1
|
Lai YY, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol 2010; 104:2024-33. [PMID: 20668280 DOI: 10.1152/jn.00528.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the medial medulla is responsible for rapid eye movement (REM) sleep atonia and cataplexy. Dysfunction can cause REM sleep behavior disorder and other motor pathologies. Here we report the behavioral effects of stimulation of the nucleus gigantocellularis (NGC) and nucleus magnocellularis (NMC) in unrestrained cats. In waking, 62% of the medial medullary stimulation sites suppressed muscle tone. In contrast, stimulation at all sites, including sites where stimulation produced no change or increased muscle tone in waking, produced decreased muscle tone during slow-wave sleep. In the decerebrate cat electrical stimulation of the NGC increased glycine and decreased norepinephrine (NE) release in the lumbar ventral horn, with no change in γ-aminobutyric acid (GABA) or serotonin (5-HT) release. Stimulation of the NMC increased both glycine and GABA release and also decreased both NE and 5-HT release in the ventral horn. Glutamate levels in the ventral horn were not changed by either NGC or NMC stimulation. We conclude that NGC and NMC play neurochemically distinct but synergistic roles in the modulation of motor activity across the sleep-wake cycle via a combination of increased release of glycine and GABA and decreased release of 5-HT and NE. Stimulation of the medial medulla that elicited muscle tone suppression also triggered rapid eye movements, but never produced the phasic twitches that characterize REM sleep, indicating that the twitching and rapid eye movement generators of REM sleep have separate brain stem substrates.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System Sepulveda, North Hills, CA 91343, USA.
| | | | | | | |
Collapse
|
2
|
GULYANI S, WU MF, NIENHUIS R, JOHN J, SIEGEL JM. Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience 2002; 112:355-65. [PMID: 12044453 PMCID: PMC8789328 DOI: 10.1016/s0306-4522(02)00089-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The amygdala plays an important role in the interpretation of emotionally significant stimuli and has strong projections to brainstem regions regulating muscle tone and sleep. Cataplexy, a symptom of narcolepsy, is a loss of muscle tone usually triggered by sudden, strong emotions. Extracellular single-unit recordings were carried out in the amygdala of narcoleptic dogs to test the hypothesis that abnormal activity of a subpopulation of amygdala neurons is linked to cataplexy. Of the 218 cells recorded, 31 were sleep active, 78 were active in both waking and rapid-eye-movement sleep, 88 were maximally active during waking, and 21 were state independent. Two populations of cells showed a significant change in activity with cataplexy. A population of sleep active cells localized to central and basal nucleus increased discharges prior to and during cataplexy. A population of wake active cells localized to the cortical nucleus decreased activity prior to and during cataplexy. We hypothesize that these cell populations have a role in mediation or modulation of cataplexy through interactions with meso-pontine regions controlling atonia. The anticholinesterase physostigmine, at doses which increased cataplexy, did not alter the activity of the cataplexy-related cells or of other amygdala cells, suggesting that its effect on cataplexy is mediated 'downstream' of the amygdala. The alpha-1 blocker prazosin, at doses which increased cataplexy, increased discharge in a subgroup of the cataplexy active cells and in a number of other amygdala cells, indicating that prazosin may modulate cataplexy by its action on amygdala cells or their afferents.
Collapse
Affiliation(s)
- S. GULYANI
- Department of Psychiatry and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 91020, USA
| | - M.-F. WU
- Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA
| | - R. NIENHUIS
- Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA
| | - J. JOHN
- Department of Psychiatry and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 91020, USA
| | - J. M. SIEGEL
- Department of Psychiatry and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 91020, USA
- Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA
- Correspondence to: J.M. Siegel, Neurobiology Research (151A3), VA GLAHS, 16111 Plummer Street, North Hills, CA 91343, USA. Tel.: +1-818-891-7711, or -7581; fax: +1-818-895-9575. (J. M. Siegel)
| |
Collapse
|
3
|
Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J Neurosci 2001. [PMID: 11549748 DOI: 10.1523/jneurosci.21-18-07384.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A complete suppression of muscle tone in the postural muscles and a reduction of muscle tone in the respiratory related musculature occur in rapid eye movement (REM) sleep. Previous studies have emphasized the role of glycine in generating these changes. Because the activity of norepinephrine- and serotonin-containing neurons is known to decrease in REM sleep, we hypothesized that a decrease in release in one or both of these transmitters might be detected at the motoneuronal level during muscle tone suppression elicited by brainstem stimulation in the decerebrate animal. We compared release in the ventral horn with that in the hypoglossal nucleus to determine whether the mechanism of muscle tone suppression differs in these nuclei as has been hypothesized. Electrical stimulation and cholinergic agonist injection into the mesopontine reticular formation produced a suppression of tone in the postural and respiratory muscles and simultaneously caused a significant reduction of norepinephrine and serotonin release of similar magnitude in both hypoglossal nucleus and spinal cord. Norepinephrine and serotonin release in the motoneuron pools was unchanged when the stimulation was applied to brainstem areas that did not generate bilateral suppression. No change in dopamine release in the motoneuron pools was seen during mesopontine stimulation-induced atonia. We hypothesize that the reduction of monoamine release that we observe exerts a disfacilitatory effect on both ventral horn and hypoglossal motoneurons and that this disfacilitatory mechanism contributes to the muscle atonia elicited in the decerebrate animal and in the intact animal during REM sleep.
Collapse
|
4
|
Liu RH, Fung SJ, Reddy VK, Barnes CD. Localization of glutamatergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat with a proposed role of glutamate on lumbar motoneuron activity. Neuroscience 1995; 64:193-208. [PMID: 7708205 DOI: 10.1016/0306-4522(94)00354-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamate is considered to be a major excitatory neurotransmitter in the central nervous system. The presence of glutamate-like immunoreactive neurons in the rodent locus coeruleus has been reported previously. In this study we used both immunohistochemical and electrophysiological techniques to answer two major questions: (1) Is there any glutamate-like immunoreactivity in the catecholaminergic coeruleospinal system of the cat? (2) What is the physiological role, if any, of glutamate in descending locus coeruleus control of spinal motoneurons? Following injections of rhodamine-labeled latex microspheres or Fast Blue into the seventh lumbar segment of the spinal cord of the cat, retrogradely labeled cells were found throughout the rostrocaudal extent of the dorsolateral pontine tegmentum. They were primarily observed in the nucleus locus coeruleus and the Kolliker-Fuse nucleus. Some labeled cells were also present in the nucleus subcoeruleus and, to a lesser extent, in the parabrachial nuclei. Data from immunohistochemical studies indicate that 86% of all dorsolateral pontine tegmentum neurons that project to the spinal cord contain glutamate-like immunoreactivity, and 77% co-contain both glutamate- and tyrosine hydroxylase-like immunoreactivity. Electrical stimulation (four pulses of 500 microseconds duration at 500 Hz; intensity = 50-200 microA) of the locus coeruleus, in decerebrate cats, consistently induced lumbar motoneuron discharges recordable ipsilaterally as ventral root responses. These motoneuronal responses were reversibly antagonized following chemical inactivation of noradrenergic locus coeruleus neurons by local infusion of the alpha 2-adrenergic agonist clonidine, suggesting the locus coeruleus neurons to be the main source of evoked ventral root responses. Additionally, the evoked ventral root responses were reversibly reduced by 34.20 +/- 4.45% (mean +/- S.E.M.) upon intraspinal injections of the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, into the ventral horn of seventh lumbar spinal cord segment (three to four injections, 20 nmol in 0.2 microliter of 0.1 M Tris-buffered saline for each injection). Similar volumes of vehicle injections had no significant effect on the locus coeruleus-evoked ventral root responses. These ventral root responses were also partially blocked (62.30 +/- 11.76%) by intravenous administration of the alpha 1-adrenergic receptor antagonist prazosin (20 micrograms/kg). In the light of several anatomical reports of noradrenergic and glutamatergic terminals in close contact with spinal motoneurons, our present findings suggest that the locus coeruleus-evoked ventral root response probably involves the synaptic release of both norepinephrine and glutamate onto lumbar motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R H Liu
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520, USA
| | | | | | | |
Collapse
|
5
|
Fung SI, Chan JY, Manzoni D, White SR, Lai YY, Strahlendorf HK, Zhuo H, Liu RH, Reddy VK, Barnes CD. Cotransmitter-mediated locus coeruleus action on motoneurons. Brain Res Bull 1994; 35:423-32. [PMID: 7859099 DOI: 10.1016/0361-9230(94)90155-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This article reviews evidence for a direct noradrenergic projection from the dorsolateral pontine tegmentum (DLPT) to spinal motoneurons. The existence of this direct pathway was first inferred by the observation that antidromically evoked responses occur in single cells in the locus coeruleus (LC), a region within the DLPT, following electrical stimulation of the ventral horn of the lumbar spinal cord of the cat. We subsequently confirmed that there is a direct noradrenergic pathway from the LC and adjacent regions of the DLPT to the lumbar ventral horn using anatomical studies that combined retrograde tracing with immunohistochemical identification of neurotransmitters. These anatomical studies further revealed that many of the noradrenergic neurons in the LC and adjacent regions of the DLPT of the cat that send projections to the spinal cord ventral horn also contain colocalized glutamate (Glu) or enkephalin (ENK). Recent studies from our laboratory suggest that Glu and ENK may function as cotransmitters with norepinephrine (NE) in the descending pathway from the DLPT. Electrical stimulation of the LC evokes a depolarizing response in spinal motoneurons that is only partially blocked by alpha 1 adrenergic antagonists. In addition, NE mimicks only the slowly developing and not the fast component of LC-evoked depolarization. Furthermore, the depolarization evoked by LC stimulation is accompanied by a decrease in membrane resistance, whereas that evoked by NE is accompanied by an increased resistance. That Glu may be a second neurotransmitter involved in LC excitation of motoneurons is supported by our observation that the excitatory response evoked in spinal cord ventral roots by electrical stimulation of the LC is attenuated by a non-N-methyl-D-aspartate glutamatergic antagonist. ENK may participate as a cotransmitter with NE to mediate LC effects on lumbar monosynaptic reflex (MSR) amplitude. Electrical stimulation of the LC has a biphasic effect on MSR amplitude, facilitation followed by inhibition. Adrenergic antagonists block only the facilitator effect of LC stimulation on MSR amplitude, whereas the ENK antagonist naloxone reverses the inhibition. The chemical heterogeneity of the cat DLPT system and the differential responses of motoneurons to the individual cotransmitters help to explain the diversity of postsynaptic potentials that occur following LC stimuli.
Collapse
Affiliation(s)
- S I Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99163-6520
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Delagrange P, Canu MH, Rougeul A, Buser P, Bouyer JJ. Effects of locus coeruleus lesions on vigilance and attentive behaviour in cat. Behav Brain Res 1993; 53:155-65. [PMID: 8466661 DOI: 10.1016/s0166-4328(05)80275-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previous data have suggested that in the cat, expectancy behaviour (waiting for a target to appear) and associated electrocortical, focal, synchronized activity ('mu' rhythms) are modulated by a noradrenergic system possibly originating from the locus coeruleus (LC). To test the latter hypothesis, we have examined the behavioural and ECoG changes induced after bilateral LC lesions. Our results demonstrated that destruction of the anterior 3/4th of the LC (A6 noradrenergic cell group) resulted in a considerable increase of mu rhythms and expectancy behaviour, without episodes of drowsiness that normally occur. Destruction of the posterior fourth of LC (A4 noradrenergic group) only increased the duration of slow sleep. Extending the A6 lesion to include the dorsal ascending noradrenergic bundle also increased the expectancy behaviour and mu rhythms. Finally, when the nucleus subcoeruleus was also involved, the duration of slow sleep and the frequency of paradoxical sleep episodes increased. These findings indicate that the LC exerts an inhibitory effect on structures involved in the induction and persistence of expectancy behaviour with accompanying mu rhythms.
Collapse
Affiliation(s)
- P Delagrange
- Département de Neurophysiologie comparée, CNRS-UPMC, Paris, France
| | | | | | | | | |
Collapse
|
7
|
Sluka KA, Westlund KN. Spinal projections of the locus coeruleus and the nucleus subcoeruleus in the Harlan and the Sasco Sprague-Dawley rat. Brain Res 1992; 579:67-73. [PMID: 1623408 DOI: 10.1016/0006-8993(92)90742-r] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The descending projections of the locus coeruleus (LC) and the nucleus subcoeruleus (SC) to the lumbar spinal cord were examined in rats from two vendors using retrograde transport of fluorescent latex beads. There was a vendor difference observed which agrees with previous findings. The differential dorsal horn and ventral horn projections of the Harlan and the Sasco Sprague-Dawley rats, reported by Fritschy and Grzanna, and Clark and Proudfit were confirmed. In the Harlan rat more cells were labeled in the LC following injections in the dorsal horn. In contrast, in the Sasco rat, more cells were labeled in the LC from injections in the ventral horn. Although, in all studies, the LC in rats from these vendors projected to some extent to both the dorsal and the ventral horn. A difference in labeling was noted also for the depth of placement of the tracer in the dorsal horn. When the site of injection was in the nucleus proprius, a predominantly contralateral projection of the LC was noted. In contrast, when horseradish peroxidase (HRP) gel implants were placed to include the superficial laminae, the cells in the LC were labeled predominantly ipsilaterally. The SC has a major projection to the dorsal horn in the Harlan rats while cells in the SC were predominantly labeled following ventral horn injection in the Sasco rats. These cells send mostly ipsilateral projections to the dorsal and ventral horn of the spinal cord. Double labeled studies confirmed that 91% of LC and 86% of SC neurons projecting to the spinal cord were noradrenergic.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K A Sluka
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
8
|
Abstract
Spinally projecting neuropeptide Y (NPY)-immunoreactive cells were sought in the feline locus coeruleus (LC) nuclear complex after horseradish peroxidase (HRP) injection into the lumbar cord; HRP injection was followed by intracerebroventricular colchicine administration. Our results revealed that a significant number (approximately 20% of all descending cells from the LC complex) of spinally projecting NPY-immunoreactive neurons arise from the LC alpha, the subcoeruleus and the Kölliker-Fuse nuclei. Other nonspinally projecting NPY-containing cells were also evident in the laterodorsal tegmental nucleus and the LCd, in addition to those occurring in the aforementioned LC nuclear complex.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, College of Veterinary Medicine, Washington State University, Pullman 99164-6520
| | | | | | | | | |
Collapse
|
9
|
Fung SJ, Manzoni D, Chan JY, Pompeiano O, Barnes CD. Locus coeruleus control of spinal motor output. PROGRESS IN BRAIN RESEARCH 1991; 88:395-409. [PMID: 1667549 DOI: 10.1016/s0079-6123(08)63825-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using electrophysiological techniques, we investigated the functional properties of the coeruleospinal system for regulating the somatomotor outflow at lumbar cord levels. Many of the fast-conducting, antidromically activated coeruleospinal units were shown to exhibit the alpha 2-receptor response common to noradrenergic locus coeruleus (LC) neurons. Electrically activating the coeruleospinal system potentiated the lumbar monosynaptic reflex and depolarized hindlimb flexor and extensor motoneurons via an alpha 1-receptor mechanism. The latter synaptically induced membrane depolarization was mimicked by norepinephrine applied iontophoretically to motoneurons. That LC inhibited Renshaw cell activity and induced a positive dorsal root potential at the lumbar cord also reinforced LC's action on motor excitation. We conclude that LC augments the somatomotor output, at least in part, via an alpha 1-adrenoceptor-mediated excitation of ventral horn motoneurons. Such process is being strengthened by LC's suppression of the recurrent inhibition pathway as well as by its presynaptic facilitation of afferent impulse transmission at the spinal cord level.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman
| | | | | | | | | |
Collapse
|
10
|
Iijima K, Sato M. An immunocytochemical study using the PAP method for tyrosine hydroxylase and serotonin in alternate sections, and in situ hybridization to detect tryptophan hydroxylase mRNA in the rat's locus ceruleus. Acta Histochem 1991; 90:159-72. [PMID: 1681663 DOI: 10.1016/s0065-1281(11)80056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ hybridization (LARRSON and HOUGAARD 1990), using the APAAP complex, shows that many small and medium-sized neurons with signals of tryptophan hydroxylase mRNA are uniformly scattered throughout the rat's locus ceruleus, and that a few extrinsic neurons just ventro-medial to it also shows the hybridization signals. The specificity of this technique has been established by Northern blot hybridization. Synthesis of serotonin in intrinsic neurons is indicated not only by the results obtained from in situ hybridization, but also by the fact that, in distribution, masked serotonin cells, immunocytochemically revealed after pargyline and 5-hydroxytryptophan loading, correspond to the neurons showing mRNA hybridization signals. Identification of the same neurons in adjacent cryostat sections, immunostained alternately for serotonin or tyrosine hydroxylase after loading, provides evidence for the coexistence of serotonin and noradrenaline in a single neuron of this center. A few extrinsic, non-specific indoleamine cells located just ventro-medial to the center may be related to the lateralization of the raphe's neurons. The expression of tryptophan hydroxylase in CNS appears to be restricted to the specific regions such as the locus ceruleus and raphe's nuclei.
Collapse
Affiliation(s)
- K Iijima
- Department of Anatomy, School of Medicine, Akita University, Japan
| | | |
Collapse
|
11
|
Reddy VK, Fung SJ, Zhuo H, Barnes CD. Pontospinal transmitters and their distribution. PROGRESS IN BRAIN RESEARCH 1991; 88:103-21. [PMID: 1687616 DOI: 10.1016/s0079-6123(08)63802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dorsolateral pontine tegmentum of the cat is known to contain a large population of catecholaminergic neurons. Additionally, several studies have also shown the presence of other neurochemicals (acetylcholine, enkephalin, neuropeptide Y, serotonin, somatostatin and substance P). In this study, we have employed retrograde transport of horseradish peroxidase in combination with immunocytochemistry to determine the locations of pontospinal neurons which contain catecholamine, enkephalin, neuropeptide Y, and serotonin. Furthermore, we have combined the retrograde transport of Fast Blue and immunofluorescence histochemistry to determine whether enkephalin-containing neurons are catecholaminergic. All pontospinal neurons, irrespective of the neurochemical content, were observed in the ventral and lateral parts of the dorsolateral pontine tegmentum at coronal levels P1.8-P4.0. These neurons were located in the nuclei locus coeruleus alpha and subcoeruleus and the Kölliker-Fuse nucleus. A high concentration of these neurons was evident in the Kölliker-Fuse nucleus when compared to the nuclei locus coeruleus alpha and subcoeruleus. Quantitative data have revealed that enkephalin is contained in a large proportion of the pontospinal catecholaminergic neurons (75%). The observations suggest that catecholaminergic neurons may contain one or more putative peptide neurotransmitters.
Collapse
Affiliation(s)
- V K Reddy
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman
| | | | | | | |
Collapse
|
12
|
Holstege G. Descending motor pathways and the spinal motor system: limbic and non-limbic components. PROGRESS IN BRAIN RESEARCH 1991; 87:307-421. [PMID: 1678191 DOI: 10.1016/s0079-6123(08)63057-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- G Holstege
- Department of Anatomy, University of California, San Francisco
| |
Collapse
|
13
|
Abstract
Multiple separate and distinct supraspinally organized descending inhibitory systems have been identified which are capable of powerfully modulating spinal nociceptive transmission. Until recently, brainstem sites known to be involved in the centrifugal modulation of spinal nociceptive transmission were few in number, being limited to midline structures in the midbrain and medulla (e.g., periaqueductal gray and nucleus raphe magnus). However, with continued investigation, that number has increased and brainstem sites previously thought to be primarily involved in cardiovascular function and autonomic regulation (e.g., nucleus tractus solitarius; locus coeruleus/subcoeruleus (LC/SC); A5 cell group; lateral reticular nucleus) also have been demonstrated to play a role in the modulation of spinal nociceptive transmission. Spinal monoamines (norepinephrine (NE) and serotonin) have been shown to mediate stimulation-produced descending inhibition of nociceptive transmission from these brainstem sites. The majority of NE-containing fibers and terminations in the spinal cord arise from supraspinal sources; thus, the LC/SC, the parabrachial nuclei, the Kölliker-Fuse nucleus and the A5 cell group have all been suggested as possible sources of the spinal noradrenergic (NA) innervation involved in the centrifugal modulation of spinal nociceptive transmission. Several lines of evidence suggest that the LC/SC plays a significant role in a functionally important descending inhibitory NA system. Focal electrical stimulation in the LC produces an antinociception and increases significantly the spinal content of NA metabolites. The inhibition of the nociceptive tail-flick withdrawal reflex produced by electrical stimulation in the LC/SC has been demonstrated to be mediated by postsynaptic alpha 2-adrenoceptors in the lumbar spinal cord. Similarly, electrical or chemical stimulation given in the LC/SC inhibits noxious-evoked dorsal horn neuronal activity. Thus, results reported in electrophysiological experiments confirm those reported in functional studies and the NA coeruleospinal system appears to play a significant role in spinal nociceptive processing.
Collapse
Affiliation(s)
- S L Jones
- Department of Pharmacology, College of Medicine, University of Oklahoma, Oklahoma City
| |
Collapse
|
14
|
Fritschy JM, Grzanna R. Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurol 1990; 291:553-82. [PMID: 2329191 DOI: 10.1002/cne.902910406] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rat spinal cord receives noradrenergic (NA) projections from the locus coeruleus (LC) and the A5 and A7 groups. In contradiction to previous statements about the distribution of descending NA axons, we have recently proposed that in the rat LC neurons project primarily to the dorsal horn and intermediate zone, whereas A5 and A7 neurons project to somatic motoneurons and the intermediolateral cell column. The aim of the present study was to determine the funicular course and terminal distribution of descending NA axons from the LC and from the A5 and A7 groups. The organization of the coeruleospinal projection was analyzed by using the anterograde tracer Phaseolus vulgaris leucoagglutinin in combination with dopamine-beta-hydroxylase immunohistochemistry. The trajectory of A5 and A7 axons was studied in spinal cord sections of rats following ablation of the coeruleospinal projection with the neurotoxin DSP-4. To assess the relative contribution of the LC and the A5 and A7 groups to the NA innervation of the spinal cord, unilateral injections of the retrograde tracer True Blue were made at cervical, thoracic, and lumbar levels, and retrogradely labeled NA neurons were identified by dopamine-beta-hydroxylase immunofluorescence. The results of the anterograde tracing experiments confirm our previous findings that LC neurons project most heavily to the dorsal horn and intermediate zone. Analysis of horizontal sections revealed that LC axons descend the length of the spinal cord within layers I and II. In contrast to the intragriseal course of LC fibers, A5 and A7 axons travel in the ventral and dorsolateral funiculi and terminate in the ventral horn and the intermediolateral cell column. Retrograde transport studies indicate that the contribution of the A5 and A7 groups to the NA projection to the spinal cord is greater than that of the LC. We conclude that descending axons of the LC and A5 and A7 groups differ in their course and distribution within the spinal cord. The documentation of a definite topographic order in the bulbospinal NA projections suggests that the LC and the A5 and A7 groups have different functional capacities. The LC is in a position to influence the processing of sensory inputs, in particular nociceptive inputs, whereas A5 and A7 neurons are likely to influence motoneurons.
Collapse
Affiliation(s)
- J M Fritschy
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
15
|
Pompeiano O, Manzoni D, Barnes CD, Stampacchia G, d'Ascanio P. Responses of locus coeruleus and subcoeruleus neurons to sinusoidal stimulation of labyrinth receptors. Neuroscience 1990; 35:227-48. [PMID: 2381509 DOI: 10.1016/0306-4522(90)90078-i] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In precollicular decerebrate cats the electrical activity of 141 individual neurons located in the locus coeruleus-complex, i.e. in the dorsal (n = 41) and ventral parts (n = 67) as well as in the locus subcoeruleus (n = 33), was recorded during sinusoidal tilt about the longitudinal axis of the whole animal, leading to stimulation of labyrinth receptors. Some of these neurons showed physiological characteristics attributed to the norepinephrine-containing locus coeruleus neurons, namely, (i) a slow and regular resting discharge, and (ii) a typical biphasic response to fore- and hindpaw compression consisting of short impulse bursts followed by a silent period, which has been attributed to recurrent and/or lateral inhibition of the norepinephrine-containing neurons. Furthermore, 16 out of the 141 neurons were activated antidromically by stimulation of the spinal cord at T12 and L1, thus being considered coeruleospinal or subcoeruleospinal neurons. A large number of tested neurons (80 out of 141, i.e. 56.7%) responded to animal rotation at the standard frequency of 0.15 Hz and at the peak amplitude of 10 degrees. However, the proportion of responsive neurons was higher in the locus subcoeruleus (72.7%) and the dorsal locus coeruleus (61.0%) than in the ventral locus coeruleus (46.3%). A periodic modulation of firing rate of the units was observed during the sinusoidal stimulus. In particular, 45 out of the 80 units (i.e. 56.2%) were excited during side-up and depressed during side-down tilt (beta-responses), whereas 20 of 80 units (i.e. 25.0%) showed the opposite behavior (alpha-responses). In both instances, the response peak occurred with an average phase lead of about + 18 degrees, with respect to the extreme side-up or side-down position of the animal; however, the response gain (imp./s per deg) was, on average, more than two-fold higher in the former than in the latter group. The remaining 15 units (i.e. 18.7%) showed a prominent phase shift of this response peak with respect to animal position. Similar results were obtained from the subpopulation of locus coeruleus-complex neurons which fired at a low rate (less than 5.0 imp./s), as well as for the antidromically identified coeruleospinal neurons. The response gain of locus coeruleus-complex neurons, including the coeruleospinal neurons, did not change when the peak amplitude of tilt was increased from 5 degrees to 20 degrees at the fixed frequency of 0.15 Hz. This indicates that the system was relatively linear with respect to the amplitude of displacement.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O Pompeiano
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy
| | | | | | | | | |
Collapse
|
16
|
Lai YY, Strahlendorf HK, Fung SJ, Barnes CD. The actions of two monoamines on spinal motoneurons from stimulation of the locus coeruleus in the cat. Brain Res 1989; 484:268-72. [PMID: 2713687 DOI: 10.1016/0006-8993(89)90369-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study investigates the role of the two putative amine transmitters (norepinephrine and serotonin) in mediating the facilitatory action following locus coeruleus (LC) stimulation on hindlimb flexor and extensor monosynaptic reflexes (MSRs) in unanesthetized, decerebrate cats. When administered sequentially, in either order, methysergide (a serotonergic blocker) and prazosin (an alpha 1-adrenergic blocker) were observed to cause subtotal, decremental changes in the potentiation of gastrocnemius-soleus and common peroneal MSRs by stimuli applied in the LC. These changes were determined to be independent of the blood pressure changes induced by the aminergic blockers. These results support the hypothesis that the facilitation of the group Ia reflex transmission in cat spinal cord by stimulation of LC is mediated in part by alpha 1-noradrenergic and serotonergic mechanisms.
Collapse
Affiliation(s)
- Y Y Lai
- Department of Physiology, Texas Tech University Health Sciences Center, Lubbock 79430
| | | | | | | |
Collapse
|
17
|
Fung SJ, Pompeiano O, Barnes CD. Coerulospinal influence on recurrent inhibition of spinal motonuclei innervating antagonistic hindleg muscles of the cat. Pflugers Arch 1988; 412:346-53. [PMID: 3174390 DOI: 10.1007/bf01907550] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The locus coeruleus's (LC's) effect on recurrent inhibition of gastrocnemius-soleus (GS) and common peroneal (CP) monosynaptic reflexes (MSRs) was demonstrated to exceed the concomitant facilitation, indicating the independency of LC's disinhibition and facilitation measures in this study. In contrast, the disinhibition effect correlated closely with the recurrently inhibited MSRs. The disinhibition phenomenon was also accompanied by progressive delay and diminution in the Renshaw cell field potential. Hence, the recovery of recurrently inhibited MSRs was probably due, in part at least, to the LC's inhibition of the related Renshaw cell activity. Furthermore, the site-specific, discordant changes in the disinhibition of GS, compared with CP MSRs, as revealed by tracking studies imply that representations of these antagonistic motonuclei may occupy different LC loci. Accordingly, the nonuniform disinhibition may be due to the activation of discrete aggregates of LC neurons which are responsible predominantly in controlling the recurrent inhibitory pathway belonging to one or the other of the antagonistic motonuclei. These findings support a differential LC inhibitory control of Renshaw cell activity, releasing the related motoneurones for the Ia synaptic transmission - a disinhibitory process that is crucial for the LC's independent control of the recurrent circuit of antagonistics extensor and flexor motoneurons.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman 99164-6520
| | | | | |
Collapse
|
18
|
Abstract
1. The existence of direct projections to spinal motoneurons and interneurons from the raphe pallidus and obscurus, the adjoining ventral medial reticular formation and the locus coeruleus and subcoeruleus is now well substantiated by various anatomical techniques. 2. The spinal projections from the raphe nuclei and the adjoining medial reticular formation contain serotonergic and non-serotonergic fibres. These projections also contain various peptides, several of which are contained within the serotonergic fibres. Whether still other transmitter substances (e.g. acetylcholine) are present in the various descending brainstem projections to motoneurons remains to be determined. 3. The spinal projections from the locus coeruleus and subcoeruleus are mainly noradrenergic, but there also exists a non-noradrenergic spinal projection. 4. Pharmacological, physiological and behavioural studies indicate an overall facilitatory action of noradrenaline and serotonin (including several peptides) on motoneurons. This may lead to an enhanced susceptibility for excitatory inputs from other sources. 5. The brainstem areas in question receive an important projection from several components of the limbic system. This suggests that the emotional brain can exert a powerful influence on all regions of the spinal cord and may thus control both its sensory input and motor output.
Collapse
Affiliation(s)
- J C Holstege
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands
| | | |
Collapse
|
19
|
Ulfhake B, Arvidsson U, Cullheim S, Hökfelt T, Brodin E, Verhofstad A, Visser T. An ultrastructural study of 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal boutons in the motor nucleus of spinal cord segments L7-S1 in the adult cat. Neuroscience 1987; 23:917-29. [PMID: 2449639 DOI: 10.1016/0306-4522(87)90168-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The distribution and fine structure of 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive synaptic boutons and varicosities were studied in the motor nucleus of the spinal cord segments L7-S1 in the cat, using the peroxidase-antiperoxidase immunohistochemical technique and analysis of ultrathin serial sections. The 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive boutons had a similar ultrastructural appearance as judged from serial section analysis. The boutons could be classified into two types on the basis of their vesicular content, with one type containing a large number of small agranular vesicles together with only a few, if any large granular vesicles, while the other type contained a large number of large granular vesicles in addition to small agranular vesicles. The vesicles were spherical or spherical-to-pleomorphic. Postsynaptic dense bodies (Taxi bodies) were occasionally observed in relation to all three types of immunoreactive boutons, which almost invariably formed synaptic junctions with dendrites. Judged by the calibre of the postsynaptic dendrites, the boutons were preferentially distributed to the proximal dendritic domains of motoneurons. In one case, a substance P-immunoreactive bouton formed an axosomatic synaptic contact. In addition to synaptic boutons, 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal varicosities containing a large number of large granular and small agranular vesicles but lacking any form of conventional synaptic contact were observed. Such varicosities were either directly apposing surrounding neuronal elements or separated from the neurons by thin glial processes. The origin of the immunoreactive boutons was not traced, but it was thought likely that the main source of the boutons was neurons with their cell bodies located in the medullary raphe nuclei.
Collapse
Affiliation(s)
- B Ulfhake
- Department of Anatomy, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The intranuclear organization of the cat locus coeruleus neurons was investigated anatomo-physiologically. The locus coeruleus neurons project to the forebrain through the dorsal noradrenergic bundle and to the spinal cord. Horseradish peroxidase, a retrograde tracer, was pressure-injected into either the dorsal noradrenergic bundle or the ventrolateral funiculus of the high cervical cord (C1-C2). The cats (n = 12) were killed after a 2- or 3-day survival period. The frontal sections (100 micron) throughout the locus coeruleus were observed by light microscope after carrying out the diaminobenzidine reaction. The labeled locus coeruleus neurons were located predominantly in the rostral locus coeruleus proper and locus coeruleus alpha when horseradish peroxidase was injected into the dorsal noradrenergic bundle, whereas they were predominantly located in the caudal locus coeruleus alpha and subcoeruleus when horseradish peroxidase was injected into the spinal cord. In the electrophysiological experiments, cats (n = 30) were anesthetized with alpha-chloralose and two stimulating electrodes were placed stereotaxically in the dorsal noradrenergic bundle and the ipsilateral ventrolateral funiculus of the high cervical cord (C1-C2), respectively. Monophasic square-wave pulses (2.5 Hz, 100 microsecond duration, 800 microA) were delivered. A recording glass electrode, filled with 2 M NaCl saturated with Fast Green, was placed in the locus coeruleus. Neurons with different conduction velocities, which were evoked by the antidromic stimulation of the dorsal noradrenergic bundle and spinal cord, were verified in the locus coeruleus and the adjacent areas. The slow conductive neurons with a conduction velocity of less than 1 m/s had a slow firing rate (1.6 +/- 0.9/s). They were located predominantly in the rostral locus coeruleus proper and locus coeruleus alpha by the dorsal noradrenergic bundle stimulation. From the anatomical and electrophysiological experimental results, it was concluded that the conduction velocities of the horseradish peroxidase-labeled neurons observed in locus coeruleus proper and locus coeruleus alpha were mostly slow and less than 1 m/s. Most of the slow conductive neurons were considered to be noradrenergic. Neurons evoked antidromically by both the dorsal noradrenergic bundle and spinal cord stimulation were not observed.
Collapse
Affiliation(s)
- T Nakazato
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Fung SJ, Barnes CD. Membrane excitability changes in hindlimb motoneurons induced by stimulation of the locus coeruleus in cats. Brain Res 1987; 402:230-42. [PMID: 3828795 DOI: 10.1016/0006-8993(87)90029-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present analysis describes the cellular mechanisms underlying the heightened membrane excitability of hindlimb flexor and extensor motoneurons upon stimulation of the locus coeruleus (LC) in unanesthetized, decerebrate cats. In a total of 73 cells, brief train stimuli to the LC at 50-300 microA intensity evoked one of 4 patterns of motoneuronal responses: a simple excitatory postsynaptic potential (EPSP) with weak trailing depolarization, a double-peak EPSP, an EPSP succeeded by a weak hyperpolarization, or a slow rising EPSP. As the initial dominant EPSP was a consistent finding among all cells and the ensuing potentials were variable in polarity, quantitative characterization was focused on the initial EPSP only. In all cells tested (n = 11), the LC-EPSP was accompanied by a decrease in input resistance. The excitatory LC action was further demonstrated by the consistent (n = 25 cells) motoneuron rheobase decrease when the latter was measured coincident with the summit of an LC-EPSP. Furthermore, the time course of the single-spike afterhyperpolarization became shortened during the LC conditioning stimuli (n = 16 motoneurons). Our data show that the descending LC action on motoneurons is typified by an EPSP accompanied by a net decrease in input resistance as well as a concurrent increase in motoneuron electrical excitability.
Collapse
|
22
|
Sripanidkulchai K, Wyss JM. Two rapid methods of counterstaining fluorescent dye tracer containing sections without reducing the fluorescence. Brain Res 1986; 397:117-29. [PMID: 2432986 DOI: 10.1016/0006-8993(86)91375-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method is described for counterstaining neural tissue containing cells that are retrogradely labeled by fluorescent dyes or horseradish peroxidase (HRP). Specifically, protocols are detailed for the combined use of the tracers with Methylene blue for a Nissl stain or with silver methods for the detection of acetylcholine esterase. The usefulness of these techniques is evaluated in relation to cortico-cortico and thalamocortico projections. The findings indicate that the methods do not mask the labeling of the most sensitive fluorescent dyes or by HRP. Only the yellow dyes are significantly affected by the Methylene blue counterstain. Further, Fast blue labeling in neurons is not significantly diminished by the Bodian fiber stain. The effect of coverslipping sections containing fluorescent dye labeled cells also was evaluated and found to significantly extend the life of the labeling while not reducing the sensitivity. Thus the two counterstaining techniques provide excellent structural information, do not seriously affect tracer labeling and have few of the disadvantages common to other counterstaining methods.
Collapse
|