1
|
Caster JM, Kuhn CM. Maturation of coordinated immediate early gene expression by cocaine during adolescence. Neuroscience 2009; 160:13-31. [PMID: 19245875 PMCID: PMC2668738 DOI: 10.1016/j.neuroscience.2009.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/13/2008] [Accepted: 01/01/2009] [Indexed: 11/17/2022]
Abstract
Adolescence may be a critical period for drug addiction. Young adolescent male rats have greater locomotor responses than adults after acute low dose cocaine administration. Further, repeated cocaine administration produces as much or more conditioned place preference but reduced locomotor sensitization in adolescents compared to adults. Acute activation of neurons by cocaine induces long-term changes in behavior by activating transcriptional complexes. The purpose of the present study was to correlate cocaine-induced locomotor activity with neuronal activation in subregions of the striatum and cortex by acute cocaine in young adolescent (postnatal (PN) 28) and adult (PN 65) male rats by measuring the induction of the plasticity-associated immediate early genes (IEGs) c-fos and zif268 using in situ hybridization. Animals were treated with saline, low (10 mg/kg), or high (40 mg/kg) dose cocaine in locomotor activity chambers and killed 30 min later. Low dose cocaine induced more locomotor activity and striatal c-fos expression in adolescents than adults whereas high dose cocaine induced more locomotor activity, striatal c-fos, and striatal zif268 expression in adults. Locomotor activity correlated with the expression of both genes in adults but correlated with striatal c-fos only in adolescents. Finally, there was a significant correlation between the expression of c-fos and zif268 in the adult striatum but not in adolescents. Our results suggest that the coordinated expression of transcription factors by cocaine continues to develop during adolescence. The immature regulation of transcription factors by cocaine could explain why adolescents show unique sensitivity to specific long-term behavioral alterations following cocaine treatment.
Collapse
Affiliation(s)
- J M Caster
- Department of Pharmacology and Cancer Biology, Research Park Building 2, Room 100B, Box 3813, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
2
|
Chritin M, Savasta M, Mennicken F, Bal A, Abrous DN, Le Moal M, Feuerstein C, Herman JP. Intrastriatal Dopamine-rich Implants Reverse the Increase of Dopamine D2 Receptor mRNA Levels Caused by Lesion of the Nigrostriatal Pathway: A Quantitative In Situ Hybridization Study. Eur J Neurosci 2002; 4:663-672. [PMID: 12106330 DOI: 10.1111/j.1460-9568.1992.tb00175.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in striatal dopamine D2 receptor mRNA levels provoked by unilateral 6-hydroxydopamine-induced lesion of the nigrostriatal dopamine pathway were studied by in situ hybridization. The influence of embryonic dopaminergic neurons implanted into the dopamine-depleted striatum on the lesion-induced changes was also examined. Changes in D2 mRNA levels were compared with changes in D2 receptor densities measured in the same animals by receptor autoradiography using [3H]spiperone or [3H]SDZ 205-501 as ligands. The distribution of D2 mRNA in the striatum of control animals closely paralleled that of the D2 receptor itself, as assessed by autoradiography, and the highest density of D2 mRNA occurred in the lateral part of the striatum. One month after lesion, levels of D2 mRNA were 34% higher in the dorsolateral part of the dopamine-depleted striatum than in the corresponding region of the contralateral control striatum. D2 receptor density in this region was increased by 40% relative to the control level. No significant increases could be measured in the medial part of the striatum. The increases in the lateral part were similar at 7 months post-lesion; however, at this time the increase in both D2 mRNA and receptor levels had spread to the medial part of the striatum as well. In the graft-bearing striatum levels of both D2 mRNA and D2 receptors reverted to control levels. This study shows that the post-lesion increase in striatal dopamine receptor and mRNA level is a biphasic phenomenon with a late-occurring component in the medial striatum. It also shows that once the increase in striatal D2 receptor gene expression is accomplished, it is maintained unchanged for long periods, similar to that of D2 receptor levels themselves. Moreover, grafts of embryonic dopaminergic neurons are able to modulate the expression of the dopamine D2 receptor gene.
Collapse
Affiliation(s)
- M. Chritin
- INSERM U.318, LAPSEN, Département des Neurosciences Cliniques et Biologiques, Pavillon de Neurologie, CHU de Grenoble, BP 217, 38043 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Corera AT, Do Régo JC, Bonnet JJ. Specificity and ion dependence of binding of GBR analogs. Methods Enzymol 1998; 296:203-19. [PMID: 9779450 DOI: 10.1016/s0076-6879(98)96016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- A T Corera
- Laboratoire de Neuropsychopharmacologie Expérimentale, UFR de Médecine et Pharmacie, Saint Etienne du Rouvray, France
| | | | | |
Collapse
|
4
|
Zuch CL, O'Mara DJ, Cory-Slechta DA. Low-level lead exposure selectively enhances dopamine overflow in nucleus accumbens: an in vivo electrochemistry time course assessment. Toxicol Appl Pharmacol 1998; 150:174-85. [PMID: 9630467 DOI: 10.1006/taap.1998.8396] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Exposures to even very low levels of lead (Pb) alter behavioral and neurochemical functions. The current study was based on the hypothesis that excess synaptic dopamine (DA) availability may contribute to such disturbances and that the mesolimbic DA projection is more sensitive than the nigrostriatal system to Pb-induced DA-based alterations. In vivo electrochemical measurements of potassium chloride-evoked DA overflow and clearance were compared in dorsal striatum (STR) (nigrostriatal system) and nucleus accumbens (NAC)(mesolimbic system) of male rats after 11 weeks or 11 months of postweaning exposure to 0, 50, or 150 ppm Pb acetate drinking solutions. Pb increased evoked DA overflow selectively in NAC, with biphasic effects at 11 weeks, including increases greater than 400% at 50 ppm and concentration-related effects up to 265% of control at 11 months. Considered relative to 11-week control levels, continued exposure tended to attenuate the magnitude of Pb-related increases in DA overflow in NAC. Pb decreased clearance time in both brain regions, with these effects markedly augmented across time. These changes in DA function were observed at blood Pb values of only 15-16 micrograms/dl, underscoring their environmental relevance. The current findings support the hypothesis of excess DA availability as a mechanism of Pb-induced behavioral alterations and of a particular vulnerability of mesolimbic DA systems (NAC) to such effects. They also suggest that different mechanisms underlie Pb-related changes in amplitude and clearance and confirm previous reports of regional differences of DA systems in response to Pb exposure.
Collapse
Affiliation(s)
- C L Zuch
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | |
Collapse
|
5
|
Leroux-Nicollet I, Costentin J. Comparison of the subregional distributions of the monoamine vesicular transporter and dopamine uptake complex in the rat striatum and changes during aging. J Neural Transm (Vienna) 1994; 97:93-106. [PMID: 7873127 DOI: 10.1007/bf01277946] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied the heterogeneous distribution of the vesicular monoamine transporter, labelled with 3H dihydrotetrabenazine (3H TBZOH) and the dopamine uptake complex, labelled with 3H GBR12783 in the rat striatum. The ratio TBZOH/GBR12783 was higher in the anterior part of the striatum than in the caudal part. This discrepancy could not be explained by the contribution of serotoninergic innervation to 3H TBZOH binding, since the ratio TBZOH/citalopram was also higher in the anterior striatum than in the caudal striatum. The monoamine vesicular transporter and the dopamine uptake complex were more abundant in the lateral regions than in the regions situated near the midline. In the caudal striatum, the ventral part was richer in vesicular transporter than the dorsal part. In aged rats (30 months), a significant decrease in the density of both transporters was noticed in the middle part of the striatum. In the anterior part of the striatum, the ratio TBZOH/GBR12783 was elevated in aged rats compared to adult ones. This could participate in a functional adaptation of the partially diminished population of dopaminergic neurons during aging.
Collapse
Affiliation(s)
- I Leroux-Nicollet
- Unité de Neuropsychopharmacologie Expérimentale, CNRS ERS019, Faculté de Médecine et de Pharmacie, Saint-Etienne-du-Rouvray, France
| | | |
Collapse
|
6
|
Ossowska K. The role of excitatory amino acids in experimental models of Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. PARKINSON'S DISEASE AND DEMENTIA SECTION 1994; 8:39-71. [PMID: 7534462 DOI: 10.1007/bf02250917] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this article was to review the recent literature on the role of excitatory amino acids in Parkinson's disease and in animal equivalents of parkinsonian symptoms. Effects of NMDA and AMPA antagonists on the reserpine-induced akinesia, catalepsy and rigidity, on the neuroleptic-induced catalepsy, on the turning behaviour of 6-OHDA-lesioned rats, as well as on the parkinsonian symptoms evoked by MPTP in monkeys were analysed. Moreover, the role of NMDA antagonists in Parkinson's disease was discussed. Data concerning the protective influence of these drugs on degenerative properties of methamphetamine, MPTP and 6-OHDOPA were also presented. On the basis of the above findings, the following conclusions may be drawn: (1) disturbances in the glutamatergic transmission in various brain structures seem to play a significant role in the development of symptoms of Parkinson's disease; (2) the NMDA-receptor blocking component may make a substantial contribution to the therapeutic effect of antiparkinsonian drugs; a similar contribution of AMPA-receptor blocking component has not been sufficiently documented, so far; (3) compounds blocking NMDA receptors may possibly prevent the development of Parkinson's disease; this presumption needs, however further studies; (4) side effects of NMDA receptor antagonists may be a limiting factor in the use of these compounds in humans.
Collapse
Affiliation(s)
- K Ossowska
- Department of Neuro-Psychopharmacology, Polish Academy of Sciences, Kraków
| |
Collapse
|
7
|
Vaugeois JM, Bonnet JJ, Costentin J. In vivo labelling of the neuronal dopamine uptake complex in the mouse striatum by [3H]GBR 12783. Eur J Pharmacol 1992; 210:77-84. [PMID: 1350989 DOI: 10.1016/0014-2999(92)90654-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various characteristics of the in vivo striatal binding of [3H]GBR 12783 (1-[2-(diphenylmethoxy)-ethyl]-4-(3-phenyl-1[3H]-2-propenyl)pipera zine), a specific ligand of the neuronal dopamine uptake complex, were determined in mice. Increasing doses of the ligand revealed the saturability of the binding at a single site with half-maximal saturation at a dose of approximately 7 mumol/kg and an apparent maximal number of binding sites (Bmax) of 12.8 pmol/mg protein in striatum. Specific binding was prevented by various dopamine uptake blockers, pyrovalerone, GBR 13069, GBR 12783, N-[1-2-benzo(b)thiophenyl)cyclohexyl] piperidine, cocaine, methylphenidate and was inhibited in a stereoselective manner by the enantiomers of nomifensine. Other drugs which are not dopamine uptake blockers either did not modify [3H]GBR 12783 binding (the diphenylbutylpiperazine derivative flupenthixol) or increased it (the diphenylpiperazine derivative flunarizine or the chemically unrelated compounds fenfluramine and SKF 525A). A close correlation was found between occupancy of the striatal [3H]GBR 12783 binding site and the stimulant locomotor effect of the drug. A similar specific striatal binding of [3H]GBR 12783 was evidenced in both NMRI and CD1 strains. It was concluded that [3H]GBR 12783 administered in vivo provides a measure of the density of dopamine uptake sites in mouse striatum.
Collapse
Affiliation(s)
- J M Vaugeois
- Unité de Neuropsychopharmacologie Expérimentale, U.R.A. 1170 CNRS, Faculté de Médecine et Pharmacie de Rouen, Saint-Etienne du Rouvray, France
| | | | | |
Collapse
|
8
|
Van Dort ME, Kilbourn MR, Chakraborty PK, Richfield EK, Gildersleeve DL, Wieland DM. Iodine-125 and fluorine-18 labeled aryl-1,4-dialkylpiperazines: potential radiopharmaceuticals for in vivo study of the dopamine uptake system. INTERNATIONAL JOURNAL OF RADIATION APPLICATIONS AND INSTRUMENTATION. PART A, APPLIED RADIATION AND ISOTOPES 1992; 43:671-80. [PMID: 1325425 DOI: 10.1016/0883-2889(92)90039-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of fluorine-18 and iodine-125 labeled aryl-1,4-dialkylpiperazine analogs, derivatives of GBR 12935, were synthesized as radiotracers for positron emission tomography or single photon emission computerized tomography imaging of the brain based on their affinity for the presynaptic dopamine reuptake system. High specific activity fluorine-18 tracers were prepared by nucleophilic aromatic substitution reactions; iodine-125 tracers were prepared by isotopic exchange reactions. In vitro competitive binding studies demonstrated that iodine substitution is tolerated in the 4-position of the phenyl ring of the phenalkylpiperazine group. In vivo regional brain biodistribution studies in mice indicated no selectivity of the radioiodinated ligands for the dopamine reuptake site, with striatum/cerebellum concentration ratios of 1. Similar negative results with the new fluorine-18 derivatives demonstrated that in vivo selectivity for the dopamine reuptake site appears to be critically dependent on the carbon chain length between the piperazine ring and the solitary aromatic ring. These studies suggest that development of new radiopharmaceuticals based on the GBR 12935 structure cannot be based solely on considerations of in vitro binding affinities.
Collapse
Affiliation(s)
- M E Van Dort
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
9
|
Amejdki-Chab N, Costentin J, Bonnet JJ. Kinetic analysis of the chloride dependence of the neuronal uptake of dopamine and effect of anions on the ability of substrates to compete with the binding of the dopamine uptake inhibitor GBR 12783. J Neurochem 1992; 58:793-800. [PMID: 1737991 DOI: 10.1111/j.1471-4159.1992.tb09327.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The specific binding of [3H]1-[2-(diphenyl-methoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) to the dopamine (DA) neuronal carrier present in membranes prepared from rat striatum was not affected when Cl- was replaced by either Br- or NO3-. In media containing Cl-, Br-, or NO3-, d-amphetamine and DA competed with the radioligand in a monophasic manner with Hill coefficients of close to 1 (0.94-1.12). Replacement of Cl- by Br- impaired the ability of some substrates (d-amphetamine, DA, p-hydroxyamphetamine, and m-tyramine) to compete with [3H]GBR 12783. The potency of Br- to decrease the affinity of substrates for the specific binding site was significantly correlated (t = 7.07, p less than 0.001) with their affinity for this binding site. These results suggest that the various substrates tested could bind to recognition sites in which Cl- is differently involved; as a consequence, substrates could bind to the neuronal carrier by means of partly different links. In experiments dealing with the specific uptake of [3H]DA, F-, NO3-, isethionate-, or acetate- was unable to substitute for Cl-, whereas Br- was quite a total substitute. Replacement of Cl- by equimolar concentrations of either NO3- or isethionate- resulted in inhibition curves of DA specific uptake with Hill coefficients of close to 1 (0.77 and 1.04 respectively); this indicates that both NO3- and isethionate- are devoid of inhibitory effects on neuronal uptake and are quite ineffective substitutes for Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Amejdki-Chab
- U.A. 1170 du CNRS, U.F.R. de Médecine et Pharmacie, Saint Etienne du Rouvray, France
| | | | | |
Collapse
|
10
|
Mennicken F, Savasta M, Peretti-Renucci R, Feuerstein C. Autoradiographic localization of dopamine uptake sites in the rat brain with3H-GBR 12935. J Neural Transm (Vienna) 1992; 87:1-14. [PMID: 1346964 DOI: 10.1007/bf01253106] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The regional distribution of dopamine (DA) uptake sites in the rat brain has been studied by quantitative autoradiography using [3H]GBR 12935 as a ligand. The binding of [3H]GBR 12935 to striatal sections was saturable and of high affinity (Kd = 1.6 nM); it occurred at a single population of sites and possessed the pharmacological features of the DA uptake sites. The highest densities of [3H]GBR 12935 binding sites were found in the caudate-putamen, nucleus accumbens, olfactory tubercle, ventral tegmental area and substantia nigra (especially in the pars compacta). Moderate levels of [3H]GBR 12935 binding were observed in globus pallidus, thalamus, hypothalamus, hippocampus, amygdala (basolateral nucleus) and prefrontal and singular cortices. This regional distribution of [3H]GBR 12935 binding closely correlated with the reported distribution of dopaminergic nerve terminals. The topographical distribution of [3H]GBR 12935 has also been studied in detail in striatal subregions and this distribution was compared, using quantitative TH immunoreactivity, to the density of striatal dopaminergic nerve terminals. There is good overlapping between these two regional distributions, the highest density of both markers was found in the lateral part of the striatum and a similar rostro-caudal gradient has been observed. A dopaminergic denervation caused a complete loss of [3H]GBR 12935 in basal ganglia ipsilateral to the lesion.
Collapse
Affiliation(s)
- F Mennicken
- INSERM U.318-LAPSEN, Pavillon de Neurologie, CHU de Grenoble, France
| | | | | | | |
Collapse
|
11
|
Savasta M, Mennicken F, Chritin M, Abrous DN, Feuerstein C, Le Moal M, Herman JP. Intrastriatal dopamine-rich implants reverse the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: an autoradiographic study. Neuroscience 1992; 46:729-38. [PMID: 1532053 DOI: 10.1016/0306-4522(92)90159-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to test whether intrastriatal implants of embryonic dopaminergic neurons are able to normalize the lesion-induced hypersensitivity of striatal dopaminergic receptors. The ascending dopaminergic pathway of adult rats was unilaterally lesioned using 6-hydroxydopamine. Three weeks later a cell suspension obtained from the mesencephali of ED 14 rat embryos was implanted into the denervated striatum. Rotational responses to dopaminergic agonists were tested five months after implantation. One month later animals were killed and striatal dopaminergic receptor densities were quantified using autoradiography, the dopaminergic reinnervation of the host striatum being visualized with [3H]GBR 12935, a ligand labelling dopamine uptake sites. The lesion induced a behavioural hypersensitivity to dopaminergic agonists and lesioned animals displayed a strong rotation contralateral to the lesion in response to a test dose of the D1 agonist compound SKF 38393 (2.5 mg/kg) or of the D2 agonist LY 171555 (0.15 mg/kg). These responses were completely abolished by the graft. The normal distribution of D1 and D2 dopaminergic receptors in the rat striatum was similar to that described previously. Seven months after the lesion of the nigrostriatal dopaminergic pathway, the density of D1 receptors was not significantly affected while the density of D2 receptors was increased by about 25-50%. The implantation of embryonic dopaminergic neurons into the denervated striatum led to a slight decrease of D1 receptor densities and to a reversal of the lesion-induced increase of striatal dopaminergic D2 receptors six months later. Moreover, this reversal concerned not only the reinnervated striatal region but also extended into non-reinnervated areas of the striatum. It is concluded that grafts of embryonic dopaminergic neurons can normalize the density of dopaminergic D2 receptors.
Collapse
Affiliation(s)
- M Savasta
- INSERM U.318, LAPSEN, CHU de Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Kilbourn MR, Haka MS, Mulholland GK, Sherman PS, Pisani T. Regional brain distribution of [18F]GBR 13119, a dopamine uptake inhibitor, in CD-1 and C57BL/6 mice. Eur J Pharmacol 1989; 166:331-4. [PMID: 2529129 DOI: 10.1016/0014-2999(89)90078-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have examined the regional brain distribution of [18F]GBR 13119 (18F: beta +, T1/2 = 110 min), a dopamine uptake inhibitor, in CD-1 and C57BL/6 mice. High levels of binding are observed in the striatum of both species, with striatum/cerebellum ratios of 3-4 at 60 min after injection of the radiotracer. Striatum radioactivity and striatum/cerebellum ratios are more than 50% reduced in C57BL/6 mice treated chronically with the neurotoxin MPTP. We conclude mice are an appropriate model for the in vivo study of the dopamine uptake system, and that [18F]GBR 13119 may be a suitable in vivo marker for degeneration of striatal dopaminergic neurons.
Collapse
Affiliation(s)
- M R Kilbourn
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | |
Collapse
|