1
|
Arkhipov A, Zhilyakov N, Sibgatullina G, Nevsky E, Bukharaeva EA, Petrov AM. Adrenergic Modulation of Acetylcholine Release at the Mouse Neuromuscular Junctions of Fast-Twitch Skeletal Muscle. Neurochem Res 2025; 50:162. [PMID: 40353941 DOI: 10.1007/s11064-025-04415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The sympathoadrenal system functions as an adaptive and trophic system, ensuring increased vitality in humans and animals. Recent findings suggest that, in addition to its effects on muscle tissue, neuromuscular junctions (NMJs) may represent an important target for action of sympathetic mediators. Here, we presented experimental data on neurotransmitter release modulation by adrenergic ligands at the NMJs of mouse fast-twitch skeletal muscle levator auris longus. Adrenaline (but not noradrenaline) increased both spontaneous and evoked acetylcholine (ACh) release. This effect of adrenaline was accompanied by an increase in action potential-elicited Ca2+ entry into motor nerve terminals. Blockage of adenylate cyclase and protein kinase A (but not Na, K-ATPase) prevented the facilitatory effect of adrenaline on ACh release. Sympathetic nerves as well as immunoexpression of α1-, α2- and β1-, β2-adrenoceptors (ARs) were revealed in close proximity to the NMJs. Agonists of α2- and β1-ARs had no marked presynaptic effects. α1-AR activation reduced spontaneous and evoked ACh release in a phospholipase A2 and protein kinase C-dependent manner. Effects of β2-AR activation were dependent on the type of agonist: Procaterol decreased both ACh release and Ca2+ entry into the nerve terminals, whereas fenoterol promoted ACh release in a Gi protein-dependent manner. Thus, synaptic transmission in the "fast" NMJs had specific features of adrenergic regulation engaging Gi protein, adenylyl cyclase, phospholipase A2, protein kinases A and C. The positive effect of natural agonist adrenaline was reproduced only by β2-AR activation with fenoterol, but not α1-, α2-, β1-agonists and β2-agonist procaterol.
Collapse
Affiliation(s)
- Arsenii Arkhipov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan, Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Nikita Zhilyakov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan, Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Guzel Sibgatullina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan, Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Egor Nevsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan, Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Ellya A Bukharaeva
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan, Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111.
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan, Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111.
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012.
| |
Collapse
|
2
|
Arkhipov AY, Fedorov NS, Nurullin LF, Khabibrakhmanov AN, Mukhamedyarov MA, Samigullin DV, Malomouzh AI. Activation of TRPV1 Channels Inhibits the Release of Acetylcholine and Improves Muscle Contractility in Mice. Cell Mol Neurobiol 2023; 43:4157-4172. [PMID: 37689594 PMCID: PMC11407716 DOI: 10.1007/s10571-023-01403-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.
Collapse
Affiliation(s)
- Arsenii Y Arkhipov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008
| | - Leniz F Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- Kazan State Medical University, 49 Butlerova Street, Kazan, Russia, 420012
| | | | | | - Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, 2/31 Lobachevsky Street, Box 261, Kazan, Russia, 420111.
- A.N. Tupolev Kazan National Research Technical University, 10, K. Marx Street, Kazan, Russia, 420111.
| |
Collapse
|
3
|
Bermedo-García F, Zelada D, Martínez E, Tabares L, Henríquez JP. Functional regeneration of the murine neuromuscular synapse relies on long-lasting morphological adaptations. BMC Biol 2022; 20:158. [PMID: 35804361 PMCID: PMC9270767 DOI: 10.1186/s12915-022-01358-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Background In a broad variety of species, muscle contraction is controlled at the neuromuscular junction (NMJ), the peripheral synapse composed of a motor nerve terminal, a muscle specialization, and non-myelinating terminal Schwann cells. While peripheral nerve damage leads to successful NMJ reinnervation in animal models, muscle fiber reinnervation in human patients is largely inefficient. Interestingly, some hallmarks of NMJ denervation and early reinnervation in murine species, such as fragmentation and poly-innervation, are also phenotypes of aged NMJs or even of unaltered conditions in other species, including humans. We have reasoned that rather than features of NMJ decline, such cellular responses could represent synaptic adaptations to accomplish proper functional recovery. Here, we have experimentally tackled this idea through a detailed comparative study of the short- and long-term consequences of irreversible (chronic) and reversible (partial) NMJ denervation in the convenient cranial levator auris longus muscle. Results Our findings reveal that irreversible muscle denervation results in highly fragmented postsynaptic domains and marked ectopic acetylcholine receptor clustering along with significant terminal Schwann cells sprouting and progressive detachment from the NMJ. Remarkably, even though reversible nerve damage led to complete reinnervation after 11 days, we found that more than 30% of NMJs are poly-innervated and around 65% of postsynaptic domains are fragmented even 3 months after injury, whereas synaptic transmission is fully recovered two months after nerve injury. While postsynaptic stability was irreversibly decreased after chronic denervation, this parameter was only transiently affected by partial NMJ denervation. In addition, we found that a combination of morphometric analyses and postsynaptic stability determinations allows discriminating two distinct forms of NMJ fragmentation, stable-smooth and unstable-blurred, which correlate with their regeneration potential. Conclusions Together, our data unveil that reversible nerve damage imprints a long-lasting reminiscence in the NMJ that results in the rearrangement of its cellular components. Instead of being predictive of NMJ decline, these traits may represent an efficient adaptive response for proper functional recovery. As such, these features are relevant targets to be considered in strategies aimed to restore motor function in detrimental conditions for peripheral innervation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01358-4.
Collapse
Affiliation(s)
- Francisca Bermedo-García
- Laboratory of Neuromuscular Studies (NeSt Lab), Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Diego Zelada
- Laboratory of Neuromuscular Studies (NeSt Lab), Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Esperanza Martínez
- Laboratory of Neuromuscular Studies (NeSt Lab), Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Juan Pablo Henríquez
- Laboratory of Neuromuscular Studies (NeSt Lab), Group for the Study of Developmental Processes (GDeP), Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Zelada D, Barrantes FJ, Henríquez JP. Lithium causes differential effects on postsynaptic stability in normal and denervated neuromuscular synapses. Sci Rep 2021; 11:17285. [PMID: 34446751 PMCID: PMC8390761 DOI: 10.1038/s41598-021-96708-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022] Open
Abstract
Lithium chloride has been widely used as a therapeutic mood stabilizer. Although cumulative evidence suggests that lithium plays modulatory effects on postsynaptic receptors, the underlying mechanism by which lithium regulates synaptic transmission has not been fully elucidated. In this work, by using the advantageous neuromuscular synapse, we evaluated the effect of lithium on the stability of postsynaptic nicotinic acetylcholine receptors (nAChRs) in vivo. We found that in normally innervated neuromuscular synapses, lithium chloride significantly decreased the turnover of nAChRs by reducing their internalization. A similar response was observed in CHO-K1/A5 cells expressing the adult muscle-type nAChRs. Strikingly, in denervated neuromuscular synapses, lithium led to enhanced nAChR turnover and density by increasing the incorporation of new nAChRs. Lithium also potentiated the formation of unstable nAChR clusters in non-synaptic regions of denervated muscle fibres. We found that denervation-dependent re-expression of the foetal nAChR γ-subunit was not altered by lithium. However, while denervation inhibits the distribution of β-catenin within endplates, lithium-treated fibres retain β-catenin staining in specific foci of the synaptic region. Collectively, our data reveal that lithium treatment differentially affects the stability of postsynaptic receptors in normal and denervated neuromuscular synapses in vivo, thus providing novel insights into the regulatory effects of lithium on synaptic organization and extending its potential therapeutic use in conditions affecting the peripheral nervous system.
Collapse
Affiliation(s)
- Diego Zelada
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, CMA Bio-Bio, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Francisco J Barrantes
- Pontificia Universidad Católica Argentina (UCA)-Scientific and Technological Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, CMA Bio-Bio, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
5
|
Zhilyakov N, Arkhipov A, Malomouzh A, Samigullin D. Activation of Neuronal Nicotinic Receptors Inhibits Acetylcholine Release in the Neuromuscular Junction by Increasing Ca 2+ Flux through Ca v1 Channels. Int J Mol Sci 2021; 22:9031. [PMID: 34445737 PMCID: PMC8396429 DOI: 10.3390/ijms22169031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cholinergic neurotransmission is a key signal pathway in the peripheral nervous system and in several branches of the central nervous system. Despite the fact that it has been studied extensively for a long period of time, some aspects of its regulation still have not yet been established. One is the relationship between the nicotine-induced autoregulation of acetylcholine (ACh) release with changes in the concentration of presynaptic calcium levels. The mouse neuromuscular junction of m. Levator Auris Longus was chosen as the model of the cholinergic synapse. ACh release was assessed by electrophysiological methods. Changes in calcium transients were recorded using a calcium-sensitive dye. Nicotine hydrogen tartrate salt application (10 μM) decreased the amount of evoked ACh release, while the calcium transient increased in the motor nerve terminal. Both of these effects of nicotine were abolished by the neuronal ACh receptor antagonist dihydro-beta-erythroidine and Cav1 blockers, verapamil, and nitrendipine. These data allow us to suggest that neuronal nicotinic ACh receptor activation decreases the number of ACh quanta released by boosting calcium influx through Cav1 channels.
Collapse
Affiliation(s)
- Nikita Zhilyakov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Arsenii Arkhipov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Artem Malomouzh
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
- Department of Radiophotonics and Microwave Technologies, Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University Named after A.N. Tupolev–KAI”, 420111 Kazan, Russia
| |
Collapse
|
6
|
Villarroel-Campos D, Schiavo G, Sleigh JN. Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle. J Anat 2021; 241:1108-1119. [PMID: 34121181 PMCID: PMC9558155 DOI: 10.1111/joa.13478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Analysis of rodent muscles affords an opportunity to glean key insights into neuromuscular development and the detrimental impact of disease‐causing genetic mutations. Muscles of the distal leg, for instance the gastrocnemius and tibialis anterior, are commonly used in such studies with mice and rats. However, thin and flat muscles, which can be dissected, processed and imaged without major disruption to muscle fibres and nerve‐muscle contacts, are more suitable for accurate and detailed analyses of the peripheral motor nervous system. One such wholemount muscle is the predominantly fast twitch epitrochleoanconeus (ETA), which is located in the upper forelimb, innervated by the radial nerve, and contains relatively large and uniformly flat neuromuscular junctions (NMJs). To facilitate incorporation of the ETA into the experimental toolkit of the neuromuscular disease field, here, we describe a simple method for its rapid isolation (<5 min), supported by high‐resolution videos and step‐by‐step images. Furthermore, we outline how the ETA can be imaged in live, anaesthetised mice, to enable examination of dynamic cellular processes occurring at the NMJ and within intramuscular axons, including transport of organelles, such as mitochondria and signalling endosomes. Finally, we present reference data on wild‐type ETA fibre‐type composition in young adult, male C57BL6/J mice. Comparative neuroanatomical studies of different muscles in rodent models of disease can generate critical insights into pathogenesis and pathology; dissection of the wholemount ETA provides the possibility to diversify the repertoire of muscles analysed for this endeavour.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| |
Collapse
|
7
|
Arkhipov AY, Samigullin DV, Semina II, Malomouzh AI. Functional Assessment of Peripheral
Cholinergic Neurotransmission in Rats with Fetal Valproate Syndrome. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ojeda J, Bermedo-García F, Pérez V, Mella J, Hanna P, Herzberg D, Tejero R, López-Manzaneda M, Tabares L, Henríquez JP. The Mouse Levator Auris Longus Muscle: An Amenable Model System to Study the Role of Postsynaptic Proteins to the Maintenance and Regeneration of the Neuromuscular Synapse. Front Cell Neurosci 2020; 14:225. [PMID: 32848618 PMCID: PMC7405910 DOI: 10.3389/fncel.2020.00225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse that controls the coordinated movement of many organisms. The NMJ is also an archetypical model to study synaptic morphology and function. As the NMJ is the primary target of neuromuscular diseases and traumatic injuries, the establishment of suitable models to study the contribution of specific postsynaptic muscle-derived proteins on NMJ maintenance and regeneration is a permanent need. Considering the unique experimental advantages of the levator auris longus (LAL) muscle, here we present a method allowing for efficient electroporation-mediated gene transfer and subsequent detailed studies of the morphology and function of the NMJ and muscle fibers. Also, we have standardized efficient facial nerve injury protocols to analyze LAL muscle NMJ degeneration and regeneration. Our results show that the expression of a control fluorescent protein does not alter either the muscle structural organization, the apposition of the pre- and post-synaptic domains, or the functional neurotransmission parameters of the LAL muscle NMJs; in turn, the overexpression of MuSK, a major regulator of postsynaptic assembly, induces the formation of ectopic acetylcholine receptor clusters. Our NMJ denervation experiments showed complete reinnervation of LAL muscle NMJs four weeks after facial nerve injury. Together, these experimental strategies in the LAL muscle constitute effective methods to combine protein expression with accurate analyses at the levels of structure, function, and regeneration of the NMJ.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile.,Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain.,Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Bermedo-García
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Viviana Pérez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Jessica Mella
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Patricia Hanna
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Daniel Herzberg
- Veterinary Sciences Clinic, Universidad de Concepción, Concepción, Chile
| | - Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Mario López-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
αM-Conotoxin MIIIJ Blocks Nicotinic Acetylcholine Receptors at Neuromuscular Junctions of Frog and Fish. Toxins (Basel) 2020; 12:toxins12030197. [PMID: 32245200 PMCID: PMC7150935 DOI: 10.3390/toxins12030197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
We report the discovery and functional characterization of αM-Conotoxin MIIIJ, a peptide from the venom of the fish-hunting cone snail Conus magus. Injections of αM-MIIIJ induced paralysis in goldfish (Carassius auratus) but not mice. Intracellular recording from skeletal muscles of fish (C. auratus) and frog (Xenopus laevis) revealed that αM-MIIIJ inhibited postsynaptic nicotinic acetylcholine receptors (nAChRs) with an IC50 of ~0.1 μM. With comparable potency, αM-MIIIJ reversibly blocked ACh-gated currents (IACh) of voltage-clamped X. laevis oocytes exogenously expressing nAChRs cloned from zebrafish (Danio rerio) muscle. αM-MIIIJ also protected against slowly-reversible block of IACh by α-bungarotoxin (α-BgTX, a snake neurotoxin) and α-conotoxin EI (α-EI, from Conus ermineus another fish hunter) that competitively block nAChRs at the ACh binding site. Furthermore, assessment by fluorescence microscopy showed that αM-MIIIJ inhibited the binding of fluorescently-tagged α-BgTX at neuromuscular junctions of X. laevis, C. auratus, and D. rerio. (Note, we observed that αM-MIIIJ can block adult mouse and human muscle nAChRs exogenously expressed in X. laevis oocytes, but with IC50s ~100-times higher than those of zebrafish nAChRs.) Taken together, these results indicate that αM-MIIIJ inhibits muscle nAChRs and furthermore apparently does so by interfering with the binding of ACh to its receptor. Comparative alignments with homologous sequences identified in other fish hunters revealed that αM-MIIIJ defines a new class of muscle nAChR inhibitors from cone snails.
Collapse
|
10
|
Fu XQ, Peng J, Wang AH, Luo ZG. Tumor necrosis factor alpha mediates neuromuscular synapse elimination. Cell Discov 2020; 6:9. [PMID: 32140252 PMCID: PMC7051980 DOI: 10.1038/s41421-020-0143-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
During the development of mammalian neuromuscular junction (NMJ), the original supernumerary axon inputs are gradually eliminated, finally leaving each muscle fiber innervated by a single axon terminal. However, the molecular cues that mediate the elimination of redundant axon inputs remain unclear. Here we show that tumor necrosis factor-α (TNFα) expressed in postsynaptic muscle cells plays an important role in presynaptic axonal elimination at the NMJ. We found that intramuscular injection of TNFα into the levator auris longus (LAL) muscles caused disassociation of presynaptic nerve terminals from the postsynaptic acetylcholine receptor (AChR) clusters. By contrast, genetic ablation of TNFα globally or specifically in skeletal muscle cells, but not in motoneurons or Schwann cells, delayed the synaptic elimination. Moreover, ablation of TNFα in muscle cells attenuated the tendency of activity-dependent competition in a motoneuron-muscle coculture system. These results suggest a role of postsynaptic TNFα in the elimination of redundant synaptic inputs.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Jian Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
- State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ai-Hua Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| |
Collapse
|
11
|
Diuba AV, Samigullin DV, Kaszas A, Zonfrillo F, Malkov A, Petukhova E, Casini A, Arosio D, Esclapez M, Gross CT, Bregestovski P. CLARITY analysis of the Cl/pH sensor expression in the brain of transgenic mice. Neuroscience 2019; 439:181-194. [PMID: 31302264 DOI: 10.1016/j.neuroscience.2019.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl- and pH. This construct, called ClopHensor, consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a red fluorescent protein (DsRedm). Stimulation of hippocampal Schaffer collaterals proved that the sensor is functionally active. To reveal the expression pattern of ClopHensor across the brain of Thy1::ClopHensor mice, we obtained transparent brain samples using the CLARITY method and imaged them with confocal and light-sheet microscopy. We then developed a semi-quantitative approach to identify brain structures with high intrinsic sensor fluorescence. This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm E2GFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl-/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Artem V Diuba
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Kazan, Russia; Department of Radiophotonics and microwave technologies, Kazan National Research Technical University named after A.N.Tupolev, 420111, Kazan, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University,420111, Kazan, Russia
| | - Attila Kaszas
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix- Marseille Université, 13005 Marseille, France
| | - Francesca Zonfrillo
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, ITALY
| | - Anton Malkov
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan Medical State University, Kazan, Russia
| | | | - Daniele Arosio
- Institute of Biophysics, National Research Council of Italy, 38123 Trento, Italy
| | - Monique Esclapez
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France
| | - Cornelius T Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, ITALY
| | - Piotr Bregestovski
- Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; Institute of Neurosciences, Kazan Medical State University, Kazan, Russia.
| |
Collapse
|
12
|
Molgó J, Schlumberger S, Sasaki M, Fuwa H, Louzao MC, Botana LM, Servent D, Benoit E. Gambierol Potently Increases Evoked Quantal Transmitter Release and Reverses Pre- and Post-Synaptic Blockade at Vertebrate Neuromuscular Junctions. Neuroscience 2019; 439:106-116. [PMID: 31255710 DOI: 10.1016/j.neuroscience.2019.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/25/2022]
Abstract
Gambierol is a marine polycyclic ether toxin, first isolated from cultured Gambierdiscus toxicus dinoflagellates collected in French Polynesia. The chemical synthesis of gambierol permitted the analyses of its mode of action which includes the selective inhibition of voltage-gated K+ (KV) channels. In the present study we investigated the action of synthetic gambierol at vertebrate neuromuscular junctions using conventional techniques. Gambierol was studied on neuromuscular junctions in which muscle nicotinic ACh receptors have been blocked with d-tubocurarine (postsynaptic block), or in junctions in which quantal ACh release has been greatly reduced by a low Ca2+-high Mg2+ medium or by botulinum neurotoxin type-A (BoNT/A) (presynaptic block). Results show that nanomolar concentrations of gambierol inhibited the fast K+ current and prolonged the duration of the presynaptic action potential in motor nerve terminals, as revealed by presynaptic focal current recordings, increased stimulus-evoked quantal content in junctions blocked by high Mg2+-low Ca2+ medium, and by BoNT/A, reversed the postsynaptic block produced by d-tubocurarine and increased the transient Ca2+ signals in response to nerve-stimulation (1-10 Hz) in nerve terminals loaded with fluo-3/AM. The results suggest that gambierol, which on equimolar basis is more potent than 3,4-diaminopyridine, can have potential application in pathologies in which it is necessary to antagonize pre- or post-synaptic neuromuscular block, or both. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Jordi Molgó
- CEA, Institut des sciences du vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines, Université Paris-Saclay, bâtiment 152, 91191 Gif sur Yvette, France; Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS / Université Paris-Sud, CNRS, Gif sur Yvette, France.
| | - Sébastien Schlumberger
- Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS / Université Paris-Sud, CNRS, Gif sur Yvette, France
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Denis Servent
- CEA, Institut des sciences du vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines, Université Paris-Saclay, bâtiment 152, 91191 Gif sur Yvette, France
| | - Evelyne Benoit
- CEA, Institut des sciences du vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines, Université Paris-Saclay, bâtiment 152, 91191 Gif sur Yvette, France; Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS / Université Paris-Sud, CNRS, Gif sur Yvette, France
| |
Collapse
|
13
|
Reorganization of Septins Modulates Synaptic Transmission at Neuromuscular Junctions. Neuroscience 2019; 404:91-101. [PMID: 30738855 DOI: 10.1016/j.neuroscience.2019.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Septins (Sept) are highly conserved Guanosine-5'-triphosphate (GTP)-binding cytoskeletal proteins involved in neuronal signaling in the central nervous system but their involvement in signal transmission in peripheral synapses remains unclear. Sept5 and Sept9 proteins were detected in mouse peripheral neuromuscular junctions by immunofluorescence with a greater degree of co-localization with presynaptic than postsynaptic membranes. Preincubation of neuromuscular junction preparations with the inhibitor of Sept dynamics, forchlorfenuron (FCF), decreased co-localization of Sept with presynaptic membranes. FCF introduced ex vivo or in vivo had no effect on the amplitude of the spontaneous endplate currents (EPCs), indicating the absence of postsynaptic effects of FCF. However, FCF decreased acetylcholine (ACh) quantal release in response to nerve stimulation, reduced the amplitude of evoked quantal currents and decreased the number of quanta with long synaptic delays, demonstrating the presynaptic action of FCF. Nevertheless, FCF had no effect on the amplitude of calcium transient in nerve terminals, as detected by calcium-sensitive dye, and slightly decreased the ratio of the second response amplitude to the first one in paired-pulse experiments. These results suggest that FCF-induced decrease in ACh quantal secretion is not due to a decrease in Ca2+ influx but is likely related to the impairment of later stages occurring after Ca2+ entry, such as trafficking, docking or membrane fusion of synaptic vesicles. Therefore, Sept9 and Sept5 are abundantly expressed in presynaptic membranes, and disruption of Sept dynamics suppresses the evoked synchronous and delayed asynchronous quantal release of ACh, strongly suggesting an important role of Sept in the regulation of neurotransmission in peripheral synapses.
Collapse
|
14
|
Margalef R, Sisquella M, Bosque M, Romeu C, Mayoral O, Monterde S, Priego M, Guerra-Perez R, Ortiz N, Tomàs J, Santafe MM. Experimental myofascial trigger point creation in rodents. J Appl Physiol (1985) 2018; 126:160-169. [PMID: 30307819 DOI: 10.1152/japplphysiol.00248.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myofascial pain syndrome is one of the most common forms of muscle pain. In this syndrome, pain is originated by the so-called trigger points, which consists of a set of palpable contraction knots in the muscle. It has been proposed that a high, spontaneous neurotransmission may be involved in the generation of these contraction knots. To confirm this hypothesis, we exposed mouse muscles to an anticholinesterasic agent to increase the neurotransmision in the synaptic cleft in two different conditions, in vivo and ex vivo experiments. Using intracellular recordings, a sharp increase in the spontaneous neurotransmission in the levator auris longus muscle and a lower increase in the diaphragm muscle could be seen. Likewise, electromyography recordings reveal an elevated endplate noise in gastrocnemius muscle of treated animals. These changes are associated with structural changes such as abundant neuromuscular contracted zones observed by rhodaminated α-bungarotoxin and the presence of abundant glycosaminoglycans around the contraction knots, as shown by Alcian PAS staining. In a second set of experiments, we aimed at demonstrating that the increases in the neurotransmission reproduced most of the clinical signs associated to a trigger point. We exposed rats to the anticholinesterase agent neostigmine, and 30 min afterward we observed the presence of palpable taut bands, the echocardiographic presence of contraction knots, and local twitch responses upon needle stimulation. In summary, we demonstrated that increased neurotransmission induced trigger points in both rats and mice, as evidenced by glycosaminoglycans around the contraction zones as a novel hallmark of this pathology. NEW & NOTEWORTHY In rodents, when neostigmine was injected subcutaneously, the neuromuscular neurotransmission increased, and several changes can be observed: an elevated endplate noise compared with normal endplate noise, as evidenced by electromyographyc recording; many muscular fibers with contraction knots (narrower sarcomeres and locally thickened muscle fiber) surrounded by infiltration of connective tissue like glycosaminoglycans molecules; and palpable taut bands and local twitch responses upon needle stimulation. Several of these signs are also observed in humans with muscle pain.
Collapse
Affiliation(s)
- Ramon Margalef
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | - Marc Sisquella
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | - Marc Bosque
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | - Clara Romeu
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | - Orlando Mayoral
- Physical Therapy Unit, Hospital Provincial de Toledo , Toledo , Spain
| | - Sonia Monterde
- Unit of Physiotherapy, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Centre Tecnològic de Nutrició i Salut Avinguda Universitat, Reus, Spain
| | - Mercedes Priego
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | | | - Nicolau Ortiz
- Neurology Section, Department of Medicine, Sant Joan University Hospital, Reus, Spain
| | - Josep Tomàs
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | - Manel M Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| |
Collapse
|
15
|
Burke SRA, Reed EJ, Romer SH, Voss AA. Levator Auris Longus Preparation for Examination of Mammalian Neuromuscular Transmission Under Voltage Clamp Conditions. J Vis Exp 2018. [PMID: 29782004 DOI: 10.3791/57482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This protocol describes a technique to record synaptic transmission from the neuromuscular junction under current-clamp and voltage-clamp conditions. An ex vivo preparation of the levator auris longus (LAL) is used because it is a thin muscle that provides easy visualization of the neuromuscular junction for microelectrode impalement at the motor endplate. This method allows for the recording of spontaneous miniature endplate potentials and currents (mEPPs and mEPCs), nerve-evoked endplate potentials and currents (EPPs and EPCs), as well as the membrane properties of the motor endplate. Results obtained from this method include the quantal content (QC), number of vesicle release sites (n), probability of vesicle release (prel), synaptic facilitation and depression, as well as the muscle membrane time constant (τm) and input resistance. Application of this technique to mouse models of human disease can highlight key pathologies in disease states and help identify novel treatment strategies. By fully voltage-clamping a single synapse, this method provides one of the most detailed analyses of synaptic transmission currently available.
Collapse
Affiliation(s)
| | - Eric J Reed
- Department of Biological Sciences, Wright State University
| | | | - Andrew A Voss
- Department of Biological Sciences, Wright State University;
| |
Collapse
|
16
|
Negro S, Lessi F, Duregotti E, Aretini P, La Ferla M, Franceschi S, Menicagli M, Bergamin E, Radice E, Thelen M, Megighian A, Pirazzini M, Mazzanti CM, Rigoni M, Montecucco C. CXCL12α/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals. EMBO Mol Med 2018; 9:1000-1010. [PMID: 28559442 PMCID: PMC5538331 DOI: 10.15252/emmm.201607257] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12α, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by α-latrotoxin. CXCL12α acts via binding to the neuronal CXCR4 receptor. A CXCL12α-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration in vivo Recombinant CXCL12α in vivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons in vitro These findings indicate that the CXCL12α-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paolo Aretini
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Marco La Ferla
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Sara Franceschi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | | | - Elisanna Bergamin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
17
|
Pellett S, Bradshaw M, Tepp WH, Pier CL, Whitemarsh RCM, Chen C, Barbieri JT, Johnson EA. The Light Chain Defines the Duration of Action of Botulinum Toxin Serotype A Subtypes. mBio 2018; 9:e00089-18. [PMID: 29588398 PMCID: PMC5874905 DOI: 10.1128/mbio.00089-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is the causative agent of botulism and a widely used pharmaceutical to treat a variety of neurological diseases. BoNTs are 150-kDa protein toxins organized into heavy chain (HC) and light chain (LC) domains linked by a disulfide bond. The HC selectively binds to neurons and aids cell entry of the enzymatically active LC. There are seven immunological BoNT serotypes (A to G); each serotype includes genetic variants, termed subtypes. Only two subtypes, BoNT/A1 and BoNT/B1, are currently used as therapeutics. BoNT serotype A (BoNT/A) subtypes A2 to A8 show distinct potency, duration of action, and pathology relative to BoNT/A1. Specifically, BoNT/A3 possesses shorter duration of action and elicits distinct symptoms in mice at high toxin doses. In this report, we analyzed the roles of LC and HC of BoNT/A3 for duration of action, neuronal cell entry, and mouse pathology by using clostridium-derived recombinant hybrid BoNTs consisting of reciprocal LC and HC (BoNTA1/A3 and BoNTA3/A1). Hybrid toxins were processed in their expression host to a dichain BoNT consisting of LC and HC linked via a disulfide bond. The LC and HC defined BoNT potency in mice and BoNT toxicity for cultured neuronal cells, while the LC defined the duration of BoNT action in cell and mouse models. Protein alignment identified a previously unrecognized region within the LC subtype A3 (LC/A3) relative to the other LC serotype A (LC/A) subtypes (low primary acid homology [LPH]) that correlated to intracellular LC localization. This study shows the utility of recombinant hybrid BoNTs with new therapeutic potential, while remaining sensitive to antitoxins and therapies to native BoNT.IMPORTANCE Botulinum neurotoxins are the most potent protein toxins for humans and potential bioterrorism threats, but they are also widely used as pharmaceuticals. Within the large family of BoNTs, only two subtypes are currently used as pharmaceuticals, with a large number of BoNT subtypes remaining as untapped potential sources for unique pharmaceuticals. Here, two recombinant hybrid toxins were engineered, consisting of domains from two BoNT subtypes that possess distinct duration of action and activity in human neurons and mice. We define the functional domains responsible for BoNT action and demonstrate creation of functional hybrid BoNTs with new therapeutic potential, while remaining sensitive to antitoxins and therapies to native BoNT.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Christina L Pier
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Chen Chen
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
18
|
An animal model of Miller Fisher syndrome: Mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve terminals and activates Schwann cells. Neurobiol Dis 2016; 96:95-104. [PMID: 27597525 DOI: 10.1016/j.nbd.2016.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
Abstract
The neuromuscular junction is a tripartite synapse composed of the presynaptic nerve terminal, the muscle and perisynaptic Schwann cells. Its functionality is essential for the execution of body movements and is compromised in a number of disorders, including Miller Fisher syndrome, a variant of Guillain-Barré syndrome: this autoimmune peripheral neuropathy is triggered by autoantibodies specific for the polysialogangliosides GQ1b and GT1a present in motor axon terminals, including those innervating ocular muscles, and in sensory neurons. Their binding to the presynaptic membrane activates the complement cascade, leading to a nerve degeneration that resembles that caused by some animal presynaptic neurotoxins. Here we have studied the intra- and inter-cellular signaling triggered by the binding and complement activation of a mouse monoclonal anti-GQ1b/GT1a antibody to primary cultures of spinal cord motor neurons and cerebellar granular neurons. We found that a membrane attack complex is rapidly assembled following antibody binding, leading to calcium accumulation, which affects mitochondrial functionality. Consequently, using fluorescent probes specific for mitochondrial hydrogen peroxide, we found that this reactive oxygen species is rapidly produced by mitochondria of damaged neurons, and that it triggers the activation of the MAP kinase pathway in Schwann cells. These results throw light on the molecular and cellular pathogenesis of Miller Fisher syndrome, and may well be relevant to other pathologies of the motor axon terminals, including some subtypes of the Guillain Barré syndrome.
Collapse
|
19
|
Synaptic Deficits at Neuromuscular Junctions in Two Mouse Models of Charcot-Marie-Tooth Type 2d. J Neurosci 2016; 36:3254-67. [PMID: 26985035 DOI: 10.1523/jneurosci.1762-15.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Patients with Charcot-Marie-Tooth Type 2D (CMT2D), caused by dominant mutations in Glycl tRNA synthetase (GARS), present with progressive weakness, consistently in the hands, but often in the feet also. Electromyography shows denervation, and patients often report that early symptoms include cramps brought on by cold or exertion. Based on reported clinical observations, and studies of mouse models of CMT2D, we sought to determine whether weakened synaptic transmission at the neuromuscular junction (NMJ) is an aspect of CMT2D. Quantal analysis of NMJs in two different mouse models of CMT2D (Gars(P278KY), Gars(C201R)), found synaptic deficits that correlated with disease severity and progressed with age. Results of voltage-clamp studies revealed presynaptic defects characterized by: (1) decreased frequency of spontaneous release without any change in quantal amplitude (miniature endplate current), (2) reduced amplitude of evoked release (endplate current) and quantal content, (3) age-dependent changes in the extent of depression in response to repetitive stimulation, and (4) release failures at some NMJs with high-frequency, long-duration stimulation. Drugs that modify synaptic efficacy were tested to see whether neuromuscular performance improved. The presynaptic action of 3,4 diaminopyridine was not beneficial, whereas postsynaptic-acting physostigmine did improve performance. Smaller mutant NMJs with correspondingly fewer vesicles and partial denervation that eliminates some release sites also contribute to the reduction of release at a proportion of mutant NMJs. Together, these voltage-clamp data suggest that a number of release processes, while essentially intact, likely operate suboptimally at most NMJs of CMT2D mice. SIGNIFICANCE STATEMENT We have uncovered a previously unrecognized aspect of axonal Charcot-Marie-Tooth disease in mouse models of CMT2D. Synaptic dysfunction contributes to impaired neuromuscular performance and disease progression. This suggests that drugs which improve synaptic efficacy at the NMJ could be considered in treating the pathophysiology of CMT2D patients.
Collapse
|
20
|
Zhang Z, David G. Stimulation-induced Ca(2+) influx at nodes of Ranvier in mouse peripheral motor axons. J Physiol 2015; 594:39-57. [PMID: 26365250 DOI: 10.1113/jp271207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/03/2015] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS In peripheral myelinated axons of mammalian spinal motor neurons, Ca(2+) influx was thought to occur only in pathological conditions such as ischaemia. Using Ca(2+) imaging in mouse large motor axons, we find that physiological stimulation with trains of action potentials transiently elevates axoplasmic [C(2+)] around nodes of Ranvier. These stimulation-induced [Ca(2+)] elevations require Ca(2+) influx, and are partially reduced by blocking T-type Ca(2+) channels (e.g. mibefradil) and by blocking the Na(+)/Ca(2+) exchanger (NCX), suggesting an important contribution of Ca(2+) influx via reverse-mode NCX activity. Acute disruption of paranodal myelin dramatically increases stimulation-induced [Ca(2+)] elevations around nodes by allowing activation of sub-myelin L-type (nimodipine-sensitive) Ca(2+) channels. The Ca(2+) that enters myelinated motor axons during normal activity is likely to contribute to several signalling pathways; the larger Ca(2+) influx that occurs following demyelination may contribute to the axonal degeneration that occurs in peripheral demyelinating diseases. Activity-dependent Ca(2+) signalling is well established for somata and terminals of mammalian spinal motor neurons, but not for their axons. Imaging of an intra-axonally injected fluorescent [Ca(2+)] indicator revealed that during repetitive action potential stimulation, [Ca(2+)] elevations localized to nodal regions occurred in mouse motor axons from ventral roots, phrenic nerve and intramuscular branches. These [Ca(2+)] elevations (∼ 0.1 μm with stimulation at 50 Hz, 10 s) were blocked by removal of Ca(2+) from the extracellular solution. Effects of pharmacological blockers indicated contributions from both T-type Ca(2+) channels and reverse mode Na(+)/Ca(2+) exchange (NCX). Acute disruption of paranodal myelin (by stretch or lysophosphatidylcholine) increased the stimulation-induced [Ca(2+)] elevations, which now included a prominent contribution from L-type Ca(2+) channels. These results suggest that the peri-nodal axolemma of motor axons includes multiple pathways for stimulation-induced Ca(2+) influx, some active in normally-myelinated axons (T-type channels, NCX), others active only when exposed by myelin disruption (L-type channels). The modest axoplasmic peri-nodal [Ca(2+)] elevations measured in intact motor axons might mediate local responses to axonal activation. The larger [Ca(2+) ] elevations measured after myelin disruption might, over time, contribute to the axonal degeneration observed in peripheral demyelinating neuropathies.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Gavriel David
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.,Neuroscience Program, University of Miami Miller School of Medicine, PO Box 011351, Miami, FL, 33101, USA
| |
Collapse
|
21
|
Linares-Clemente P, Rozas JL, Mircheski J, García-Junco-Clemente P, Martínez-López JA, Nieto-González JL, Vázquez ME, Pintado CO, Fernández-Chacón R. Different dynamin blockers interfere with distinct phases of synaptic endocytosis during stimulation in motoneurones. J Physiol 2015; 593:2867-88. [PMID: 25981717 DOI: 10.1113/jp270112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/29/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin-phospholipid interaction. ABSTRACT Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis steps taking place during stimulation that are susceptible to pharmacological dissection: an initial step, preferentially sensitive to dynasore, that internalizes vesicular components immediately after they are released, and a MiTMAB-sensitive step that internalizes vesicular components pre-existing at the plasma membrane surface. In addition, we report that post-stimulus endocytosis also has several components with different sensitivities to dynasore and MiTMAB.
Collapse
Affiliation(s)
- Pedro Linares-Clemente
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - José L Rozas
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - Josif Mircheski
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - Pablo García-Junco-Clemente
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | - José A Martínez-López
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| | | | - M Eugenio Vázquez
- Departamento Química Orgánica y Centro Singular de Investigación en Química Biolóxica y Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - C Oscar Pintado
- Centro Producción y Experimentación Animal, Universidad de Sevilla, Seville, Spain
| | - Rafael Fernández-Chacón
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, and CIBERNED, Seville, Spain
| |
Collapse
|
22
|
Plomp JJ, Morsch M, Phillips WD, Verschuuren JJGM. Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Exp Neurol 2015; 270:41-54. [PMID: 25620417 DOI: 10.1016/j.expneurol.2015.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Study of the electrophysiological function of the neuromuscular junction (NMJ) is instrumental in the understanding of the symptoms and pathophysiology of myasthenia gravis (MG), an autoimmune disorder characterized by fluctuating and fatigable muscle weakness. Most patients have autoantibodies to the acetylcholine receptor at the NMJ. However, in recent years autoantibodies to other crucial postsynaptic membrane proteins have been found in previously 'seronegative' MG patients. Electromyographical recording of compound and single-fibre muscle action potentials provides a crucial in vivo method to determine neuromuscular transmission failure while ex vivo (miniature) endplate potential recordings can reveal the precise synaptic impairment. Here we will review these electrophysiological methods used to assess NMJ function and discuss their application and typical results found in the diagnostic and experimental study of patients and animal models of the several forms of MG.
Collapse
Affiliation(s)
- Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Marco Morsch
- Motor Neuron Disease Research Group, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
23
|
Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci U S A 2015; 112:E497-505. [PMID: 25605902 DOI: 10.1073/pnas.1417108112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases.
Collapse
|
24
|
Wilhelm BG, Mandad S, Truckenbrodt S, Kröhnert K, Schäfer C, Rammner B, Koo SJ, Claßen GA, Krauss M, Haucke V, Urlaub H, Rizzoli SO. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 2014; 344:1023-8. [PMID: 24876496 DOI: 10.1126/science.1252884] [Citation(s) in RCA: 550] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synaptic vesicle recycling has long served as a model for the general mechanisms of cellular trafficking. We used an integrative approach, combining quantitative immunoblotting and mass spectrometry to determine protein numbers; electron microscopy to measure organelle numbers, sizes, and positions; and super-resolution fluorescence microscopy to localize the proteins. Using these data, we generated a three-dimensional model of an "average" synapse, displaying 300,000 proteins in atomic detail. The copy numbers of proteins involved in the same step of synaptic vesicle recycling correlated closely. In contrast, copy numbers varied over more than three orders of magnitude between steps, from about 150 copies for the endosomal fusion proteins to more than 20,000 for the exocytotic ones.
Collapse
Affiliation(s)
- Benjamin G Wilhelm
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany. International Max Planck Research School Neurosciences, 37077 Göttingen, Germany
| | - Sunit Mandad
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sven Truckenbrodt
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany. International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
| | - Katharina Kröhnert
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Christina Schäfer
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Seong Joo Koo
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Gala A Claßen
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Michael Krauss
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz Institut für Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany. Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
25
|
Je HS, Yang F, Ji Y, Potluri S, Fu XQ, Luo ZG, Nagappan G, Chan JP, Hempstead B, Son YJ, Lu B. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J Neurosci 2013; 33:9957-62. [PMID: 23761891 PMCID: PMC3682390 DOI: 10.1523/jneurosci.0163-13.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/08/2013] [Accepted: 05/05/2013] [Indexed: 11/21/2022] Open
Abstract
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.
Collapse
Affiliation(s)
- H Shawn Je
- Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, and Genes, Cognition and Psychosis Program, National Institute of Mental Health, Bethesda, Maryland 20892-3714, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Thomson SR, Nahon JE, Mutsaers CA, Thomson D, Hamilton G, Parson SH, Gillingwater TH. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy. PLoS One 2012; 7:e52605. [PMID: 23285108 PMCID: PMC3527597 DOI: 10.1371/journal.pone.0052605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/20/2012] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.
Collapse
Affiliation(s)
- Sophie R Thomson
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Garcia N, Santafé MM, Tomàs M, Priego M, Obis T, Lanuza MA, Besalduch N, Tomàs J. Exogenous ciliary neurotrophic factor (CNTF) reduces synaptic depression during repetitive stimulation. J Peripher Nerv Syst 2012; 17:312-23. [DOI: 10.1111/j.1529-8027.2012.00419.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Motorneurons Require Cysteine String Protein-α to Maintain the Readily Releasable Vesicular Pool and Synaptic Vesicle Recycling. Neuron 2012; 74:151-65. [DOI: 10.1016/j.neuron.2012.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2012] [Indexed: 11/22/2022]
|
29
|
Talbot JD, David G, Barrett EF, Barrett JN. Calcium dependence of damage to mouse motor nerve terminals following oxygen/glucose deprivation. Exp Neurol 2011; 234:95-104. [PMID: 22206924 DOI: 10.1016/j.expneurol.2011.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/06/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Motor nerve terminals are especially sensitive to an ischemia/reperfusion stress. We applied an in vitro model of this stress, oxygen/glucose deprivation (OGD), to mouse neuromuscular preparations to investigate how Ca(2+) contributes to stress-induced motor terminal damage. Measurements using an ionophoretically-injected fluorescent [Ca(2+)] indicator demonstrated an increase in intra-terminal [Ca(2+)] following OGD onset. When OGD was terminated within 20-30min of the increase in resting [Ca(2+)], these changes were sometimes reversible; in other cases [Ca(2+)] remained high and the terminal degenerated. Endplate innervation was assessed morphometrically following 22min OGD and 120min reoxygenation (32.5°C). Stress-induced motor terminal degeneration was Ca(2+)-dependent. Median post-stress endplate occupancy was only 26% when the bath contained the normal 1.8mM Ca(2+), but increased to 81% when Ca(2+) was absent. Removal of Ca(2+) only during OGD was more protective than removal of Ca(2+) only during reoxygenation. Post-stress endplate occupancy was partially preserved by pharmacological inhibition of various routes of Ca(2+) entry into motor terminals, including voltage-dependent Ca(2+) channels (ω-agatoxin-IVA, nimodipine) and the plasma membrane Na(+)/Ca(2+) exchanger (KB-R7943). Inhibition of a Ca(2+)-dependent protease with calpain inhibitor VI was also protective. These results suggest that most of the OGD-induced motor terminal damage is Ca(2+)-dependent, and that inhibition of Ca(2+) entry or Ca(2+)-dependent proteolysis can reduce this damage. There was no significant difference between the response of wild-type and presymptomatic superoxide dismutase 1 G93A mutant terminals to OGD, or in their response to the protective effect of the tested drugs.
Collapse
Affiliation(s)
- Janet D Talbot
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL 33101, USA.
| | | | | | | |
Collapse
|
30
|
Ribchester RR. Quantal Analysis of Endplate Potentials in Mouse Flexor Digitorum Brevis Muscle. ACTA ACUST UNITED AC 2011; 1:429-44. [PMID: 26068999 DOI: 10.1002/9780470942390.mo110127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The isolated flexor digitorum brevis (FDB) muscle from mice is extremely well suited to rapid acquisition of data and analysis of neurotransmitter release and action at neuromuscular junctions, because the muscle and its tibial nerve supply are simple to dissect and its constituent muscle fibers are short (<1 mm) and isopotential along their length. Methods are described here for dissection of FDB, stimulation of the tibial nerve, microelectrode recording from individual muscle fibers, and quantal analysis of endplate potentials (EPPs) and miniature endplate potentials (MEPPs). Curr. Protoc. Mouse Biol. 1:429-444 © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Richard R Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
31
|
Wright M, Kim A, Son YJ. Subcutaneous administration of muscarinic antagonists and triple-immunostaining of the levator auris longus muscle in mice. J Vis Exp 2011:3124. [PMID: 21931291 DOI: 10.3791/3124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hind limb muscles of rodents, such as gastrocnemius and tibialis anterior, are frequently used for in vivo pharmacological studies of the signals essential for the formation and maintenance of mammalian NMJs. However, drug penetration into these muscles after subcutaneous or intramuscular administration is often incomplete or uneven and many NMJs can remain unaffected. Although systemic administration with devices such as mini-pumps can improve the spatiotemporal effects, the invasive nature of this approach can cause confounding inflammatory responses and/or direct muscle damage. Moreover, complete analysis of the NMJs in a hind limb muscle is challenging because it requires time-consuming serial sectioning and extensive immunostaining. The mouse LAL is a thin, flat sheet of muscle located superficially on the dorsum of the neck. It is a fast-twitch muscle that functions to move the pinna. It contains rostral and caudal portions that originate from the midline of the cranium and extend laterally to the cartilaginous portion of each pinna. The muscle is supplied by a branch of the facial nerve that projects caudally as it exits the stylomastoid foramen. We and others have found LAL to be a convenient preparation that offers advantages for the investigation of both short and long-term in vivo effects of drugs on NMJs and muscles. First, its superficial location facilitates multiple local applications of drugs under light anesthesia. Second, its thinness (2-3 layers of muscle fibers) permits visualization and analysis of almost all the NMJs within the muscle. Third, the ease of dissecting it with its nerve intact together with the pattern of its innervation permits supplementary electrophysiological analysis in vitro. Last, and perhaps most importantly, a small applied volume (-50 μl) easily covers the entire muscle surface, provides a uniform and prolonged exposure of all its NMJs to the drug and eliminates the need for a systemic approach.
Collapse
|
32
|
Garcia N, Tomàs M, Santafe MM, Lanuza MA, Besalduch N, Tomàs J. Blocking p75NTR receptors alters polyinnervationz of neuromuscular synapses during development. J Neurosci Res 2011; 89:1331-41. [DOI: 10.1002/jnr.22620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/20/2010] [Accepted: 01/13/2011] [Indexed: 01/17/2023]
|
33
|
Nguyen KT, Barrett JN, García-Chacón L, David G, Barrett EF. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice. Neurobiol Dis 2011; 42:381-90. [PMID: 21310237 PMCID: PMC3079773 DOI: 10.1016/j.nbd.2011.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/17/2010] [Accepted: 01/28/2011] [Indexed: 11/20/2022] Open
Abstract
Mitochondria in motor nerve terminals temporarily sequester large Ca(2+) loads during repetitive stimulation. In wild-type mice this Ca(2+) uptake produces a small (<5 mV), transient depolarization of the mitochondrial membrane potential (Ψ(m), motor nerve stimulated at 100 Hz for 5s). We demonstrate that this stimulation-induced Ψ(m) depolarization attains much higher amplitudes in motor terminals of symptomatic mice expressing the G93A or G85R mutation of human superoxide dismutase 1 (SOD1), models of familial amyotrophic lateral sclerosis (fALS). These large Ψ(m) depolarizations decayed slowly and incremented with successive stimulus trains. Additional Ψ(m) depolarizations occurred that were not synchronized with stimulation. These large Ψ(m) depolarizations were reduced (a) by cyclosporin A (CsA, 1-2 μM), which inhibits opening of the mitochondrial permeability transition pore (mPTP), or (b) by replacing bath Ca(2+) with Sr(2+), which enters motor terminals and mitochondria but does not support mPTP opening. These results are consistent with the hypothesis that the large Ψ(m) depolarizations evoked by repetitive stimulation in motor terminals of symptomatic fALS mice result from mitochondrial dysfunction that increases the likelihood of transient mPTP opening during Ca(2+) influx. Such mPTP openings, a sign of mitochondrial stress, would disrupt motor terminal handling of Ca(2+) loads and might thereby contribute to motor terminal degeneration in fALS mice. Ψ(m) depolarizations resembling those in symptomatic fALS mice could be elicited in wild-type mice following a 0.5-1h exposure to diamide (200 μM), which produces an oxidative stress, but these depolarizations were not reduced by CsA.
Collapse
Affiliation(s)
- Khanh T. Nguyen
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - John N. Barrett
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - Luis García-Chacón
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - Gavriel David
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| | - Ellen F. Barrett
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Miller School of Medicine, P.O. Box 016430, Miami, FL, 33101, USA
| |
Collapse
|
34
|
Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. J Neurosci 2011; 31:1106-13. [PMID: 21248135 DOI: 10.1523/jneurosci.2011-10.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Collapse
|
35
|
Abstract
Emerging evidence suggests that synaptic dysfunction occurs prior to neuronal loss in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Therefore, monitoring synaptic activity during early stages of neurodegeneration may provide valuable information for the development of diagnostic and/or therapeutic strategies. Here, we describe an electrophysiological method routinely applied in our laboratory for investigating synaptic activity of the neuromuscular junction (NMJ), the synaptic connection between motoneurons and skeletal muscles. Using conventional intracellular sharp electrodes, both spontaneous synaptic activity (miniature end-plate potentials) and evoked synaptic activity (end-plate potentials) can be readily recorded in acutely isolated nerve-muscle preparations. This method can also be adapted to various simulation protocols for studying short-term plasticity of neuromuscular synapses.
Collapse
|
36
|
Zhang Z, Nguyen KT, Barrett EF, David G. Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis. Neuron 2010; 68:1097-108. [PMID: 21172612 PMCID: PMC3021129 DOI: 10.1016/j.neuron.2010.11.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2010] [Indexed: 01/29/2023]
Abstract
Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (∼ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (∼ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
37
|
Murray L, Gillingwater T, Parson S. Using mouse cranial muscles to investigate neuromuscular pathology in vivo. Neuromuscul Disord 2010; 20:740-3. [DOI: 10.1016/j.nmd.2010.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/26/2010] [Accepted: 06/21/2010] [Indexed: 02/09/2023]
|
38
|
Garcia N, Tomàs M, Santafe MM, Lanuza MA, Besalduch N, Tomàs J. Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75 NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction. J Peripher Nerv Syst 2010; 15:40-9. [PMID: 20433604 DOI: 10.1111/j.1529-8027.2010.00250.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurotrophins and their receptors, the trk receptor tyrosine kinases (trks) and p75(NTR), are differentially expressed among the cell types that make up synapses. It is important to determine the precise location of these molecules involved in neurotransmission. Here we use immunostaining and Western blotting to study the localization and expression of neurotrophin brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase b (trkB) and p75(NTR) at the adult neuromuscular junction. Our confocal immunofluorescence results on the whole mounts of the mouse Levator auris longus muscle and on semithin cross-sections showed that BDNF, NT-4, trkB, and p75(NTR) were localized on the three cells in the neuromuscular synapse (motor axons, post-synaptic muscle and Schwann cells).
Collapse
Affiliation(s)
- Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Preferred sites of exocytosis and endocytosis colocalize during high- but not lower-frequency stimulation in mouse motor nerve terminals. J Neurosci 2009; 29:15308-16. [PMID: 19955383 DOI: 10.1523/jneurosci.4646-09.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial relationship of exocytosis and endocytosis in motor nerve terminals has been explored, with varied results, mostly in fixed preparations and without direct information on the utilization of each exocytic site. We sought to determine these spatial properties in real time using synaptopHluorin (spH) and FM4-64. Earlier we showed that nerve stimulation elicits the appearance of spH fluorescence hot spots, which mark preferred sites of exocytosis. Here we show that nerve stimulation in the presence of the styryl dye FM4-64 evokes hot spots of FM4-64 fluorescence. Their size, density, and rate of appearance are similar to the spH hot spots, but their rate of disappearance after stimulation was much slower (t(1/2) approximately 9 min vs approximately 10 s for spH hot spots), consistent with FM4-64 spots identifying bulk endocytosis and subsequent slow intracellular dispersion of nascent vesicles. Simultaneous imaging of both fluorophores revealed a strong colocalization of spH and FM4-64 spots, but only during high (100 Hz) stimulation. At 40 Hz stimulation, exocytic and endocytic spots did not colocalize. Our results are consistent with the hypothesis that hot spots of endocytosis, possibly in the form of bulk uptake, occur at or very near highly active exocytic sites during high-frequency stimulation.
Collapse
|
40
|
Nagwaney S, Harlow ML, Jung JH, Szule JA, Ress D, Xu J, Marshall RM, McMahan UJ. Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse. J Comp Neurol 2009; 513:457-68. [PMID: 19226520 PMCID: PMC4288958 DOI: 10.1002/cne.21975] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electron tomography was used to view macromolecules composing active zone material (AZM) in axon terminals at mouse neuromuscular junctions. Connections of the macromolecules to each other, to calcium channels in the presynaptic membrane, and to synaptic vesicles docked on the membrane prior to fusing with it during synaptic transmission were similar to those of AZM macromolecules at frog neuromuscular junctions previously examined by electron tomography and support the hypothesis that AZM regulates vesicle docking and fusion. A species difference in the arrangement of AZM relative to docked vesicles may help account for a greater vesicle-presynaptic membrane contact area during docking and a greater probability of fusion during synaptic transmission in mouse. Certain AZM macromolecules in mouse were connected to synaptic vesicles contacting the presynaptic membrane at sites where fusion does not occur. These secondary docked vesicles had a different relationship to the membrane and AZM macromolecules than primary docked vesicles, consistent with their having a different AZM-regulated behavior.
Collapse
Affiliation(s)
- Sharuna Nagwaney
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gaffield MA, Tabares L, Betz WJ. The spatial pattern of exocytosis and post-exocytic mobility of synaptopHluorin in mouse motor nerve terminals. J Physiol 2009; 587:1187-200. [PMID: 19153160 DOI: 10.1113/jphysiol.2008.166728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We monitored the spatial distribution of exo- and endocytosis at 37 degrees C in mouse motor nerve terminals expressing synaptopHluorin (spH), confirming and extending earlier work at room temperature, which had revealed fluorescent 'hot spots' appearing in repeatable locations during tetanic stimulation. We also tested whether hot spots appeared during mild stimulation. Averaged responses from single shocks showed a clear fluorescence jump, but revealed no sign of hot spots; instead, fluorescence rose uniformly across the terminal. Only after 5-25 stimuli given at high frequency did hot spots appear, suggesting a novel initiation mechanism. Experiments showed that about half of the surface spH molecules were mobile, and that spH movement occurred out of hot spots, demonstrating their origin as exocytic sources, not endocytic sinks. Taken together, our results suggest that synaptic vesicles exocytose equally throughout the terminal with mild stimulation, but preferentially exocytose at specific, repeatable locations during tetanic stimulation.
Collapse
Affiliation(s)
- Michael A Gaffield
- Department of Physiology and Biophysics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
42
|
Ruiz R, Casañas JJ, Südhof TC, Tabares L. Cysteine string protein-alpha is essential for the high calcium sensitivity of exocytosis in a vertebrate synapse. Eur J Neurosci 2008; 27:3118-31. [PMID: 18598257 DOI: 10.1111/j.1460-9568.2008.06301.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine string protein (CSPalpha) is a synaptic vesicle protein present in most central and peripheral nervous system synapses. Previous studies demonstrated that the deletion of CSPalpha results in postnatal sensorial and motor impairment and premature lethality. To understand the participation of CSPalpha in neural function in vertebrates, we have studied the properties of synaptic transmission of motor terminals in wild-type and CSPalpha knockout mice. Our results demonstrate that, in the absence of CSPalpha, fast Ca2+-triggered release was not affected at postnatal day (P)14 but was dramatically reduced at P18 and P30 without a change in release kinetics. Although mutant terminals also exhibited a reduction in functional vesicle pool size by P30, further analysis showed that neurotransmission could be 'rescued' by high extracellular [Ca2+] or by the presence of a phorbol ester, suggesting that an impairment in the fusion machinery, or in vesicle recycling, was not the primary cause of the dysfunction of this synapse. The specific shift to the right of the Ca2+ dependence of synchronous release, and the lineal dependence of secretion on extracellular [Ca2+] in mutant terminals after P18, suggests that CSPalpha is indispensable for a normal Ca2+ sensitivity of exocytosis in vertebrate mature synapses.
Collapse
Affiliation(s)
- R Ruiz
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sanchez Pizjuan 4, 41009 Seville, Spain
| | | | | | | |
Collapse
|
43
|
Huber A, France RM, Riccalton-Banks L, McLaren J, Cox H, Quirk RA, Shakesheff KM, Thompson D, Panjwani N, Shipley S, Pickett A. The Intercostal NMJ Assay: a new alternative to the conventional LD50 assay for the determination of the therapeutic potency of botulinum toxin preparations. Altern Lab Anim 2008; 36:141-52. [PMID: 18522482 DOI: 10.1177/026119290803600205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Therapeutic botulinum neurotoxin type A preparations have found an increasing number of clinical uses for a large variety of neuromuscular disorders and dermatological conditions. The accurate determination of potency in the clinical application of botulinum toxins is critical to ensuring clinical efficacy and safety, and is currently achieved by using a lethal dose (LD50) assay in mice. Ethical concerns and operational constraints associated with this assay have prompted the development of alternative assay systems that could potentially lead to its replacement. As one such alternative, we describe the development and evaluation of a novel ex vivo assay (the Intercostal Neuromuscular Junction [NMJ] Assay), which uses substantially fewer animals and addresses ethical concerns associated with the LD50 assay. The assay records the decay of force from electrically-stimulated muscle tissue sections in response to the toxin, and thus combines the important mechanisms of receptor binding, translocation, and the enzymatic action of the toxin molecule. Toxin application leads to a time-related and dose-related reduction in contractile force. A regression model describing the relationship between the applied dose and force decay was determined statistically, and was successfully tested as able to correctly predict the potency of an unknown sample. The tissue sections used were found to be highly reproducible, as determined through the innervation pattern and the localisation of NMJs in situ. Furthermore, the efficacy of the assay protocol to successfully deliver the test sample to the cellular target sites, was critically assessed by using molecular tracer molecules.
Collapse
Affiliation(s)
- Alexander Huber
- Tissue Engineering Group, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Murray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 2008; 17:949-62. [PMID: 18065780 DOI: 10.1093/hmg/ddm367] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a common autosomal recessive childhood form of motor neuron disease. Previous studies have highlighted nerve- and muscle-specific events in SMA, including atrophy of muscle fibres and post-synaptic motor endplates, loss of lower motor neuron cell bodies and denervation of neuromuscular junctions caused by loss of pre-synaptic inputs. Here we have undertaken a detailed morphological investigation of neuromuscular synaptic pathology in the Smn-/-;SMN2 and Smn-/-;SMN2;Delta7 mouse models of SMA. We show that neuromuscular junctions in the transversus abdominis (TVA), levator auris longus (LAL) and lumbrical muscles were disrupted in both mouse models. Pre-synaptic inputs were lost and abnormal accumulations of neurofilament were present, even in early/mid-symptomatic animals in the most severely affected muscle groups. Neuromuscular pathology was more extensive in the postural TVA muscle compared with the fast-twitch LAL and lumbrical muscles. Pre-synaptic pathology in Smn-/-;SMN2;Delta7 mice was reduced compared with Smn-/-;SMN2 mice at late-symptomatic time-points, although post-synaptic pathology was equally severe. We demonstrate that shrinkage of motor endplates does not correlate with loss of motor nerve terminals, signifying that one can occur in the absence of the other. We also demonstrate selective vulnerability of a subpopulation of motor neurons in the caudal muscle band of the LAL. Paralysis with botulinum toxin resulted in less terminal sprouting and ectopic synapse formation in the caudal band compared with the rostral band, suggesting that motor units conforming to a Fast Synapsing (FaSyn) phenotype are likely to be more vulnerable than those with a Delayed Synapsing (DeSyn) phenotype.
Collapse
Affiliation(s)
- Lyndsay M Murray
- Centre for Integrative Physiology, University of Edinburgh Medical School, Edinburgh EH8 9XD, UK
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
We measured synaptic vesicle mobility using fluorescence recovery after photobleaching of FM 1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] stained mouse motor nerve terminals obtained from wild-type (WT) and synapsin triple knock-out (TKO) mice at room temperature and physiological temperature. Vesicles were mobile in resting terminals at physiological temperature but virtually immobile at room temperature. Mobility was increased at both temperatures by blocking phosphatases with okadaic acid, decreased at physiological temperature by blocking kinases with staurosporine, and unaffected by disrupting actin filaments with latrunculin A or reducing intracellular calcium concentration with BAPTA-AM. Synapsin TKO mice showed reduced numbers of synaptic vesicles and reduced FM 1-43 staining intensity. Synaptic transmission, however, was indistinguishable from WT, as was synaptic vesicle mobility under all conditions tested. Thus, in TKO mice, and perhaps WT mice, a phospho-protein different from synapsin but otherwise of unknown identity is the primary regulator of synaptic vesicle mobility.
Collapse
|
46
|
Wright MC, Cho WJ, Son YJ. Distinct patterns of motor nerve terminal sprouting induced by ciliary neurotrophic factor vs. botulinum toxin. J Comp Neurol 2007; 504:1-16. [PMID: 17614103 DOI: 10.1002/cne.21439] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both diffusible and surface-bound molecules are thought to induce sprouting of motor nerve terminals in response to paralysis. Here we report that the sprouting induced by ciliary neurotrophic factor (CNTF) is qualitatively different from the sprouting induced by botulinum toxin (BoTX). We show first that subcutaneous application of CNTF to levator auris longus muscles of adult mice evokes sprouting from nearly all nerve terminals. Surprisingly, however, most terminal sprouts remain within the boundaries of the endplate region and rarely grow extrasynaptically even if CNTF is administered chronically. In contrast, terminal sprouts induced by BoTX extend vigorously along the extrasynaptic muscle surface. The different patterns of sprout elongation are attributable in part to different patterns of initiation: whereas CNTF-induced sprouts emerge randomly from the surface of terminal branches, BoTX-induced sprouts emerge exclusively along the perimeter of terminal branches in direct apposition to muscle fiber membranes. Combined treatment with CNTF and BoTX produces exceptionally robust extraterminal sprouting with little if any intrasynaptic growth of terminal sprouts. We interpret these results as showing that paralysis induces sprouting primarily by muscle-associated, surface-bound molecules rather than by diffusible factors. Our findings may be useful in defining the physiological role of the numerous candidate sprouting-inducers and in promoting compensatory sprouting after nerve injury for therapeutic benefit.
Collapse
Affiliation(s)
- Megan C Wright
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 9129, USA
| | | | | |
Collapse
|
47
|
Wright MC, Son YJ. Ciliary neurotrophic factor is not required for terminal sprouting and compensatory reinnervation of neuromuscular synapses: re-evaluation of CNTF null mice. Exp Neurol 2007; 205:437-48. [PMID: 17445802 PMCID: PMC1931609 DOI: 10.1016/j.expneurol.2007.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/28/2022]
Abstract
Loss of synaptic activity or innervation induces sprouting of intact motor nerve terminals that adds or restores nerve-muscle connectivity. Ciliary neurotrophic factor (CNTF) and terminal Schwann cells (tSCs) have been implicated as molecular and cellular mediators of the compensatory process. We wondered if the previously reported lack of terminal sprouting in CNTF null mice was due to abnormal reactivity of tSCs. To this end, we examined nerve terminal and tSC responses in CNTF null mice using experimental systems that elicited extensive sprouting in wildtype mice. Contrary to the previous report, we found that motor nerve terminals in the null mice sprout extensively in response to major sprouting-stimuli such as exogenously applied CNTF per se, botulinum toxin-elicited paralysis, and partial denervation by L4 spinal root transection. In addition, the number, length and growth patterns of terminal sprouts, and the extent of reinnervation by terminal or nodal sprouts, were similar in wildtype and null mice. tSCs in the null mice were also reactive to the sprouting-stimuli, elaborating cellular processes that accompanied terminal sprouts or guided reinnervation of denervated muscle fibers. Lastly, CNTF was absent in quiescent tSCs in intact, wildtype muscles and little if any was detected in reactive tSCs in denervated muscles. Thus, CNTF is not required for induction of nerve terminal sprouting, for reactivation of tSCs, and for compensatory reinnervation after nerve injury. We interpret these results to support the notion that compensatory sprouting in adult muscles is induced primarily by contact-mediated mechanisms, rather than by diffusible factors.
Collapse
Affiliation(s)
- Megan C Wright
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
48
|
Lanuza MA, Besalduch N, Garcia N, Sabaté M, Santafé MM, Tomàs J. Plastic-embedded semithin cross-sections as a tool for high-resolution immunofluorescence analysis of the neuromuscular junction molecules: Specific cellular location of protease-activated receptor-1. J Neurosci Res 2007; 85:748-56. [PMID: 17265467 DOI: 10.1002/jnr.21192] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the neuromuscular junction (NMJ), three cellular elements (nerve ending, postsynaptic muscle component, and teloglial Schwann cell) are closely juxtaposed and functionally interdependent. It is important to determine the precise location of the relevant molecules involved in structural stability and neurotransmission at the three cellular components of this synapse in order to understand the molecular mechanisms underlying NMJ formation, maintenance, and functionality. In this paper, we show that plastic-embedded 0.5-mum semithin cross-sections from whole-mount multiple-immunofluorescence-stained muscles provide a simple and sensitive high-resolution procedure for analyzing the cellular and subcellular distribution of molecules at the NMJ. We have used this procedure to resolve the location of protease-activated receptor 1 (PAR-1). Previously, by immunohistochemistry we had detected PAR-1 in muscle fibers concentrated in the synaptic area but could not determine whether PAR-1 is expressed only in the muscle fiber at the NMJ. Our present results demonstrate that PAR-1 is concentrated in the postsynaptic region but not in the presynaptic terminal and that the labelling pattern for PAR-1 overlapped with Schwann cell staining.
Collapse
Affiliation(s)
- Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
García-Chacón LE, Nguyen KT, David G, Barrett EF. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release. J Physiol 2006; 574:663-75. [PMID: 16613870 PMCID: PMC1817729 DOI: 10.1113/jphysiol.2006.110841] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitochondria sequester much of the Ca2+ that enters motor nerve terminals during repetitive stimulation at frequencies exceeding 10-20 Hz. We studied the post-stimulation extrusion of Ca2+ from mitochondria by measuring changes in matrix [Ca2+] with fluorescent indicators loaded into motor terminal mitochondria in the mouse levator auris longus muscle. Trains of action potentials at 50 Hz produced a rapid increase in mitochondrial [Ca2+] followed by a plateau, which was usually maintained after the end of the stimulus train and then slowly decayed back to baseline. Increasing the Ca2+ load delivered to the terminal by increasing the number of stimuli (from 500 to 2000) or the stimulation frequency (from 50 to 100 Hz), by increasing bath [Ca2+], or by prolonging the action potential with 3,4-diaminopyridine (100 microM) prolonged the post-stimulation decay of mitochondrial [Ca2+] without increasing the amplitude of the plateau during stimulation. Inhibiting the opening of the mitochondrial permeability transition pore with cyclosporin A (5 microM) had no significant effect on the decay of mitochondrial [Ca2+]. Inhibition of the mitochondrial Na+-Ca2+ exchanger with CGP-37157 (50 microM) dramatically prolonged the post-stimulation decay of mitochondrial [Ca2+], reduced post-stimulation residual cytosolic [Ca2+], and reduced the amplitude of endplate potentials evoked after the end of a stimulus train in the presence of both low and normal bath [Ca2+]. These findings suggest that Ca2+ extrusion from motor terminal mitochondria occurs primarily via the mitochondrial Na+-Ca2+ exchanger and helps to sustain post-tetanic transmitter release at mouse neuromuscular junctions.
Collapse
Affiliation(s)
- Luis E García-Chacón
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
50
|
Barbier J, Popoff MR, Molgó J. Degeneration and regeneration of murine skeletal neuromuscular junctions after intramuscular injection with a sublethal dose of Clostridium sordellii lethal toxin. Infect Immun 2004; 72:3120-8. [PMID: 15155613 PMCID: PMC415662 DOI: 10.1128/iai.72.6.3120-3128.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clostridium sordellii lethal toxin (LT), a 250-kDa protein which is the bacteria's major virulence factor, belongs to a family of large clostridial cytotoxins which glucosylate small GTP-binding proteins. Here, we report the results of our ex vivo analysis of the structure and function of skeletal neuromuscular tissue obtained from mice at various times after intramuscular injection of a sublethal dose of LT (0.25 ng/g of body wt). The toxin caused, within 24 h, pronounced localized edema, inflammation, myofibril disassembly, and degeneration of skeletal muscle fibers in the injected area, and it glucosylated the muscle tissue's small GTPases. Regeneration of the damaged fibers was evident 6 to 9 days postinjury and was completed by 60 days. The expression of dystrophin, laminin, and fast and neonatal myosin in regenerating fibers, detected by immunofluorescence microscopy, confirmed that LT does not impair the high regenerative capacity of murine skeletal muscle fibers. Functional studies revealed that LT affects muscle contractility and neuromuscular transmission. However, partial recovery of nerve-evoked muscle twitches and tetanic contractions was observed by day 15 postinjection, and extensive remodeling of the neuromuscular junction's nerve terminals and clusters of muscle acetylcholine receptors was still evident 30 days postinjection. In conclusion, to the best of our knowledge, this is the first report to characterize the degeneration and regeneration of skeletal neuromuscular tissue after in vivo exposure to a large clostridial cytotoxin. In addition, our data may provide an explanation for the severe neuromuscular alterations accompanying wound infections caused by C. sordellii.
Collapse
Affiliation(s)
- Julien Barbier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, U. P. R. 9040, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | |
Collapse
|