of greater size than with TAM alone. These findings suggest that simultaneous consumption of isoflavone supplements with TAM may not be safe.
Collapse
Affiliation(s)
- Debra A Tonetti
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
24
|
Leung YK, Mak P, Hassan S, Ho SM. Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling. Proc Natl Acad Sci U S A 2006; 103:13162-7. [PMID: 16938840 PMCID: PMC1552044 DOI: 10.1073/pnas.0605676103] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estrogen receptor beta (ER-beta) regulates diverse physiological functions in the human body. Current studies are confined to ER-beta1, and the functional roles of isoforms 2, 4, and 5 remain unclear. Full-length ER-beta4 and -beta5 isoforms were obtained from a prostate cell line, and they exhibit differential expression in a wide variety of human tissues/cell lines. Through molecular modeling, we established that only ER-beta1 has a full-length helix 11 and a helix 12 that assumes an agonist-directed position. In ER-beta2, the shortened C terminus results in a disoriented helix 12 and marked shrinkage in the coactivator binding cleft. ER-beta4 and -beta5 completely lack helix 12. We further demonstrated that ER-beta1 is the only fully functional isoform, whereas ER-beta2, -beta4, and -beta5 do not form homodimers and have no innate activities of their own. However, the isoforms can heterodimerize with ER-beta1 and enhance its transactivation in a ligand-dependent manner. ER-beta1 tends to form heterodimers with other isoforms under the stimulation of estrogens but not phytoestrogens. Collectively, these data support the premise that (i) ER-beta1 is the obligatory partner of an ER-beta dimer, whereas the other isoforms function as variable dimer partners with enhancer activity, and (ii) a single functional helix 12 in a dimer is sufficient for gene transactivation. Thus, ER-beta behaves like a noncanonical type-I receptor, and its action may depend on differential amounts of ER-beta1 homo- and heterodimers formed upon stimulation by a specific ligand. Our findings have provided previously unrecognized directions for studying ER-beta signaling and design of ER-beta-based therapies.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- *Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267; and
| | | | - Sazzad Hassan
- Physiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Shuk-Mei Ho
- *Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
O'Regan RM, Osipo C, Ariazi E, Lee ES, Meeke K, Morris C, Bertucci A, Sarker MAB, Grigg R, Jordan VC. Development and therapeutic options for the treatment of raloxifene-stimulated breast cancer in athymic mice. Clin Cancer Res 2006; 12:2255-63. [PMID: 16609042 DOI: 10.1158/1078-0432.ccr-05-2584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Selective estrogen receptor modulators (SERM) are used for the treatment and prevention of breast cancer (tamoxifen) and osteoporosis (raloxifene). Mechanisms of tamoxifen-resistance in breast cancer are incompletely understood but current research is focused on crosstalk between growth factor receptors and the estrogen receptor alpha (ERalpha) pathway. There is increasing clinical use of raloxifene for the treatment of osteoporosis, but the widespread use of this SERM will have consequences for the treatment of breast cancer in raloxifene-exposed women. EXPERIMENTAL DESIGN We took the strategic step of developing a raloxifene-resistant tumor (MCF-7RALT) model in vivo and investigating the mechanisms responsible for resistance. RESULTS MCF-7RALT tumors exhibited phase I SERM resistance, growing in response to SERMs and 17beta-estradiol. Epidermal growth factor receptor/HER1 and HER2/neu mRNAs were increased in MCF-7RALT tumors. The HER2/neu blocker, trastuzumab, but not the epidermal growth factor receptor blocker, gefitinib, decreased the growth of MCF-7RALT tumors in vivo. Consequently, trastuzumab decreased prosurvival/proliferative proteins: phospho-HER2/neu, total HER2/neu, phospho-Akt (protein kinase B), glycogen synthetase kinase-3, cyclin D1, and the antiapoptotic protein X chromosome-linked inhibitor of apoptosis, whereas increasing the proapoptotic protein, caspase-7, in raloxifene-treated MCF-7RALT tumors. Interestingly, ERalpha protein was overexpressed in untreated MCF-7RALT tumors and hyperactivated in cells derived from these tumors. Only fulvestrant completely inhibited the growth and ERalpha activity of MCF-7RALT tumors. The coactivator of ERalpha, amplified in breast cancer-1 protein was modestly increased in the raloxifene-treated MCF-7RALT tumors and increased both basal and estradiol-induced activity of ERalpha in cells derived from the MCF-7RALT tumors. CONCLUSIONS These results suggest that overexpression and increased activity of HER2/neu might be responsible for the development of raloxifene-resistant breast cancer. The results also suggest that increased expression of basal activity of ERalpha could contribute to the hypersensitivity of MCF-7RALT tumors in response to estradiol because only fulvestrant blocked growth and ERalpha activity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Cell Proliferation/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Design
- Drug Resistance, Neoplasm/drug effects
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Receptor alpha/drug effects
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Fulvestrant
- Gefitinib
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, erbB-2/drug effects
- Genes, erbB-2/genetics
- Humans
- Mice
- Mice, Inbred BALB C
- Neoplasms, Experimental/therapy
- Quinazolines/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Raloxifene Hydrochloride/administration & dosage
- Raloxifene Hydrochloride/therapeutic use
- Structure-Activity Relationship
- Transplantation, Heterologous
- Trastuzumab
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ruth M O'Regan
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zeng Z, Shan T, Tong Y, Lam SH, Gong Z. Development of estrogen-responsive transgenic medaka for environmental monitoring of endocrine disrupters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:9001-8. [PMID: 16323805 DOI: 10.1021/es050728l] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To develop a transgenic fish system to monitor environmental pollution, we generated a mvtg1:gfp transgenic medaka line, in which the gfp reporter gene was under the control of medaka vitellogenin1 (mvtg1) gene promoter. In this transgenic line, GFP was exclusively expressed in the liver of the mature adult female. Male and juvenile transgenic fish did not express GFP but could be induced to express GFP in the liver after exposure to 17-beta-estradiol (E2). Concurrent accumulation of mvtg1 and gfp mRNAs was observed during both development and estrogen treatment, indicating that the gfp transgene was faithfully expressed under the mvtg1 promoter. Dose- and time-dependent induction of GFP expression by E2 was investigated in male transgenic fish. The lowest-observed-effect concentration (LOEC) of E2 to induce GFP expression was 0.5 microg/L by observation of live fish and 0.05-0.1 microg/L by observation of dissection-exposed liver in a 30 day exposure experiment. GFP expression was observed within 36 h after treatment in high concentrations of E2 (5 microg/L), and it took longer to detect GFP expression under lower concentrations of E2. By removal and readdition of E2, we demonstrated that GFP expression was repeatedly induced. Finally, we also demonstrated that GFP expression could be induced by other estrogenic compounds, including 17-alpha-ethynylestradiol (EE2, 0.05 microg/L), diethylstibestrol (DES, 5 microg/L), estriol (10 microg/ L), and bisphenol A (BPA, 1 mg/L), but not by weak estrogenic chemicals such as nonylphenol (NP, up to 1 mg/ L) and methoxychlor (MXC, up to 20 microg/L). Our experiments indicated the broad application of the transgenic line to monitor a wide range of estrogenic chemicals.
Collapse
Affiliation(s)
- Zhiqiang Zeng
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
27
|
Overk CR, Yao P, Chadwick LR, Nikolic D, Sun Y, Cuendet MA, Deng Y, Hedayat A, Pauli GF, Farnsworth NR, van Breemen RB, Bolton JL. Comparison of the in vitro estrogenic activities of compounds from hops (Humulus lupulus) and red clover (Trifolium pratense). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6246-53. [PMID: 16076101 PMCID: PMC1815392 DOI: 10.1021/jf050448p] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because the prevailing form of hormone replacement therapy is associated with the development of cancer in breast and endometrial tissues, alternatives are needed for the management of menopausal symptoms. Formulations of Trifolium pratense L. (red clover) are being used to alleviate menopause-associated hot flashes but have shown mixed results in clinical trials. The strobiles of Humulus lupulusL. (hops) have been reported to contain the prenylflavanone, 8-prenylnaringenin (8-PN), as the most estrogenic constituent, and this was confirmed using an estrogen receptor ligand screening assay utilizing ultrafiltration mass spectrometry. Extracts of hops and red clover and their individual constituents including 8-PN, 6-prenylnaringenin (6-PN), isoxanthohumol (IX), and xanthohumol (XN) from hops and daidzein, formononetin, biochanin A, and genistein from red clover were compared using a variety of in vitro estrogenic assays. The IC50 values for the estrogen receptor alpha and beta binding assays were 15 and 27 microg/mL, respectively, for hops and 18.0 and 2.0 microg/mL, respectively, for the red clover extract. Both of the extracts, genistein, and 8-PN activated the estrogen response element (ERE) in Ishikawa cells while the extracts, biochanin A, genistein, and 8-PN, significantly induced ERE-luciferase expression in MCF-7 cells. Hop and red clover extracts as well as 8-PN up-regulated progesterone receptor (PR) mRNA in the Ishikawa cell line. In the MCF-7 cell line, PR mRNA was significantly up-regulated by the extracts, biochanin A, genistein, 8-PN, and IX. The two extracts had EC50 values of 1.1 and 1.9 microg/mL, respectively, in the alkaline phosphatase induction assay. On the basis of these data, hops and red clover could be attractive for the development as herbal dietary supplements to alleviate menopause-associated symptoms.
Collapse
Key Words
- alkaline phosphatase
- estrogen receptor
- hops
- humulus lupulus
- menopause
- progesterone receptor
- red clover
- trifolium pratense
- 6-pn, 6-prenylnaringenin
- 8-pn, 8-prenylnaringenin
- ap, alkaline phosphatase
- cbs, calf bovine serum
- dmem/f12, dulbecco’s modified eagle/f12 medium
- e2,17β-estradiol
- edta, ethylenediaminetetraacetic acid
- er, estrogen receptor
- ere, estrogen-responsive element
- fbs, fetal bovine serum
- haps, hydroxyapatite slurry
- ix, isoxanthohumol
- meme, minimum essential medium
- neaa, non-essential amino acids
- pr, progesterone receptor
- srb, sulforhodamine b
- tca, trichloroacetic acid
- whi, women’s health initiative
- xn, xanthohumol
Collapse
Affiliation(s)
- Cassia R. Overk
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Ping Yao
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Lucas R. Chadwick
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Dejan Nikolic
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Yongkai Sun
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Muriel A. Cuendet
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Yunfan Deng
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, M/C 249, Chicago, Illinois 60607 USA
| | - A.S. Hedayat
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, M/C 249, Chicago, Illinois 60607 USA
| | - Guido F. Pauli
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Norman R. Farnsworth
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Richard B. van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
| | - Judy L. Bolton
- Department of Medicinal Chemistry and Pharmacognosy, Program for Collaborative Research in the Pharmaceutical Sciences, UIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, M/C 781, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612 USA
- *Corresponding author. Tel.: (312)-996-5280; Fax: (312)-996-7107;
| |
Collapse
|
28
|
Lloyd DG, Hughes RB, Zisterer DM, Williams DC, Fattorusso C, Catalanotti B, Campiani G, Meegan MJ. Benzoxepin-Derived Estrogen Receptor Modulators: A Novel Molecular Scaffold for the Estrogen Receptor. J Med Chem 2004; 47:5612-5. [PMID: 15509159 DOI: 10.1021/jm0495834] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present and examine the efficacy of a novel benzoxepin-based scaffold for modulation of the human estrogen receptor. Receptor tolerance of this new molecular scaffold is examined through presentation of experimentally determined antiproliferative effects on human MCF-7 breast tumor cells and measured binding affinities. The effect of functional group substitution on the benzoxepin scaffold is explored through a brief computational structure-activity relationship investigation with molecular simulation.
Collapse
Affiliation(s)
- David G Lloyd
- Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pearce ST, Liu H, Radhakrishnan I, Abdelrahim M, Safe S, Jordan VC. Interaction of the aryl hydrocarbon receptor ligand 6-methyl-1,3,8-trichlorodibenzofuran with estrogen receptor alpha. Cancer Res 2004; 64:2889-97. [PMID: 15087408 DOI: 10.1158/0008-5472.can-03-1770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The polycyclic aromatic hydrocarbon 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) is related to the industrial byproduct dioxin and is a weak agonist and partial antagonist at the aryl hydrocarbon receptor (AhR). Tamoxifen is used for the treatment and prevention of breast cancer and interferes with the interaction of estrogen with estrogen receptor alpha (ER). The combination of MCDF and tamoxifen lowered the effective dose of both drugs required to inhibit 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in rats and protected against the estrogenic effects of tamoxifen on the uterus in rats (A. McDougal et al., Cancer Res 2001;61:3902-7), pointing to the potential use of MCDF in breast cancer treatment. Potential AhR-ER cross-talk is evidenced by the antiestrogenic activity of MCDF and the degradative effect of MCDF on ER protein levels. Our studies confirmed that MCDF degraded the ER. MCDF displayed antiestrogenic activity at higher concentrations in MCF-7 human breast cancer cells, but MCDF alone (10(-6) M) stimulated the growth of MCF-7 cells. MCDF also activated an estrogen response element (ERE)-luciferase reporter and increased mRNA levels of the estrogen-responsive gene transforming growth factor (TGF)-alpha. The estrogenic effects of MCDF are ER dependent because they were blocked by the pure antiestrogen ICI 182,780. MCDF induced ER-coactivator interaction in glutathione S-transferase pull-down assays and the formation of an ER.ERE complex in gel mobility shift assays, further indicating that the estrogenic actions of MCDF are mediated by the ER. In addition, knockdown of the AhR with small interfering RNA did not affect MCDF-induced ERE-luciferase activity. Overall, these data support the conclusion that MCDF is a partial agonist at the ER. This study provides the first evidence for the direct interaction of the ER with MCDF and challenges the view that MCDF is simply an AhR-specific ligand.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Transcription Factors
- Benzofurans/metabolism
- Benzofurans/pharmacology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Division/drug effects
- Cell Line, Tumor
- Estradiol/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha
- Humans
- Models, Molecular
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Receptor Cross-Talk/physiology
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/metabolism
- Transforming Growth Factor alpha/biosynthesis
- Transforming Growth Factor alpha/genetics
Collapse
Affiliation(s)
- Sandra Timm Pearce
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ee PLR, Kamalakaran S, Tonetti D, He X, Ross DD, Beck WT. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 2004; 64:1247-51. [PMID: 14973083 DOI: 10.1158/0008-5472.can-03-3583] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The breast cancer resistance protein (BCRP) is an ATP-binding cassette half transporter that confers resistance to anticancer drugs such as mitoxantrone, anthracyclines, topotecan, and SN-38. Initial characterization of the BCRP promoter revealed that it is TATA-less with 5 putative Sp1 sites downstream from a putative CpG island and several AP1 sites (K. J. Bailey-Dell et al., Biochim. Biophys. Acta, 1520: 234-241, 2001). Here, we examined the sequence of the 5'-flanking region of the BCRP gene and found a putative estrogen response element (ERE). We showed that estrogen enhanced the expression of BCRP mRNA in the estrogen receptor (ER)-positive T47D:A18 cells and PA-1 cells stably expressing ERalpha. In BCRP promoter-luciferase assays, sequential deletions of the BCRP promoter showed that the region between -243 and -115 is essential for the ER effect. Mutation of the ERE found within this region attenuated the estrogen response, whereas deletion of the site completely abrogated the estrogen effect. Furthermore, electrophoretic mobility shift assays revealed specific binding of ERalpha to the BCRP promoter through the identified ERE. Taken together, we provide evidence herein for a novel ERE in the BCRP promoter.
Collapse
Affiliation(s)
- Pui Lai Rachel Ee
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, 833 South Wood, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gehm BD, Levenson AS, Liu H, Lee EJ, Amundsen BM, Cushman M, Jordan VC, Jameson JL. Estrogenic effects of resveratrol in breast cancer cells expressing mutant and wild-type estrogen receptors: role of AF-1 and AF-2. J Steroid Biochem Mol Biol 2004; 88:223-34. [PMID: 15120416 DOI: 10.1016/j.jsbmb.2003.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 12/04/2003] [Indexed: 11/19/2022]
Abstract
Resveratrol, a hydroxystilbene found in grapes and wine, has previously been shown to be a non-flavonoid phytoestrogen, and to act as an estrogen receptor (ER) superagonist in MCF-7 cells transiently transfected with estrogen-responsive reporter constructs. Several additional hydroxystilbenes, including diethylstilbestrol (DES) and piceatannol, were tested, and all showed ER agonism or partial agonism, but superagonism was specific to resveratrol. Moreover, superagonism was observed in cells carrying a stably integrated reporter gene, indicating that this phenomenon is not a result of transient transfection. To examine the role of the transcriptional activation function (AF) domains of ERalpha in resveratrol agonism, we compared the effects of resveratrol and estradiol (E2) on expression of exogenous reporter genes and an endogenous estrogen-regulated gene (TGFalpha) in MDA-MB-231 cells stably transfected with wild-type (wt) ERalpha or mutants with deleted or mutated AF domains. In reporter gene assays, cells expressing wtERalpha showed a superagonistic response to resveratrol. Deletion of AF-1 or mutation of AF-2 attenuated the effect of resveratrol disproportionately compared to that of E2, while deletion of AF-2 abrogated the response to both ligands. In TGFalpha expression assays, resveratrol acted as a full agonist in cells expressing wtERalpha. Deletion of AF-1 attenuated stimulation by E2 more severely than that by resveratrol, as did deletion of AF-2. In contrast, mutation of AF-2 left both ligands with a limited ability to induced TGFalpha expression. In summary, the effect of modifying or deleting AF domains depends strongly on the ligand and the target gene.
Collapse
Affiliation(s)
- Barry D Gehm
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pearce ST, Liu H, Jordan VC. Modulation of estrogen receptor alpha function and stability by tamoxifen and a critical amino acid (Asp-538) in helix 12. J Biol Chem 2003; 278:7630-8. [PMID: 12496244 DOI: 10.1074/jbc.m211129200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptor alpha (ER) is a ligand-activated transcription factor implicated in breast cancer growth. Selective estrogen receptor modulators (SERMs), such as tamoxifen (4-OHT), bind to the ER and affect the position of helix 12, thereby influencing coregulator binding and ER transcriptional activation. Previous studies have shown that a triple mutation in helix 12 (3m; D538A/E542A/D545A) caused a change in ER stability and obliterated 4-OHT action (Liu, H., Lee, E. S., de los Reyes, A., Zapf, J. W., and Jordan, V. C. (2001) Cancer Res. 61, 3632-3639). Two approaches were taken to determine the role of individual mutants (D538A, L540Q, E542A, and D545A) on the activity and stability of the 4-OHT.ER complex. First, mutants were evaluated using transient transfection into ER-negative T47D:C4:2 cells with an ERE3-luciferase reporter, and second, transforming growth factor alpha (TGFalpha) mRNA was used as a gene target in situ for stable transfectants of MDA-MB-231 cells. Transcriptional activity occurred in the presence of estrogen in all of the mutants, although a decreased response was observed in the L540Q, 3m, and D538A cells. The 3m and D538A mutants lacked any estrogenic responsiveness to 4-OHT, whereas the other mutations retained estrogen-like activity with 4-OHT. Unlike the other mutants, the ER was degraded in the D538A mutant with 4-OHT treatment. However, increasing the protein levels of the mutant with the proteasome inhibitor MG132 did not restore the ability of 4-OHT to induce TGFalpha mRNA. We suggest that Asp-538 is a critical amino acid in helix 12 that not only reduces the estrogen-like actions of 4-OHT but also facilitates the degradation of the 4-OHT.D538A complex. These data further illustrate the complex role of specific surface amino acids in the modulation of the concentration and the estrogenicity of the 4-OHT.ER complex.
Collapse
MESH Headings
- Aspartic Acid/chemistry
- Blotting, Northern
- Blotting, Western
- Cell Line
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Endoplasmic Reticulum/metabolism
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Receptor alpha
- Fulvestrant
- Humans
- Ligands
- Luciferases/metabolism
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/physiology
- Tamoxifen/pharmacology
- Time Factors
- Transcription, Genetic
- Transfection
- Transforming Growth Factor alpha/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sandra Timm Pearce
- Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
33
|
Kraus RJ, Ariazi EA, Farrell ML, Mertz JE. Estrogen-related receptor alpha 1 actively antagonizes estrogen receptor-regulated transcription in MCF-7 mammary cells. J Biol Chem 2002; 277:24826-34. [PMID: 11986328 DOI: 10.1074/jbc.m202952200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The estrogen-related receptor alpha (ERRalpha) is an orphan member of the nuclear receptor superfamily. We show that the major isoform of the human ERRalpha gene, ERRalpha1, can sequence-specifically bind a consensus palindromic estrogen response element (ERE) and directly compete with estrogen receptor alpha (ERalpha) for binding. ERRalpha1 activates or represses ERE-regulated transcription in a cell type-dependent manner, repressing in ER-positive MCF-7 cells while activating in ER-negative HeLa cells. Thus, ERRalpha1 can function both as a modulator of estrogen responsiveness and as an estrogen-independent activator. Repression likely occurs in the absence of exogenous ligand since charcoal treatment of the serum had no effect on silencing activity. Mutational analysis revealed that repression is not simply the result of competition between ERalpha and ERRalpha1 for binding to the DNA. Rather, it also requires the presence of sequences within the carboxyl-terminal E/F domain of ERRalpha1. Thus, ERRalpha1 can function as either an active repressor or a constitutive activator of ERE-dependent transcription. We hypothesize that ERRalpha1 can play a critical role in the etiology of some breast cancers, thereby providing a novel therapeutic target in their treatment.
Collapse
Affiliation(s)
- Richard J Kraus
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
34
|
Dardes RC, Schafer JM, Pearce ST, Osipo C, Chen B, Jordan VC. Regulation of estrogen target genes and growth by selective estrogen-receptor modulators in endometrial cancer cells. Gynecol Oncol 2002; 85:498-506. [PMID: 12051881 DOI: 10.1006/gyno.2002.6659] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Tamoxifen has mixed agonist/antagonist activities, leading to tissue-specific estrogen-like actions and endometrial cancer. The purpose of this study was to evaluate the effects of antiestrogens on the growth of estrogen receptor (ER)-positive ECC-1 endometrial cancer cells in vitro and in vivo. METHODS We performed growth studies and luciferase assays using ERE-tK and AP-1 reporters. ERalpha protein expression was measured by Western blot after antiestrogen treatments. We investigated the actions of antiestrogens on the transcription of the pS2 gene in situ measured by Northern blot and the actions of antiestrogens on the VEGF protein secreted by ELISA. ERalpha, ERbeta, EGFR, and HER2/neu mRNAs were determined by RT-PCR. Last, ECC-1 tumors were developed by inoculation of cells into ovariectomized athymic mice and treated with estradiol (E2), tamoxifen, raloxifene, and a combination. RESULTS E2 induced cell proliferation while antiestrogens did not. E2 and raloxifene down regulated ERalpha protein; in contrast, 4OHT did not. ICI182,780 completely degraded the receptor. ECC-1 cells express ERbeta at insignificant levels. Luciferase assays did not show any induction in ERE- nor AP-1-mediated transcription by antiestrogens. E2 caused a concentration-dependent increase in pS2 mRNA but antiestrogens did not. E2 increased VEGF expression in a dose-dependent manner and antiestrogens blocked E2 action. E2 down regulated HER2/neu while 4OHT and raloxifene did not change HER2/neu levels compared to control. In addition, EGFR mRNA was down regulated by E2 but raloxifene did not change it. Tamoxifen and raloxifene did not promote tumor growth in vivo. However, raloxifene (1.5 mg daily) only partially blocked E2-stimulated growth. CONCLUSION Tamoxifen and raloxifene are antiproliferative agents and antiestrogens in ECC-1 endometrial cells in vitro and in vivo. The observation that selective estrogen-receptor modulators do not down regulate EGFR and HER2/neu mRNA may provide a potential role for these oncogenes in the development of raloxifene- or tamoxifen-stimulated endometrial cancer. The ECC-1 cell line could provide important new clues about the evolution of drug resistance to tamoxifen and raloxifene.
Collapse
Affiliation(s)
- R C Dardes
- Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
MacGregor Schafer J, Liu H, Levenson AS, Horiguchi J, Chen Z, Jordan VC. Estrogen receptor alpha mediated induction of the transforming growth factor alpha gene by estradiol and 4-hydroxytamoxifen in MDA-MB-231 breast cancer cells. J Steroid Biochem Mol Biol 2001; 78:41-50. [PMID: 11530283 DOI: 10.1016/s0960-0760(01)00072-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective estrogen receptor modulator, 4-hydroxytamoxifen (4-OHT) is a full agonist at the transforming growth factor (TGF) alpha gene in ER negative breast cancer cells stably transfected with ER alpha cDNA (Levenson et al., Br. J. Cancer 77 (1998) 1812-1819). E(2) and 4-OHT increase TGF alpha mRNA and protein in a concentration dependent manner. The responses to E(2) and 4-OHT are blocked by the pure antiestrogen ICI 182,780, which does not induce TGF alpha. Transfected MDA-MB-231 cells contain functional ER alpha but no ER beta function was detected. Neo transfected cells that did not express ER alpha or cells stably transfected with the DNA binding domain mutant C202R/E203V which prevents gene activation did not induce TGF alpha mRNA after either E(2) or 4-OHT treatment. An examination of the time course for either 10 nM E(2) or 1 microM 4-OHT for MDA-MB-231 cells stably transfected with cDNA for ER alpha showed increases in TGF alpha mRNA within 2 or 3 h respectively. Cells pretreated with cycloheximide (1 microg/ml) showed induced TGF alpha mRNA in response to E(2) or 4-OHT but TGF alpha mRNA induction was blocked by actinomycin D (1 microg/ml). We conclude that both E(2) and 4-OHT induce TGF alpha by direct interaction of ER alpha with DNA and that ER beta is not involved in the estrogen-like response to 4-OHT in the MDA-MB-231 cells.
Collapse
Affiliation(s)
- J MacGregor Schafer
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Olson Pavilion 8258, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
36
|
List HJ, Lauritsen KJ, Reiter R, Powers C, Wellstein A, Riegel AT. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIB1 is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J Biol Chem 2001; 276:23763-8. [PMID: 11328819 DOI: 10.1074/jbc.m102397200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human breast tumorigenesis is promoted by the estrogen receptor pathway, and nuclear receptor coactivators are thought to participate in this process. Here we studied whether one of these coactivators, AIB1 (amplified in breast cancer 1), was rate-limiting for hormone-dependent growth of human MCF-7 breast cancer cells. We developed MCF-7 breast cancer cell lines in which the expression of AIB1 can be modulated by regulatable ribozymes directed against AIB1 mRNA. We found that depletion of endogenous AIB1 levels reduced steroid hormone signaling via the estrogen receptor alpha or progesterone receptor beta on transiently transfected reporter templates. Down-regulation of AIB1 levels in MCF-7 cells did not affect estrogen-stimulated cell cycle progression but reduced estrogen-mediated inhibition of apoptosis and cell growth. Finally, upon reduction of endogenous AIB1 expression, estrogen-dependent colony formation in soft agar and tumor growth of MCF-7 cells in nude mice was decreased. From these findings we conclude that, despite the presence of different estrogen receptor coactivators in breast cancer cells, AIB1 exerts a rate-limiting role for hormone-dependent human breast tumor growth.
Collapse
Affiliation(s)
- H J List
- Department of Oncology, Vincent T. Lombardi Cancer Center, Georgetown University, Washington, D. C. 20007, USA
| | | | | | | | | | | |
Collapse
|
37
|
Willard ST, Abrahman EJ, Faught WJ, Leaumont DC, Frawley LS. 4-Hydroxytamoxifen differentially exerts estrogenic and antiestrogenic effects on discrete subpopulations of human breast cancer cells. Endocrine 2001; 14:247-52. [PMID: 11394643 DOI: 10.1385/endo:14:2:247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functional heterogeneity within populations of breast cancer cells contribute to the seemingly paradoxical effects of antiestrogens and the development of antiestrogen "resistance." Our objectives were to determine the degree to which T-47D cells may respond inappropriately (positively) to the antiestrogen 4-hydroxytamoxifen (HOT) alone, and whether all cells that respond to the stimulatory effects of estradiol-17beta (E2) are inhibited by the addition of HOT. Single, living T-47D cells were transfected by microinjection with an estrogen response element (ERE)-driven luciferase reporter plasmid. Transfected cells were then treated with medium alone, HOT, E2 or a combination thereof on consecutive days, exposed to the substrate luciferin and subjected to quantification of photonic emissions reflective of ERE-stimulated activity. This analysis revealed a subpopulation of cells that exhibited increased ERE-driven photonic activity in response to HOT. In companion studies, E2-stimulated ERE activity was reversed (on average) with HOT addition. However, analysis of individual cells revealed that although HOT reduced photonic activity in the majority (89.2%) of E2-responsive cells, there was a small subset (10.8% of the population) that was stimulated by E2 + HOT cotreatment. Our data support the hypothesis that these cells possess an intrinsic "resistance" to antiestrogenic agents, and that this could contribute to the remodeling of tumor cell populations toward a "resistant" phenotype.
Collapse
Affiliation(s)
- S T Willard
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425-2204, USA
| | | | | | | | | |
Collapse
|
38
|
Geisler J, Lønning PE. Resistance to endocrine therapy of breast cancer: recent advances and tomorrow's challenges. Clin Breast Cancer 2001; 1:297-308; discussion 309. [PMID: 11899352 DOI: 10.3816/cbc.2001.n.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of endocrine therapy in early as well as advanced breast cancer cannot be overrated. Long-term tamoxifen exposure (5 years) in the adjuvant setting has been shown to be effective not only in improving relapse-free and overall survival but also in reducing the incidence of contralateral cancers. Promising results have been achieved in breast cancer prevention with use of antiestrogens. Novel aromatase inhibitors and inactivators have been found superior to conventional treatment in metastatic disease and are currently being evaluated in the adjuvant setting to improve relapse-free and overall survival. If potential health hazards from estrogen deprivation with regard to cardiovascular disease as well as bone metabolism can be addressed, adjuvant endocrine therapy may include such drugs in the future. However, while endocrine therapy of breast cancer has become more and more important in the clinic, the major problems in hormonal therapy are primary and acquired resistance to endocrine manipulations. The causes for endocrine resistance and possible ways to delay or avoid this phenomenon are only allusively understood. Elucidation of the mechanisms underlying endocrine resistance in vivo represents the key to improve our treatment strategies. Due to intense use of in vitro models and animal systems, many potential mechanisms of endocrine resistance have been described; however, our understanding of the problem of drug resistance in vivo remains limited. Hopefully, ongoing programs on translational research in the neoadjuvant, adjuvant, and palliative settings will provide information that will improve our understanding of the biology of endocrine resistance in vivo and, thus, provide us with a better rationale to improve early as well as late endocrine therapy in breast cancer patients. The present publication summarizes the state of the art with respect to endocrine resistance.
Collapse
Affiliation(s)
- J Geisler
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
39
|
Tonetti DA, Chisamore MJ, Grdina W, Schurz H, Jordan VC. Stable transfection of protein kinase C alpha cDNA in hormone-dependent breast cancer cell lines. Br J Cancer 2000; 83:782-91. [PMID: 10952784 PMCID: PMC2363523 DOI: 10.1054/bjoc.2000.1326] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An inverse relationship between protein kinase C (PKC) activity and oestrogen receptor (ER) expression in human breast cell lines and tumours has been firmly established over the past 10 years. To determine whether specific alterations in PKC expression accompany hormone-independence, we examined the expression of PKC isozymes in the hormone-independent human breast cancer cell clones MCF-7 5C and T47D:C42 compared with their hormone-dependent counterparts, MCF-7 A4, MCF-7 WS8 and T47D:A18 respectively. Both hormone-independent cell clones exhibit elevated PKC alpha expression and increased basal AP-1 activity compared with the hormone-dependent cell clones. To determine whether PKC alpha overexpression is sufficient to mediate the hormone-independent phenotype, we stably transfected an expression plasmid containing PKC alpha cDNA to the T47D:A18 and MCF-7 A4 cell lines. This is the first report of PKC alpha transfection in T47D cells. In contrast to MCF-7 cells, T47D has the propensity to lose the ER and more readily forms tamoxifen-stimulated tumours in athymic mice. We find that in T47D:A18/PKC alpha clones, there is concomitant up-regulation of PKC beta I and delta, whereas in the MCF-7 A4/PKC alpha transfectants PKC epsilon is up-regulated. In T47D:A18, but not in MCF-7 A4, PKC alpha stable transfection is accompanied by down-regulation of ER function whilst basal AP-1 activity is elevated. Our results suggest PKC alpha overexpression may play a role in growth signalling during the shift from hormone dependent to hormone-independent breast cancers.
Collapse
Affiliation(s)
- D A Tonetti
- Robert H. Lurie Comprehensive Cancer Centre, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| | | | | | | | | |
Collapse
|
40
|
Rosenberg Zand RS, Grass L, Magklara A, Jenkins DJ, Diamandis EP. Is ICI 182,780 an antiprogestin in addition to being an antiestrogen? Breast Cancer Res Treat 2000; 60:1-8. [PMID: 10845803 DOI: 10.1023/a:1006334132303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pure antiestrogen ICI 182,780 has been shown to have antiprogestin activity in reporter gene constructs. Cell lines, naturally devoid of progesterone receptors (PR) were transfected with either the A or B forms of the human PR and a luciferase construct driven by a progesterone-response element (PRE). Because this system is an artificial one, our purpose was to determine whether these observations could be made in a human breast cancer cell line, naturally containing PR. We further evaluated the dose-response of ICI 182,780 and RU-486 (mifepristone) on PR and estrogen receptors (ER) in the presence of either progesterone, norgestrel or estradiol. These effects were measured using immunoassays for prostate-specific antigen (PSA) and human glandular kallikrein (hK2) and pS2. We found that ICI 182,780 blocked progesterone-stimulated PSA and hK2 production 100% at 10(-5) M, which decreased significantly by 10-6 M. This inhibition did not occur when norgestrel was the progestin used. RU-486 showed 100% blockade for both progestins at all concentrations used. We concluded that the antiprogestin activity of ICI 182,780 exists for progesterone only. This weak antiprogestin activity may be unlikely to have significant clinical implications.
Collapse
Affiliation(s)
- R S Rosenberg Zand
- Department of Nutritional Sciences, University of Toronto, Mount Sinai Hospital, Ontario, Canada
| | | | | | | | | |
Collapse
|
41
|
Gehm BD, McAndrews JM, Jordan VC, Jameson JL. EGF activates highly selective estrogen-responsive reporter plasmids by an ER-independent pathway. Mol Cell Endocrinol 2000; 159:53-62. [PMID: 10687852 DOI: 10.1016/s0303-7207(99)00195-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor (EGF) mimics the effects of estrogen on some cells, suggesting that it may activate the estrogen receptor (ER). We examined the ability of EGF to increase expression of several different estrogen-responsive luciferase reporters in MCF-7 breast cancer cells. Although EGF increased reporter activity, this effect was not inhibited by estrogen antagonists and was not dependent on estrogen response elements in the reporter plasmid. Similar results were obtained in BG-1 (ovarian) and Ishikawa (uterine) cells. In ER-negative JEG-3 cells, EGF, but not estradiol, increased reporter activity in the absence of transfected ER. The estrogen antagonist ICI 182780 blocked the ability of estradiol, but not EGF, to stimulate proliferation of T47D breast cancer cells, suggesting that the mitogenic effects of EGF are not mediated by ER. EGF does not appear to activate ER-mediated transcription in these experimental systems, although crosstalk between the estrogen and EGF signaling pathways may occur by other mechanisms.
Collapse
Affiliation(s)
- B D Gehm
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
42
|
Elhelw B, Ghorab MN, Farrag SH. Saline sonohysterography for monitoring asymptomatic postmenopausal breast cancer patients taking tamoxifen. Int J Gynaecol Obstet 1999; 67:81-6. [PMID: 10636051 DOI: 10.1016/s0020-7292(99)00124-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To evaluate the effectiveness of sonohysterography for monitoring asymptomatic postmenopausal breast cancer patients on long-term tamoxifen therapy. METHODS Thirty-eight asymptomatic postmenopausal patients receiving tamoxifen for breast cancer were enrolled into the study. The endometrium of study subjects was measured by transvaginal ultrasound. If a distinct echo measured < or = 5 mm, no further procedure was performed. For thickened or inadequately visualized endometrium by transvaginal ultrasound (TVS), sonohysterography was performed. Endometrial biopsies were performed for patients with generalized symmetrical changes on sonohysterography. In cases with focal changes, or inadequate SHG, hysteroscopy/dilatation and curettage (D&C) were performed. RESULTS Transvaginal ultrasound examination showed 12 (31.6%) patients with thin endometrium < or = 5 mm, 18 (47.4%) cases with thickened endometrium while eight (21%) cases were not adequately visualized by TVS. Sonohysterography was satisfactorily performed in 22 of 26 (84.6%) cases. Of these, three cases showed thin endometrium, 10 patients had endometrial polyps (45.5%) and nine patients showed abnormal endometrial-myometrial junction. Histology revealed hyperplasia in three cases and well differentiated adenocarcinoma associated with one polyp. Endometrial curettage for cases with abnormal endometrial-myometrial junction showed endometrial hyperplasia in two cases. Hysteroscopy and D&C were performed for four (15.4%) patients where SHG was unsuccessful, histopathology revealed inactive endometrium in three cases and one was hyperplastic. CONCLUSIONS Sonohysterography is superior to unenhanced transvaginal sonography in specifying the abnormal ultrasonographic appearance induced by prolonged tamoxifen therapy, it is easily performed, cost-effective and very well tolerated by the patients with no complications. Sonohysterography is recommended as a minimally invasive diagnostic tool for the assessment of endometrial changes in asymptomatic postmenopausal breast cancer patients on long-term tamoxifen therapy with thickened endometrium or inadequately visualized endometrial echo on transvaginal sonography.
Collapse
Affiliation(s)
- B Elhelw
- Department of Obstetrics and Gynecology, El Hekma Hospital, Cairo, Egypt.
| | | | | |
Collapse
|
43
|
Jordan VC. Molecular biology of the estrogen receptor aids in the understanding of tamoxifen resistance and breast cancer prevention with raloxifene. Recent Results Cancer Res 1999; 152:265-76. [PMID: 9928564 DOI: 10.1007/978-3-642-45769-2_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- V C Jordan
- Robert H. Lurie Cancer Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
44
|
Levenson AS, Tonetti DA, Jordan VC. The oestrogen-like effect of 4-hydroxytamoxifen on induction of transforming growth factor alpha mRNA in MDA-MB-231 breast cancer cells stably expressing the oestrogen receptor. Br J Cancer 1998; 77:1812-9. [PMID: 9667651 PMCID: PMC2150359 DOI: 10.1038/bjc.1998.301] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oestrogens and antioestrogens modulate the synthesis of transforming growth factor alpha (TGF-alpha) in breast cancer cells. The purpose of the present report was to examine regulation of TGF-alpha gene expression by oestradiol (E2) and antioestrogens in MDA-MB-231 breast cancer cells transfected with either the wild-type or mutant oestrogen receptor (ER). We recently reported the concentration-dependent E2 stimulation of TGF-alpha mRNA in MDA-MB-231 ER transfectants (Levenson et al, 1997). We now report that 4-hydroxytamoxifen (4-OHT) shows oestrogen-like effects on the induction of TGF-alpha gene expression in our transfectants. Accumulation of TGF-alpha mRNA in response to both E2 and 4-OHT but not in response to the pure antioestrogen ICI 182,780 suggests that E2-ER and 4-OHT-ER complexes can bind to an oestrogen response element (ERE), located in the promoter region of the TGF-alpha gene and can activate transcription of the gene. Surprisingly, no activation of luciferase expression was observed after transient transfection of the TGF-alpha ERE/luciferase reporter constructs. Possible activation of an alternative ER-mediated pathway responsible for the regulation of TGF-alpha gene expression in the ER transfectants is discussed.
Collapse
Affiliation(s)
- A S Levenson
- Robert H Lurie Cancer Centre, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
45
|
Understanding the Antiestrogenic Actions of Raloxifene and a Mechanism of Drug Resistance to Tamoxifen. Breast Cancer 1998; 5:99-106. [PMID: 11091634 DOI: 10.1007/bf02966681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Pink JJ, Fritsch M, Bilimoria MM, Assikis VJ, Jordan VC. Cloning and characterization of a 77-kDa oestrogen receptor isolated from a human breast cancer cell line. Br J Cancer 1997; 75:17-27. [PMID: 9000593 PMCID: PMC2222702 DOI: 10.1038/bjc.1997.4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have cloned and characterized a 77-kDa oestrogen receptor (ER) from an oestrogen-independent subclone of the MCF-7 human breast cancer cell line. This receptor contains an in-frame, tandem duplication of exons 6 and 7, located in the steroid-binding domain of the ER. This mutation has abrogated ligand binding, but not DNA binding, in this mutant ER. We previously described the partial structure of a unique oestrogen receptor (ER) that is expressed in an oestrogen-independent MCF-7:2A subclone of the breast cancer cell line MCF-7 (Pink JJ, Wu SQ, Wolf DM, Bilimoria MM, Jordan VC 1996a, Nucleic Acids Res 24 962-969). Sequence analyses determined the molecular weight of this 80-kDa ER to be 77 kDa, and hereafter this protein will be designated as ER77. Examination of the entire coding sequence of the ER77 mRNA indicates that it contains a tandem duplication of exons 6 and 7. Using a coupled transcription/translation system, a 77-kDa ER, which corresponds to the protein observed in the MCF-7:2A cells, was expressed. The ER77 protein does not bind the ligands [3H] oestradiol or [3H]tamoxifen aziridine. In DNA binding gel shift assays, the in vitro synthesized ER77 binds to a consensus vitellogenin A2 oestrogen-response element. In transient transfection experiments, the mutant ER, alone or in combination with the wild-type ER, does not induce expression of an oestrogen-responsive luciferase reporter construct. In fact, expression of the ER77 in the ER-positive T47D:A18 cell line inhibits E2-induced luciferase expression. Overexpression of wild-type ER in T47D:A18 cells leads to elevated constitutive expression of the luciferase reporter, which was inhibited by co-transfection with ER77. These data suggest that the ER77 can interfere with normal ER activity and does not act as a constitutive activator of oestrogen-independent growth in MCF-7:2A cells. Consequently, the constitutive growth observed in MCF-7:2A cells is probably the result of other ER-mediated pathways.
Collapse
Affiliation(s)
- J J Pink
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison 53792, USA
| | | | | | | | | |
Collapse
|
47
|
Tonetti DA, Jordan VC. Targeted anti-estrogens to treat and prevent diseases in women. MOLECULAR MEDICINE TODAY 1996; 2:218-23. [PMID: 8796891 DOI: 10.1016/1357-4310(96)88775-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The estrogen receptor has been successfully targeted with the anti-estrogen tamoxifen to treat all stages of breast cancer. Because tamoxifen is a partial agonist, it exhibits target-site specificity: it acts as an anti-estrogen in the breast to inhibit tumor growth, while exhibiting estrogenic effects on bones and lipid metabolism. Therefore, tamoxifen has the added benefit of maintaining bone density and reducing the risk of myocardial infarction in postmenopausal women. However, undesirable side effects of tamoxifen preclude its use as a hormone replacement therapy for otherwise healthy women. New anti-estrogens are currently being developed that may prevent osteoporosis, breast and endometrial cancer, and reduce the risk of myocardial infarction.
Collapse
Affiliation(s)
- D A Tonetti
- Robert H. Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
48
|
Abstract
Endocrine treatment plays an important role in the therapy of breast cancer. While the basic mechanisms are understood, additional mechanisms may be of importance to their action and they may also contribute to the mechanism(s) of acquired resistance. Currently, several novel drugs are entering into clinical trials. Observations of the absence or presence of cross resistance to novel 'pure' steroidal antiestrogens and the non-steroidal tamoxifen may add important information to our understanding of the mechanisms of action of both classes of drugs. Similarly, exploration of different aromatase inhibitors in sequence or concert, as well as the combining of different endocrine treatment options may be warranted. Additionally, alterations in different biochemical parameters such as growth factors should not only be carefully explored in relation to treatment options but should also be followed during the course of treatment to asess alterations over time and in relation to the development of drug resistance.
Collapse
MESH Headings
- Adrenal Cortex/drug effects
- Adrenal Cortex/physiopathology
- Adult
- Aged
- Animals
- Antineoplastic Agents, Hormonal/classification
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Aromatase Inhibitors
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/physiopathology
- Breast Neoplasms/therapy
- Chemotherapy, Adjuvant
- Combined Modality Therapy
- Drug Resistance, Multiple
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Estrogen Antagonists/adverse effects
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogens/blood
- Estrogens/physiology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gonadotropin-Releasing Hormone/agonists
- Humans
- Insulin-Like Growth Factor I/antagonists & inhibitors
- Insulin-Like Growth Factor I/physiology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/physiopathology
- Menopause
- Mice
- Middle Aged
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/physiopathology
- Neoplasms, Hormone-Dependent/therapy
- Progesterone/antagonists & inhibitors
- Progesterone/physiology
- Progestins/antagonists & inhibitors
- Progestins/pharmacology
- Progestins/therapeutic use
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/physiology
- Signal Transduction/drug effects
- Steroids/metabolism
- Tamoxifen/adverse effects
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|