1
|
Sadeghi M, Azargoonjahromi A, Nasiri H, Yaghoobi A, Sadeghi M, Chavoshi SS, Baghaeikia S, Mahzari N, Valipour A, Razeghi Oskouei R, Shahkarami F, Amiri F, Mayeli M. Altered brain connectivity in mild cognitive impairment is linked to elevated tau and phosphorylated tau, but not to GAP-43 and Amyloid-β measurements: a resting-state fMRI study. Mol Brain 2024; 17:60. [PMID: 39215335 PMCID: PMC11363600 DOI: 10.1186/s13041-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Mild Cognitive Impairment (MCI) is a neurological condition characterized by a noticeable decline in cognitive abilities that falls between normal aging and dementia. Along with some biomarkers like GAP-43, Aβ, tau, and P-tau, brain activity and connectivity are ascribed to MCI; however, the link between brain connectivity changes and such biomarkers in MCI is still being investigated. This study explores the relationship between biomarkers like GAP-43, Aβ, tau, and P-tau, and brain connectivity. We enrolled 25 Participants with normal cognitive function and 23 patients with MCI. Levels of GAP-43, Aβ1-42, t-tau, and p-tau181p in the CSF were measured, and functional connectivity measures including ROI-to-voxel (RV) correlations and the DMN RV-ratio were extracted from the resting-state fMRI data. P-values below 0.05 were considered significant. The results showed that in CN individuals, higher connectivity within the both anterior default mode network (aDMN) and posterior DMN (pDMN) was associated with higher levels of the biomarker GAP-43. In contrast, MCI individuals showed significant negative correlations between DMN connectivity and levels of tau and P-tau. Notably, no significant correlations were found between Aβ levels and connectivity measures in either group. These findings suggest that elevated levels of GAP-43 indicate increased functional connectivity in aDMN and pDMN. Conversely, elevated levels of tau and p-tau can disrupt connectivity through various mechanisms. Thus, the accumulation of tau and p-tau can lead to impaired neuronal connectivity, contributing to cognitive decline.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamide Nasiri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arash Yaghoobi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadeghi
- Department of Nuclear Medicine, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shilan Baghaeikia
- Faculty of the Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nastaran Mahzari
- Department of Pharmacy, School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Arina Valipour
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Razeghi Oskouei
- Department of clinical laboratory sciences, Qazvin University of medical sciences, Qazvin, Iran
| | - Farshad Shahkarami
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Baronchelli F, Zucchella C, Serrao M, Intiso D, Bartolo M. The Effect of Robotic Assisted Gait Training With Lokomat® on Balance Control After Stroke: Systematic Review and Meta-Analysis. Front Neurol 2021; 12:661815. [PMID: 34295298 PMCID: PMC8289887 DOI: 10.3389/fneur.2021.661815] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Disturbances of balance control are common after stroke, affecting the quality of gait and increasing the risk of falls. Because balance and gait disorders may persist also in the chronic stage, reducing individual independence and participation, they represent primary goals of neurorehabilitation programs. For this purpose, in recent years, numerous technological devices have been developed, among which one of the most widespread is the Lokomat®, an actuated exoskeleton that guide the patient's limbs, simulating a symmetrical bilateral gait. Preliminary evidence suggests that beyond gait parameters, robotic assisted gait training may also improve balance. Therefore, the aim of this systematic review was to summarize evidence about the effectiveness of Lokomat® in improving balance in stroke patients. Methods: Randomized controlled trials published between January 1989 and August 2020, comparing Lokomat® training to conventional therapy for stroke patients, were retrieved from seven electronic databases. Balance, assessed by means of validated clinical scales, was considered as outcome measure. The Physiotherapy Evidence Database (PEDro) scale was used to evaluate the methodological quality of the studies. The study protocol was registered on PROSPERO (no. CRD42020197531). Results: After the removal of the duplicates, according to the inclusion criteria, 13 studies were selected, involving 445 subacute or chronic stroke patients. Eleven papers contributed to three meta-analyses. Favorable results for recovery of balance in stroke survivors treated with Lokomat® were shown using Timed Up and Go (pooled mean difference = −3.40, 95% CI −4.35 to −2.44; p < 0.00001) and Rivermead Mobility Index as outcome measures (pooled mean difference = 0.40, 95% CI 0.26–0.55; p < 0.00001). Inconclusive results were found when balance was measured by means of the Berg Balance Scale (pooled mean difference = 0.17, 95% CI −0.26 to 0.60; p = 0.44). Conclusions: Overall, most studies have shown beneficial effects of Lokomat® on balance recovery for stroke survivors, at least comparable to conventional physical therapy. However, due to the limited number of studies and their high heterogeneity, further research is needed to draw more solid and definitive conclusions.
Collapse
Affiliation(s)
| | | | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Domenico Intiso
- Unit of Neuro-Rehabilitation and Rehabilitation Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Michelangelo Bartolo
- Neurorehabilitation Unit, Department of Rehabilitation, HABILITA Zingonia, Ciserano, Italy
| |
Collapse
|
3
|
de Fátima Dos Santos Sampaio M, Santana Bastos Boechat M, Augusto Gusman Cunha I, Gonzaga Pereira M, Coimbra NC, Giraldi-Guimarães A. Neurotrophin-3 upregulation associated with intravenous transplantation of bone marrow mononuclear cells induces axonal sprouting and motor functional recovery in the long term after neocortical ischaemia. Brain Res 2021; 1758:147292. [PMID: 33516814 DOI: 10.1016/j.brainres.2021.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Bone marrow mononuclear cells (BMMCs) have been identified as a relevant therapeutic strategy for the treatment of several chronic diseases of the central nervous system. The aim of this work was to evaluate whether intravenous treatment with BMMCs facilitates the reconnection of lesioned cortico-cortical and cortico-striatal pathways, together with motor recovery, in injured adult Wistar rats using an experimental model of unilateral focal neocortical ischaemia. Animals with cerebral cortex ischaemia underwent neural tract tracing for axonal fibre analysis, differential expression analysis of genes involved in apoptosis and neuroplasticity by RT-qPCR, and motor performance assessment by the cylinder test. Quantitative and qualitative analyses of axonal fibres labelled by an anterograde neural tract tracer were performed. Ischaemic animals treated with BMMCs showed a significant increase in axonal sprouting in the ipsilateral neocortex and in the striatum contralateral to the injured cortical areas compared to untreated rodents. In BMMC-treated animals, there was a trend towards upregulation of the Neurotrophin-3 gene compared to the other genes, as well as modulation of apoptosis by BMMCs. On the 56th day after ischaemia, BMMC-treated animals showed significant improvement in motor performance compared to untreated rats. These results suggest that in the acute phase of ischaemia, Neurotrophin-3 is upregulated in response to the lesion itself. In the long run, therapy with BMMCs causes axonal sprouting, reconnection of damaged neuronal circuitry and a significant increase in motor performance.
Collapse
Affiliation(s)
- Maria de Fátima Dos Santos Sampaio
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Marcela Santana Bastos Boechat
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Igor Augusto Gusman Cunha
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Messias Gonzaga Pereira
- Laboratory of Plant Breeding of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| | - Arthur Giraldi-Guimarães
- Laboratory of Tissue and Cellular Biology, Centre of Biosciences and Biotechnology of Darcy Ribeiro Northern Fluminense State University (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Demyanenko S, Nikul V, Rodkin S, Davletshin A, Evgen'ev MB, Garbuz DG. Exogenous recombinant Hsp70 mediates neuroprotection after photothrombotic stroke. Cell Stress Chaperones 2021; 26:103-114. [PMID: 32870479 PMCID: PMC7736593 DOI: 10.1007/s12192-020-01159-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Ischaemic stroke is an acute interruption of the blood supply to the brain, which leads to rapid irreversible damage to nerve tissue. Ischaemic stroke is accompanied by the development of neuroinflammation and neurodegeneration observed around the affected brain area. Heat shock protein 70 (Hsp70) facilitates cell survival under a variety of different stress conditions. Hsp70 may be secreted from cells and exhibits cytoprotective activity. This activity most likely occurs by decreasing the levels of several proinflammatory cytokines through interaction with a few receptors specific to the innate immune system. Herein, we demonstrated that intranasal administration of recombinant human Hsp70 shows a significant twofold decrease in the volume of local ischaemia induced by photothrombosis in the mouse prefrontal brain cortex. Our results revealed that intranasal injections of recombinant Hsp70 decreased the apoptosis level in the ischaemic penumbra, stimulated axonogenesis and increased the number of neurons producing synaptophysin. Similarly, in the isolated crayfish stretch receptor, consisting of a single sensory neuron surrounded by the glial envelope, exogenous Hsp70 significantly decreased photoinduced apoptosis and necrosis of glial cells. The obtained data enable one to consider human recombinant Hsp70 as a promising compound that could be translated from the bench into clinical therapies.
Collapse
Affiliation(s)
- S Demyanenko
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - V Nikul
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - S Rodkin
- Laboratory "Molecular Neurobiology", Academy of Biology and Biotechnology, Southern Federal University, Prospect Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - A Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
5
|
Localization and Expression of Sirtuins 1, 2, 6 and Plasticity-Related Proteins in the Recovery Period after a Photothrombotic Stroke in Mice. J Stroke Cerebrovasc Dis 2020; 29:105152. [PMID: 32912518 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sirtuins, class III histone deacetylases, are involved in the regulation of tissue repair processes and brain functions after a stroke. The ability of some isoforms of sirtuins to circulate between the nucleus and cytoplasm may have various pathophysiological effects on the cells. In present work, we focused on the role of non-mitochondrial sirtuins SIRT1, SIRT2, and SIRT6 in the restoration of brain cells following ischemic stroke. Here, using a photothrombotic stroke (PTS) model in mice, we studied whether local stroke affects the level and intracellular localization of SIRT1, SIRT2, and SIRT6 in neurons and astrocytes of the intact cerebral cortex adjacent to the ischemic ipsilateral hemisphere and in the analogous region of the contralateral hemisphere at different time points during the recovery period after a stroke. We evaluated the co-localization of sirtuins with growth-associated protein-43 (GAP-43), the presynaptic marker synaptophysin (SYN) and acetylated α-tubulin (Ac-α-Tub), that are associated with brain plasticity and are known to be involved in brain repair after a stroke. The results show that during the recovery period, an increase in SIRT1 and SIRT2 levels occurred. The increase of SIRT1 level was associated with an increase in synaptic plasticity proteins, whereas the increase of SIRT2 level was associated with an acetylated of α-tubulin, that can reduce the mobility of neurites. SIRT6 co-localized with GAP-43, but not with SYN. Moreover, we showed that SIRT1, SIRT2, and SIRT6 are not involved in the PTS-induced apoptosis of penumbra cells. Taken together, our results suggest that sirtuins functions differ depending on cell type, intracellular localization, specificity of sirtuins isoforms to different substrates and nature of post-translational modifications of enzymes.
Collapse
|
6
|
Sandelius Å, Sandgren S, Axelsson M, Malmeström C, Novakova L, Kostanjevecki V, Vandijck M, Blennow K, Zetterberg H, Lycke J. Cerebrospinal fluid growth-associated protein 43 in multiple sclerosis. Sci Rep 2019; 9:17309. [PMID: 31754174 PMCID: PMC6872811 DOI: 10.1038/s41598-019-54032-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022] Open
Abstract
Neurodegeneration in multiple sclerosis (MS) correlates with disease progression and reparative processes may be triggered. Growth-associated protein 43 (GAP-43) exhibits induced expression during axonal growth and reduced expression during MS progression. We aimed to evaluate if GAP-43 can serve as a biomarker of regeneration in relapsing-remitting MS (RRMS) and whether disease-modifying therapies (DMTs) influence GAP-43 concentration in cerebrospinal fluid (CSF). GAP-43 was measured using an enzyme-linked immunosorbent assay in 105 MS patients (73 RRMS, 12 primary progressive MS, 20 secondary progressive MS) and 23 healthy controls (HCs). In 35 of the patients, lumbar puncture, clinical assessment, and magnetic resonance imaging was performed before initiation of therapeutic intervention, and at follow-up. CSF GAP-43 concentration was significantly lower in progressive MS compared with HCs (p = 0.004) and RRMS (p = < 0.001) and correlated negatively with disability (p = 0.026). However, DMTs did not alter CSF GAP-43. Interestingly, in RRMS CSF GAP-43 levels were higher in patients with signs of active inflammatory disease than in patients in remission (p = 0.042). According to CSF GAP-43 concentrations, regeneration seems reduced in progressive MS, increased during disease activity in RRMS but is unaffected by treatment of highly active DMTs.
Collapse
Affiliation(s)
- Åsa Sandelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Sofia Sandgren
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Markus Axelsson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Jan Lycke
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM R 2019; 10:S174-S188. [PMID: 30269804 DOI: 10.1016/j.pmrj.2018.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
Recovery of upper and lower limbs function is essential to reach independence in daily activities in patients with upper motor neuron syndrome (UMNS). Rehabilitation can provide a guide for motor recovery influencing the neurobiology of neuronal plasticity providing controlled, repetitive, and variable patterns. Increasing therapy dosage, intensity, number of repetition, execution of task-oriented exercises, and combining top-down and bottom-up approaches can promote plasticity and functional recovery. Robotic exoskeletons for upper and lower limbs, based on the principle of motor learning, have been introduced in neurorehabilitation. In this narrative review, we provide an overview of literature published on exoskeleton devices for upper and lower limb rehabilitation in patients with UMNS; we summarized the available current research evidence and outlined the new challenges that neurorehabilitation and bioengineering will have to face in the upcoming years. Robotic treatment should be considered a rehabilitation tool useful to generate a more complex, controlled multisensory stimulation of the patient and useful to modify the plasticity of neural connections through the experience of movement. Efficacy and efficiency of robotic treatment should be defined starting from intensity, complexity, and specificity of the robotic exercise, that are related to human-robot interaction in terms of motion, emotion, motivation, meaning of the task, feedback from the exoskeleton, and fine motion assistance. Duration of a single session, global period of the treatment, and the timing for beginning of robotic treatment are still open questions. There is the need to evaluate and individualize the treatment according to patient's characteristics. Robotic devices for upper and lower limbs open a window to define therapeutic modalities as possible beneficial drug, able to boost biological, neurobiological, and epigenetic changes in central nervous system. We need to implement large and innovative research programs to answer these issues in the near future.
Collapse
Affiliation(s)
- Franco Molteni
- Valduce Hospital "Villa Beretta" Rehabilitation Center, Costa Masnaga, Italy(∗)
| | - Giulio Gasperini
- Valduce Hospital "Villa Beretta" Rehabilitation Center, Costa Masnaga, Italy(†)
| | | | - Eleonora Guanziroli
- Valduce Hospital "Villa Beretta" Rehabilitation Center, Via N. Sauro 17, Costa Masnaga, Italy(§).
| |
Collapse
|
8
|
Fastigial nucleus electrostimulation promotes axonal regeneration after experimental stroke via cAMP/PKA pathway. Neurosci Lett 2019; 699:177-183. [PMID: 30753912 DOI: 10.1016/j.neulet.2019.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
Axon regeneration after cerebral ischemia in mammals is inadequate to restore function, illustrating the need to design better strategies for improving outcomes. Improvement of axon regeneration has been achieved through fastigial nucleus electrostimulation (FNS) in animal researches. However, the mechanisms underlying this neuroprotection remain poorly understood. Increasing the levels of the second messenger cyclic AMP (cAMP) enhances axon regeneration, making it an excellent candidate molecule that has therapeutic potential. In the present study, we examined the expression of cAMP signaling in ischemic brain tissues following focal cerebral ischemia. Adult rats were subjected to ischemia induced by middle cerebral artery occlusion (MCAO). A dipolar electrode was placed into the cerebellum to stimulate the cerebellar fastigial nucleus for 1 h after ischemia. Neurological deficits and the expressions of cAMP, PKA (protein kinase A) and ROCK (Rho-kinase) were determined. Axonal regeneration was measured by upregulation of growth-associated protein 43 (GAP43). The data indicated that FNS significantly enhanced axonal regeneration and motor function recovery after cerebral ischemia. FNS also significantly increased cAMP and PKA levels after ischemic brain injury. All the beneficial effects of FNS were blocked by Rp-cAMP, an antagonist of PKA. Our research suggested that the axonal regeneration conferred by FNS was likely achieved via the regulation of cAMP/PKA pathway.
Collapse
|
9
|
Sandelius Å, Cullen NC, Källén Å, Rosengren L, Jensen C, Kostanjevecki V, Vandijck M, Zetterberg H, Blennow K. Transient increase in CSF GAP-43 concentration after ischemic stroke. BMC Neurol 2018; 18:202. [PMID: 30526557 PMCID: PMC6284302 DOI: 10.1186/s12883-018-1210-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers reflect ongoing processes in the brain. Growth-associated protein 43 (GAP-43) is highly upregulated in brain tissue shortly after experimental ischemia suggesting the CSF GAP-43 concentration may be altered in ischemic brain disorders. CSF GAP-43 concentration is elevated in Alzheimer's disease patients; however, patients suffering from stroke have not been studied previously. METHODS The concentration of GAP-43 was measured in longitudinal CSF samples from 28 stroke patients prospectively collected on days 0-1, 2-4, 7-9, 3 weeks, and 3-5 months after ischemia and cross-sectionally in 19 controls. The stroke patients were clinically evaluated using a stroke severity score system. The extent of the brain lesion, including injury size and degrees of white matter lesions and atrophy were evaluated by CT and magnetic resonance imaging. RESULTS Increased GAP-43 concentration was detected from day 7-9 to 3 weeks after stroke, compared to day 1-4 and to levels in the control group (P = 0.02 and P = 0.007). At 3-5 months after stroke GAP-43 returned to admission levels. The initial increase in GAP-43 during the nine first days was associated to stroke severity, the degree of white matter lesions and atrophy and correlated positively with infarct size (rs = 0.65, P = 0.001). CONCLUSIONS The transient increase of CSF GAP-43 is important to take into account when used as a biomarker for other neurodegenerative diseases such as Alzheimer's disease. Furthermore, GAP-43 may be a marker of neuronal responses after stroke and additional studies confirming the potential of CSF GAP-43 to reflect severity and outcome of stroke in larger cohorts are warranted.
Collapse
Affiliation(s)
- Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Department of Psychiatry and Neurochemistry, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden.
| | - Nicholas C Cullen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Åsa Källén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Rosengren
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Crister Jensen
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute, WC1N, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden. .,Department of Psychiatry and Neurochemistry, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden.
| |
Collapse
|
10
|
Fernández-García L, Pérez-Rigueiro J, Martinez-Murillo R, Panetsos F, Ramos M, Guinea GV, González-Nieto D. Cortical Reshaping and Functional Recovery Induced by Silk Fibroin Hydrogels-Encapsulated Stem Cells Implanted in Stroke Animals. Front Cell Neurosci 2018; 12:296. [PMID: 30237762 PMCID: PMC6135908 DOI: 10.3389/fncel.2018.00296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023] Open
Abstract
The restitution of damaged circuitry and functional remodeling of peri-injured areas constitute two main mechanisms for sustaining recovery of the brain after stroke. In this study, a silk fibroin-based biomaterial efficiently supports the survival of intracerebrally implanted mesenchymal stem cells (mSCs) and increases functional outcomes over time in a model of cortical stroke that affects the forepaw sensory and motor representations. We show that the functional mechanisms underlying recovery are related to a substantial preservation of cortical tissue in the first days after mSCs-polymer implantation, followed by delayed cortical plasticity that involved a progressive functional disconnection between the forepaw sensory (FLs1) and caudal motor (cFLm1) representations and an emergent sensory activity in peri-lesional areas belonging to cFLm1. Our results provide evidence that mSCs integrated into silk fibroin hydrogels attenuate the cerebral damage after brain infarction inducing a delayed cortical plasticity in the peri-lesional tissue, this later a functional change described during spontaneous or training rehabilitation-induced recovery. This study shows that brain remapping and sustained recovery were experimentally favored using a stem cell-biomaterial-based approach.
Collapse
Affiliation(s)
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Ricardo Martinez-Murillo
- Department of Translational Neuroscience, Instituto Cajal – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, Madrid, Spain,Neural Plasticity Research Group, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain,Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Madrid, Spain,Departamento de Tecnología Fotónica y Bioingeniería, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain,*Correspondence: Daniel González-Nieto,
| |
Collapse
|
11
|
Powell MA, Black RT, Smith TL, Reeves TM, Phillips LL. Mild Fluid Percussion Injury Induces Diffuse Axonal Damage and Reactive Synaptic Plasticity in the Mouse Olfactory Bulb. Neuroscience 2018; 371:106-118. [PMID: 29203228 PMCID: PMC5809206 DOI: 10.1016/j.neuroscience.2017.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Despite the regenerative capacity of the olfactory bulb (OB), head trauma causes olfactory disturbances in up to 30% of patients. While models of olfactory nerve transection, olfactory receptor neuron (ORN) ablation, or direct OB impact have been used to examine OB recovery, these models are severe and not ideal for study of OB synaptic repair. We posited that a mild fluid percussion brain injury (mFPI), delivered over mid-dorsal cortex, would produce diffuse OB deafferentation without confounding pathology. Wild type FVB/NJ mice were subjected to mFPI and OB probed for ORN axon degeneration and onset of reactive synaptogenesis. OB extracts revealed 3 d postinjury elevation of calpain-cleaved 150-kDa αII-spectrin, an indicator of axon damage, in tandem with reduced olfactory marker protein (OMP), a protein specific to intact ORN axons. Moreover, mFPI also produced a 3-d peak in GFAP+ astrocyte and IBA1+ microglial reactivity, consistent with postinjury inflammation. OB glomeruli showed disorganized ORN axons, presynaptic degeneration, and glial phagocytosis at 3 and 7 d postinjury, all indicative of deafferentation. At 21 d after mFPI, normal synaptic structure re-emerged along with OMP recovery, supporting ORN afferent reinnervation. Robust 21 d postinjury upregulation of GAP-43 was consistent with the time course of ORN axon sprouting and synapse regeneration reported after more severe olfactory insult. Together, these findings define a cycle of synaptic degeneration and recovery at a site remote to non-contusive brain injury. We show that mFPI models diffuse ORN axon damage, useful for the study of time-dependent reactive synaptogenesis in the deafferented OB.
Collapse
Affiliation(s)
- Melissa A Powell
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Raiford T Black
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Terry L Smith
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, United States.
| |
Collapse
|
12
|
Lake EMR, Bazzigaluppi P, Stefanovic B. Functional magnetic resonance imaging in chronic ischaemic stroke. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0353. [PMID: 27574307 DOI: 10.1098/rstb.2015.0353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/12/2022] Open
Abstract
Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Evelyn M R Lake
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paolo Bazzigaluppi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada Heart and Stroke Foundation Centre for Stroke Recovery, Ottawa, Canada
| |
Collapse
|
13
|
Alia C, Spalletti C, Lai S, Panarese A, Lamola G, Bertolucci F, Vallone F, Di Garbo A, Chisari C, Micera S, Caleo M. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation. Front Cell Neurosci 2017; 11:76. [PMID: 28360842 PMCID: PMC5352696 DOI: 10.3389/fncel.2017.00076] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/03/2017] [Indexed: 12/21/2022] Open
Abstract
Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration.
Collapse
Affiliation(s)
- Claudia Alia
- CNR Neuroscience Institute, National Research Council (CNR)Pisa, Italy; Laboratory of Biology, Scuola Normale SuperiorePisa, Italy
| | | | - Stefano Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna Pontedera, Italy
| | - Alessandro Panarese
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna Pontedera, Italy
| | - Giuseppe Lamola
- Department of Neuroscience, Unit of Neurorehabilitation-University Hospital of Pisa Pisa, Italy
| | - Federica Bertolucci
- Department of Neuroscience, Unit of Neurorehabilitation-University Hospital of Pisa Pisa, Italy
| | - Fabio Vallone
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'AnnaPontedera, Italy; CNR Biophysics Institute, National Research Council (CNR)Pisa, Italy; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Italian institute of Technology (IIT)Rovereto, Italy
| | - Angelo Di Garbo
- CNR Biophysics Institute, National Research Council (CNR) Pisa, Italy
| | - Carmelo Chisari
- Department of Neuroscience, Unit of Neurorehabilitation-University Hospital of Pisa Pisa, Italy
| | - Silvestro Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'AnnaPontedera, Italy; Ecole Polytechnique Federale de Lausanne (EPFL), Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, Center for Neuroprosthetics and Institute of BioengineeringLausanne, Switzerland
| | - Matteo Caleo
- CNR Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
14
|
Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, Wang K, Cui J. Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Mol Med Rep 2017; 15:2374-2382. [DOI: 10.3892/mmr.2017.6223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/12/2017] [Indexed: 11/06/2022] Open
|
15
|
Li J, Liu CN, Wei N, Li XD, Liu YY, Yang R, Jia YJ. Protective effects of BAY 73-6691, a selective inhibitor of phosphodiesterase 9, on amyloid-β peptides-induced oxidative stress in in-vivo and in-vitro models of Alzheimer's disease. Brain Res 2016; 1642:327-335. [DOI: 10.1016/j.brainres.2016.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/06/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
|
16
|
Hasbani MJ, Underhill SM, De Erausquin G, Goldberg MP. Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia? Neuroscientist 2016. [DOI: 10.1177/107385840000600208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known of the mechanisms governing functional recovery after ischemic brain injury, and there is no clinical therapy established to restore neurologic function after ischemic injury is complete. Even so, pronounced spontaneous recovery of function is often observed in a subset of patients. Resolution of neurological deficits after ischemia must occur through replacement of lost tissue via production of new neurons, or through changes in the structure, function, or connectivity of surviving neurons. This review focuses on the neuronal synapse as a potential locus for functional recovery. Selective disruption of synaptic elements is a characteristic feature of hypoxic-ischemic brain injury, such as that seen in ischemic stroke or cardiac arrest. Ischemic damage to synapses occurs even in the absence of neuronal loss, and therefore might underlie the clinical disability observed in patients following mild or transient ischemia. We review evidence that recovery of lost synapses occurs after ischemic injury and that this recovery may be a necessary step for restoration of neurological function. The process of synapse loss and recovery can be examined in neuronal cultures and experimental stroke models. Such studies may help to gain a better understanding of the extracellular factors and intracellular cascades that facilitate recovery of synapses, and may result in therapeutic approaches to improve function after cerebral ischemia.
Collapse
Affiliation(s)
- M. Josh Hasbani
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M. Underhill
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel De Erausquin
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Mark P. Goldberg
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
18
|
Temporal pattern of neurodegeneration, programmed cell death, and neuroplastic responses in the thalamus after lateral fluid percussion brain injury in the rat. J Neuropathol Exp Neurol 2015; 74:512-26. [PMID: 25933386 DOI: 10.1097/nen.0000000000000194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The effects of traumatic brain injury (TBI) on the thalamus are not well characterized. We analyzed neuronal degeneration and loss, apoptosis, programmed cell death-executing pathways, and neuroplastic responses in the rat thalamus during the first week after lateral fluid percussion injury (LFPI). The most prominent neurodegenerative and neuroplastic changes were observed in the region containing the posterior thalamic nuclear group and ventral posteromedial and posterolateral thalamic nuclei ipsilateral to the LFPI. There was progressive neurodegeneration in these regions, with maximal neuronal loss on Day 7. Increases in numbers of apoptotic cells were detected on Day 1 and were enhanced on Days 3 and 7 after TBI. There was unchanged expression of active caspase-3 at all postinjury time points, but there was increased expression of apoptosis-inducing factor (AIF) on Day 7. The AIF nuclear translocation was detected on Day 1 and was maximal on Day 7. Total thalamic synaptophysin expression was unchanged, but immunostaining intensities were increased at all time points after TBI. Decreased growth-associated protein-43 expression and signal intensity were observed on Day 1. Our results suggest that progressive neuronal damage and loss, AIF signaling pathway-dependent programmed cell death, and limited neuroplastic changes occur in the rat thalamus during the first week after LFPI induction.
Collapse
|
19
|
Gorup D, Bohaček I, Miličević T, Pochet R, Mitrečić D, Križ J, Gajović S. Increased expression and colocalization of GAP43 and CASP3 after brain ischemic lesion in mouse. Neurosci Lett 2015; 597:176-82. [PMID: 25929184 DOI: 10.1016/j.neulet.2015.04.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022]
Abstract
GAP43 is a protein involved in neurite outgrowth during development and axon regeneration reflecting its presynaptic localization in developing neurons. Recently, it has been demonstrated that GAP43 is a ligand of CASP3 involved in receptor endocytosis and is also localized post-synaptically. In this study, by using a transgenic mouse strain carrying a bioluminescent reporter for GAP43 combined with an in vivo bioluminescence assay for CASP3, we demonstrated that one day after brain ischemic lesion and, even more pronounced, four days after stroke, expression of both CASP3 and Gap43 in neurons increased more than 40 times. The in vivo approach of CASP3 and GAP43 colocalization imaging was further validated and quantified by immunofluorescence. Importantly, in 82% of GAP43 positive cells, colocalization with CASP3 was present. These findings suggested that one and four days after stroke CASP3 expression, not necessarily associated with neuronal death, increased and suggested that CASP3 and GAP43 might be part of a common molecular pathway involved in early response to ischemic events occurring after onset of stroke.
Collapse
Affiliation(s)
- Dunja Gorup
- Laboratory for Neurogenetics and Developmental Genetics, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, Zagreb HR-10000, Croatia.
| | - Ivan Bohaček
- Laboratory for Neurogenetics and Developmental Genetics, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, Zagreb HR-10000, Croatia.
| | - Tena Miličević
- Laboratory for Neurogenetics and Developmental Genetics, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, Zagreb HR-10000, Croatia.
| | - Roland Pochet
- Laboratory for Neurogenetics and Developmental Genetics, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, Zagreb HR-10000, Croatia; Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Brussels B-1070, Belgium.
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, Zagreb HR-10000, Croatia.
| | - Jasna Križ
- Research Centre of Institute universitaire en santé mentale and Department of Psychiatry and Neuroscience, Laval University, Quebec City G1J2G3a, Canada.
| | - Srećko Gajović
- Laboratory for Neurogenetics and Developmental Genetics, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, Zagreb HR-10000, Croatia.
| |
Collapse
|
20
|
Xu Y, Du S, Yu X, Han X, Hou J, Guo H. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats. Neural Regen Res 2015; 9:2053-8. [PMID: 25657721 PMCID: PMC4316468 DOI: 10.4103/1673-5374.147930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Shiwei Du
- Department of Neurosurgery, General Hospital of Armed Police Forces, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Xiao Han
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Jincai Hou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Hao Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| |
Collapse
|
21
|
Abstract
Reorganization of the cortex post stroke is dependent not only on the lesion site but also on remote brain areas that have structural connections with the area damaged by the stroke. Motor recovery is largely dependent on the intact cortex adjacent to the infarct, which points out the importance of preserving the penumbral areas. There appears to be a priority setting with contralateral and ipsilateral motor pathways, with ipsilateral (unaffected hemisphere) pathways only becoming prominent after more severe strokes where functional contralateral (affected hemisphere) pathways are unable to recover. Ipsilateral or unaffected hemisphere motor pathway activation is therefore associated with a worse prognosis.
Collapse
Affiliation(s)
- Robert Teasell
- Department of Physical Medicine and Rehabilitation, St. Joseph's Health Care and the University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
22
|
Gadd45b Mediates Axonal Plasticity and Subsequent Functional Recovery After Experimental Stroke in Rats. Mol Neurobiol 2014; 52:1245-1256. [DOI: 10.1007/s12035-014-8909-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/28/2014] [Indexed: 01/25/2023]
|
23
|
Jiang Z, Wang Y, Zhang X, Peng T, Lu Y, Leng J, Xie Q. Preventive and therapeutic effects of ginsenoside Rb1 for neural injury during cerebral infarction in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:341-52. [PMID: 23548124 DOI: 10.1142/s0192415x13500250] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To examine the preventive and therapeutic effects of ginsenoside Rb1 for neural injury during cerebral infarction, we used a middle cerebral artery occlusion (MCAO) model in rats to investigate the effects of ginsenoside Rb1 with Edaravone as a control. Ginsenoside Rb1 was given to the rats by intragastric administration either before or after the MCAO surgery to study its preventive and therapeutic effects. Ginsenoside Rb1-treated rats had a smaller infarct volume than the positive control. Interleukin-1 (IL-1), brain-derived neurotrophic factor (BDNF), tumor necrosis factor-α (TNF-α), neurofilament (NF) and growth associated protein-43 (GAP-43) were measured to determine brain damage and the recovery of nerves. These findings suggest that ginsenoside Rb1 has neuroprotective effects in rats, and the protection efficiency is higher than Edaravone. The protective mechanism is different from Edaravone. The preventive ability of ginsenoside Rb1 is higher than its repair ability in neuroprotection in vivo.
Collapse
Affiliation(s)
- Zhou Jiang
- Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | | | | | | | | | | | | |
Collapse
|
24
|
Starkey ML, Bleul C, Zörner B, Lindau NT, Mueggler T, Rudin M, Schwab ME. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Brain 2012; 135:3265-81. [DOI: 10.1093/brain/aws270] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Urban ETR, Bury SD, Barbay HS, Guggenmos DJ, Dong Y, Nudo RJ. Gene expression changes of interconnected spared cortical neurons 7 days after ischemic infarct of the primary motor cortex in the rat. Mol Cell Biochem 2012; 369:267-86. [PMID: 22821175 PMCID: PMC3694431 DOI: 10.1007/s11010-012-1390-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/07/2012] [Indexed: 12/11/2022]
Abstract
After cortical injury resulting from stroke, some recovery can occur and may involve spared areas of the cerebral cortex reorganizing to assume functions previously controlled by the damaged cortical areas. No studies have specifically assessed gene expression changes in remote neurons with axonal processes that terminate in the infarcted tissue, i.e., the subset of neurons most likely to be involved in regenerative processes. By physiologically identifying the primary motor area controlling forelimb function in adult rats (caudal forelimb area = CFA), and injecting a retrograde tract-tracer, we labeled neurons within the non-primary motor cortex (rostral forelimb area = RFA) that project to CFA. Then, 7 days after a CFA infarct (n = 6), we used laser capture microdissection techniques to harvest labeled neurons in RFA. Healthy, uninjured rats served as controls (n = 6). Biological interactions and functions of gene profiling were investigated by Affymetrix Microarray, and Ingenuity Pathway Analysis. A total of 143 up- and 128 down-regulated genes showed significant changes (fold change ≥1.3 and p < 0.05). The canonical pathway, "Axonal Guidance Signaling," was overrepresented (p value = 0.002). Significantly overrepresented functions included: branching of neurites, organization of cytoskeleton, dendritic growth and branching, organization of cytoplasm, guidance of neurites, development of cellular protrusions, density of dendritic spines, and shape change (p = 0.000151-0.0487). As previous studies have shown that spared motor areas are important in recovery following injury to the primary motor area, the results suggest that these gene expression changes in remote, interconnected neurons may underlie reorganization and recovery mechanisms.
Collapse
Affiliation(s)
- Edward T. R. Urban
- Department of Molecular & Integrative Physiology, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 3043, Kansas City, KS 66160, USA. Landon Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 1005, Kansas City, KS 66160, USA
| | - Scott D. Bury
- Landon Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 1005, Kansas City, KS 66160, USA
| | - H. Scott Barbay
- Landon Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 1005, Kansas City, KS 66160, USA
| | - David J. Guggenmos
- Department of Molecular & Integrative Physiology, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 3043, Kansas City, KS 66160, USA. Landon Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 1005, Kansas City, KS 66160, USA
| | - Yafeng Dong
- Department of Obstetrics and Gynecology, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 2028, Kansas City, KS 66160, USA
| | - Randolph J. Nudo
- Department of Molecular & Integrative Physiology, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 3043, Kansas City, KS 66160, USA. Landon Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 1005, Kansas City, KS 66160, USA. Intellectual & Developmental Disabilities Research Center, Kansas University Medical Center, 3901 Rainbow Boulevard, Mail Stop 3051, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Nogo-A is associated with secondary degeneration of substantia nigra in hypertensive rats with focal cortical infarction. Brain Res 2012; 1469:153-63. [DOI: 10.1016/j.brainres.2012.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
|
27
|
Choi DH, Lee KH, Kim JH, Kim MY, Lim JH, Lee J. Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult. Biochem Biophys Res Commun 2012; 422:274-9. [PMID: 22580279 DOI: 10.1016/j.bbrc.2012.04.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We previously reported that 710 nm Light-emitting Diode (LED) has a protective effect through cellular immunity activation in the stroke animal model. However, whether LED directly protects neurons suffering from neurodegeneration was entirely unknown. Therefore, we sought to determine the effects of 710 nm visible light irradiation on neuronal protection and neuronal outgrowth in an in vitro stroke model. MATERIALS & METHODS Primary cultured rat cortical neurons were exposed to oxygen-glucose deprivation (OGD) and reoxygenation and normal conditions. An LED array with a peak wavelength of 710 nm was placed beneath the covered culture dishes with the room light turned off and were irradiated accordingly. LED treatments (4 min at 4 J/cm(2) and 50 mW/cm(2)) were given once to four times within 8h at 2h intervals for 7 days. Mean neurite density, mean neurite diameter, and total fiber length were also measured after microtubule associated protein 2 (MAP2) immunostaining using the Axio Vision program. Synaptic marker expression and MAPK activation were confirmed by Western blotting. RESULTS Images captured after MAP2 immunocytochemistry showed significant (p<0.05) enhancement of post-ischemic neurite outgrowth with LED treatment once and twice a day. MAPK activation was enhanced by LED treatment in both OGD-exposed and normal cells. The levels of synaptic markers such as PSD 95, GAP 43, and synaptophysin significantly increased with LED treatment in both OGD-exposed and normal cells (p<0.05). CONCLUSION Our data suggest that LED treatment may promote synaptogenesis through MAPK activation and subsequently protect cell death in the in vitro stroke model.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
In the human brain, ≈30% of the energy is spent on synaptic transmission. Disappearance of synaptic activity is the earliest consequence of cerebral ischemia. The changes of synaptic function are generally assumed to be reversible and persistent damage is associated with membrane failure and neuronal death. However, there is overwhelming experimental evidence of isolated, but persistent, synaptic failure resulting from mild or moderate cerebral ischemia. Early failure results from presynaptic damage with impaired transmitter release. Proposed mechanisms include dysfunction of adenosine triphosphate-dependent calcium channels and a disturbed docking of glutamate-containing vesicles resulting from impaired phosphorylation. We review energy distribution among neuronal functions, focusing on energy usage of synaptic transmission. We summarize the effect of ischemia on neurotransmission and the evidence of long-lasting synaptic failure as a cause of persistent symptoms in patients with cerebral ischemia. Finally, we discuss the implications of synaptic failure in the diagnosis of cerebral ischemia, including the limited sensitivity of diffusion-weighted MRI in those cases in which damage is presumably limited to the synapses.
Collapse
Affiliation(s)
- Jeannette Hofmeijer
- Department of Neurology, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, The Netherlands.
| | | |
Collapse
|
29
|
Gravel M, Weng YC, Kriz J. Model System for Live Imaging of Neuronal Responses to Injury and Repair. Mol Imaging 2011. [DOI: 10.2310/7290.2011.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it has been well established that induction of growth-associated protein-43 (GAP-43) during development coincides with axonal outgrowth and early synapse formation, the existence of neuronal plasticity and neurite outgrowth in the adult central nervous system after injuries is more controversial. To visualize the processes of neuronal injury and repair in living animals, we generated reporter mice for bioluminescence and fluorescence imaging bearing the luc (luciferase) and gfp (green fluorescent protein) reporter genes under the control of the murine GAP-43 promoter. Reporter functionality was first observed during the development of transgenic embryos. Using in vivo bioluminescence and fluorescence imaging, we visualized induction of the GAP-43 signals from live embryos starting at E10.5, as well as neuronal responses to brain and peripheral nerve injuries (the signals peaked at 14 days postinjury). Moreover, three-dimensional analysis of the GAP-43 bioluminescent signal confirmed that it originated from brain structures affected by ischemic injury. The analysis of fluorescence signal at cellular level revealed colocalization between endogenous protein and the GAP-43-driven gfp transgene. Taken together, our results suggest that the GAP-43-luc/gfp reporter mouse represents a valid model system for real-time analysis of neurite outgrowth and the capacity of the adult nervous system to regenerate after injuries.
Collapse
Affiliation(s)
- Mathieu Gravel
- From the Department of Psychiatry and Neuroscience, Laval University, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, QC
| | - Yuan-Cheng Weng
- From the Department of Psychiatry and Neuroscience, Laval University, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, QC
| | - Jasna Kriz
- From the Department of Psychiatry and Neuroscience, Laval University, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, QC
| |
Collapse
|
30
|
Epsztein J, Ben-Ari Y, Represa A, Crépel V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 2007; 14:78-90. [PMID: 17914086 DOI: 10.1177/1073858407301681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients surviving ischemic stroke often express delayed epileptic syndromes. Late poststroke seizures occur after a latency period lasting from several months to years after the insult. These seizures might result from ischemia-induced neuronal death and associated morphological and physiological changes that are only partly elucidated. This review summarizes the long-term morphofunctional alterations observed in animal models of both focal and global ischemia that could explain late-onset seizures and epileptogenesis. In particular, this review emphasizes the change in GABAergic and glutamatergic signaling leading to hyperexcitability and seizure genesis.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, and Université de La Méditerranée, Marseille Cedex, France
| | | | | | | |
Collapse
|
31
|
Yang H, Chopp M, Weiland B, Zhang X, Tepley N, Jiang F, Schallert T. Sensorimotor deficits associated with brain tumor progression and tumor-induced brain plasticity mechanisms. Exp Neurol 2007; 207:357-67. [PMID: 17706196 DOI: 10.1016/j.expneurol.2007.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 06/13/2007] [Accepted: 07/05/2007] [Indexed: 01/07/2023]
Abstract
The objective of this study was to investigate functional deficits and reactive peri-tumoral brain plasticity events in glioma-bearing rats. 9L gliosarcoma cells were implanted into the forelimb region of the sensorimotor cortex in Fischer rats. Control animals underwent the same operation without tumor implantation. Sensitive tests for detecting sensorimotor dysfunction, including forelimb-use asymmetry, somatosensory asymmetry, and vibrissae-evoked forelimb placing tests, were conducted. We found that tumor-bearing animals exhibited significant composite behavioral deficits on day 14 post-tumor injection compared to surgical controls. With the assistance of magnetic resonance imaging, we demonstrated a significant correlation between tumor volume and magnitude of somatosensory asymmetry, indicating that the somatosensory asymmetry test can provide an effective and efficient means to measure and predict tumor progression. Histopathological assessments were performed after the rats were sacrificed 14 days following tumor implantation. Immunostaining revealed that densities of microtubule-associated protein 2, glial fibrillary acid protein, von Willebrand factor, and synaptophysin were all significantly upregulated in the peri-tumoral area, compared to the corresponding region in surgical controls, suggesting synaptic plasticity, astrocyte activation and angiogenesis in response to tumor insult. Understanding the behavioral and bystander cellular events associated with tumor progression may lead to improved evaluation and development of new brain tumor treatments that promote, or at least do not interfere with, functional adaptation.
Collapse
Affiliation(s)
- Hongyan Yang
- Institute for Neuroscience and Department of Psychology, University of Texas at Austin, 1 University Station, #A8000, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Davis EJH, Coyne C, McNeill TH. Intrastriatal dopamine D1 antagonism dampens neural plasticity in response to motor cortex lesion. Neuroscience 2007; 146:784-91. [PMID: 17331653 PMCID: PMC1955381 DOI: 10.1016/j.neuroscience.2007.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/10/2007] [Accepted: 01/23/2007] [Indexed: 11/24/2022]
Abstract
Motor cortex lesions in rats partially denervate the striatum, producing behavioral deficits and inducing reactive neuroplasticity. Plastic responses include changes in growth-associated protein marker expression and anatomical restructuring. Corticostriatal plasticity is dependent on dopamine at the striatal target, where D1 receptor signaling reinforces behaviorally relevant neural activity. To determine whether striatal dopamine D1 receptor signaling is important for the growth-associated protein responses and behavioral recovery that follow unilateral motor cortex aspiration, the dopamine D1 receptor antagonist SCH23390 was intrastriatally infused in cortically lesioned animals. After a cortical aspiration lesion in Long Evans rats, the growth-associated proteins SCG10 and GAP-43 were upregulated in the cortex contralateral to the lesion at 30 days post-lesion. However, continuous unilateral intrastriatal infusion of SCH23390 prevented this aspiration-induced upregulation. Furthermore, lesioned rats demonstrated spontaneous sensorimotor improvement, in terms of limb-use symmetry, about 1 month post-lesion. This improvement was prevented with chronic intrastriatal SCH23390 infusion. The D1 receptor influence may be important to normalize corticostriatal activity (and observable behavior), either in a long-term manner or temporarily until other more permanent means of synaptic regulation, such as sprouting or synaptogenesis, may be implemented.
Collapse
Affiliation(s)
- E J H Davis
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
33
|
Dijk F, Bergen AAB, Kamphuis W. GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage. Exp Eye Res 2007; 84:858-67. [PMID: 17343850 DOI: 10.1016/j.exer.2007.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/14/2006] [Accepted: 01/12/2007] [Indexed: 01/08/2023]
Abstract
In response to injury, the adult mammalian retina shows signs of structural remodeling, possibly in an attempt to preserve or regain some of its functional neural connections. In order to study the mechanisms involved in injury-induced plasticity, we have studied changes in growth associated protein 43 (GAP-43) after retinal ischemia/reperfusion in the rat. GAP-43 is a marker for neuronal remodeling and is involved in synapse formation. Ischemic injury of the rat retina was induced by 60 min of ischemia followed by reperfusion times varying from 2h up to 4 weeks. GAP-43 mRNA levels were significantly increased between 12h and 72 h reperfusion with a peak around 24h. GAP-43 specific antibodies showed that the total amount of GAP-43 labeling in the inner plexiform layer was diminished after 12h of reperfusion by approximately 35% and remained at this level up to 1 week postischemia despite the reduction in thickness of this layer during this period resulting from the ischemia-induced cell loss. At 2 and 4 weeks reperfusion, the amount of labeling was reduced by 70%, simultaneously with a decrease of GAP-43 transcript level. Between 72 h up to 2 weeks postischemia, the induction of intense GAP-43 labeling was observed in NeuN- and beta-tubulin-positive ganglion cell somata and in horizontally and vertically oriented processes in the inner plexiform layer. Ischemia also induced GAP-43 expression in some GFAP-positive Müller cells. Double-labeling showed that in controls and after ischemia GAP-43 was expressed by some amacrine cells of the glycinergic (glycine transporter 1), calretinin-positive, and dopaminergic (tyrosine hydroxylase) subpopulations. No increase of GAP-43 expression levels was found in these amacrine cells. The results demonstrate that ganglion cells show an elevated expression of GAP-43 after ischemia-inflicted damage. These findings suggest a temporal window during which ganglion cells may remodel their neuronal network in the damaged retina.
Collapse
Affiliation(s)
- Frederike Dijk
- Molecular Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN), KNAW, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Jander S, Lausberg F, Stoll G. Differential recruitment of CD8+ macrophages during Wallerian degeneration in the peripheral and central nervous system. Brain Pathol 2006; 11:27-38. [PMID: 11145201 PMCID: PMC8098487 DOI: 10.1111/j.1750-3639.2001.tb00378.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The strong macrophage response occurring during Wallerian degeneration in the peripheral but not central nervous system has been implicated in tissue remodeling and growth factor production as key requirements for successful axonal regeneration. We have previously identified a population of CD8+ phagocytes in ischemic brain lesions that differed in its recruitment pattern from CD4+ macrophages/microglia found in other lesion paradigms. In the present study we show that crush injury to the sciatic nerve induced strong infiltration by CD8+ macrophages both at the crush site and into the degenerating distal nerve stump. At the crush site, CD8+ macrophages appeared within 24 hours whereas infiltration of the distal nerve parenchyma was delayed to the second week. CD8+ macrophages were ED1+ and CD11b+ but always MHC class II-. Most CD8+ macrophages coexpressed CD4 while a significant number of CD4+/CD8-macrophages was also present. Expression of the resident tissue macrophage marker ED2 was largely restricted to the CD4+/CD8- population. Following intraorbital crush injury to the optic nerve, infiltration of CD8+ macrophages was strictly confined to the crush site. Taken together, our study demonstrates considerable spatiotemporal diversity of CD8+ macrophage responses to axotomy in the peripheral and central nervous system that may have implications for the different extent of axonal regeneration observed in both systems.
Collapse
Affiliation(s)
- S Jander
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | |
Collapse
|
35
|
Karhunen H, Jolkkonen J, Sivenius J, Pitkänen A. Epileptogenesis after experimental focal cerebral ischemia. Neurochem Res 2006; 30:1529-42. [PMID: 16362772 DOI: 10.1007/s11064-005-8831-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2005] [Indexed: 12/01/2022]
Abstract
Cerebrovascular diseases are one of the most common causes of epilepsy in adults, and the incidence of stroke-induced epileptogenesis is increasing as the population ages. The mechanisms that lead to stroke-induced epileptogenesis in a subpopulation of patients, however, are still poorly understood. Recent advances in inducing epileptogenesis in rodent focal ischemia models have provided tools that can be used to identify the risk factors and neurobiologic changes leading to development of epilepsy after stroke. Here we summarize data from models in which epileptogenesis has been studied after focal ischemia; photothrombosis, middle cerebral artery (MCA) occlusion with filament, and endothelin-1-induced MCA occlusion. Analysis of the data indicates that neurobiologic changes occurring during stroke-induced epileptogenesis share some similarities to those induced by status epilepticus or traumatic brain injury.
Collapse
Affiliation(s)
- Heli Karhunen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | | | | | | |
Collapse
|
36
|
Hughes-Davis EJ, Cogen JP, Jakowec MW, Cheng HW, Grenningloh G, Meshul CK, McNeill TH. Differential regulation of the growth-associated proteins GAP-43 and superior cervical ganglion 10 in response to lesions of the cortex and substantia nigra in the adult rat. Neuroscience 2005; 135:1231-9. [PMID: 16165289 DOI: 10.1016/j.neuroscience.2005.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/15/2005] [Accepted: 07/03/2005] [Indexed: 11/23/2022]
Abstract
Investigation of the elements underlying synapse replacement after brain injury is essential for predicting the neural compensation that can be achieved after various types of damage. The growth-associated proteins superior cervical ganglion-10 and growth-associated protein-43 have previously been linked with structural changes in the corticostriatal system in response to unilateral deafferentation. To examine the regulation of this response, unilateral cortical aspiration lesion was carried out in combination with ipsilateral 6-hydroxydopamine lesion of the substantia nigra, and the time course of the contralateral cortical molecular response was followed. Unilateral cortical aspiration lesion in rats corresponds with an upregulation of superior cervical ganglion-10 mRNA at 3 and 10 days post-lesion, and protein, sustained from three to at least 27 days following lesion. With the addition of substantia nigra lesion, the response shifts to an upregulation of growth-associated protein-43 mRNA at 3 and 10 days post-lesion, and protein after 10 days. Nigral lesion alone does not alter contralateral expression of either gene. Likewise, motor function assessment using the rotorod test revealed no significant long-term deficits in animals that sustained only nigrostriatal damage, but cortical lesion was associated with a temporary deficit which was sustained when nigrostriatal input was also removed. Growth-associated protein-43 and superior cervical ganglion-10, two presynaptic genes that are postulated to play roles in lesion-induced sprouting, are differentially upregulated in corticostriatal neurons after cortical versus combined cortical/nigral lesions. The shift in contralateral gene response from superior cervical ganglion-10 to growth-associated protein-43 upregulation and associated behavioral deficit following combined cortical and nigral denervation suggest that nigrostriatal afferents regulate cortical lesion-induced gene expression and ultimate functional outcome.
Collapse
Affiliation(s)
- E J Hughes-Davis
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Haynes RL, Borenstein NS, Desilva TM, Folkerth RD, Liu LG, Volpe JJ, Kinney HC. Axonal development in the cerebral white matter of the human fetus and infant. J Comp Neurol 2005; 484:156-67. [PMID: 15736232 DOI: 10.1002/cne.20453] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
After completion of neuronal migration to form the cerebral cortex, axons undergo rapid elongation to their intra- and subcortical targets, from midgestation through infancy. We define axonal development in the human parietal white matter in this critical period. Immunocytochemistry and Western blot analysis were performed on 46 normative cases from 20-183 postconceptional (PC) weeks. Anti-SMI 312, a pan-marker of neurofilaments, stained axons as early as 23 weeks. Anti-SMI 32, a marker for nonphosphorylated neurofilament high molecular weight (NFH), primarily stained neuronal cell bodies (cortical, subcortical, and Cajal-Retzius). Anti-SMI 31, which stains phosphorylated NFH, was used as a marker of axonal maturity, and showed relatively low levels of staining (approximately one-fourth of adult levels) from 24-34 PC weeks. GAP-43, a marker of axonal growth and elongation, showed high levels of expression in the white matter from 21-64 PC weeks and lower, adult-like levels beyond 17 postnatal months. The onset of myelination, as seen by myelin basic protein expression, was approximately 54 weeks, with progression to "adult-like" staining by 72-92 PC weeks. This study provides major insight into axonal maturation during a critical period of growth, over an age range not previously examined and one coinciding with the peak period of periventricular leukomalacia (PVL), the major disorder underlying cerebral palsy in premature infants. These data suggest that immature axons are susceptible to damage in PVL and that the timing of axonal maturation must be considered toward establishing its pathology relative to the oligodendrocyte/myelin/axonal unit.
Collapse
Affiliation(s)
- Robin L Haynes
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kamada H, Hayashi T, Sato K, Iwai M, Nagano I, Shoji M, Abe K. Up-regulation of low-density lipoprotein receptor expression in the ischemic core and the peri-ischemic area after transient MCA occlusion in rats. ACTA ACUST UNITED AC 2005; 134:181-8. [PMID: 15836915 DOI: 10.1016/j.molbrainres.2004.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/05/2004] [Accepted: 10/17/2004] [Indexed: 10/25/2022]
Abstract
Low-density lipoprotein (LDL) receptor is involved in cholesterol metabolism of CNS as a receptor of apolipoprotein E (ApoE), which plays an important role in regenerative process after brain ischemia. Temporal and spatial changes of LDL receptor were investigated after 90 min of transient middle cerebral artery occlusion (MCAO) in relation to those of microtubule-associated protein 2 (MAP2) and ApoE. In the ischemic core, LDL receptor became positive at 1 d after transient MCAO, which was not double positive for MAP2 or ApoE, and disappeared in 7 and 56 d. In the peri-ischemic area, LDL receptor became observed at 7 d, which peaked at 21 d, most of which were double positive for MAP2. The number of LDL receptor and ApoE double-positive cells increased at 7 d and decreased at 21 d with the shift of LDL receptor immunoreactivity from cytoplasm at 7 d to dendrites at 21 d in the peri-ischemic area. These results suggest that LDL receptor, interacting with ApoE, is profoundly involved in lipid transport of CNS for tissue repair in the peri-ischemic area after brain ischemia.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Gonzalez CLR, Gharbawie OA, Williams PT, Kleim JA, Kolb B, Whishaw IQ. Evidence for bilateral control of skilled movements: ipsilateral skilled forelimb reaching deficits and functional recovery in rats follow motor cortex and lateral frontal cortex lesions. Eur J Neurosci 2004; 20:3442-52. [PMID: 15610177 DOI: 10.1111/j.1460-9568.2004.03751.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Unilateral damage to cortical areas in the frontal cortex produces sensorimotor deficits on the side contralateral to the lesion. Although there are anecdotal reports of bilateral deficits after stroke in humans and in experimental animals, little is known of the effects of unilateral lesions on the same side of the body. The objective of the present study was to make a systematic examination of the motor skills of the ipsilateral forelimb after frontal cortex lesions to either the motor cortex by devascularization of the surface blood vessels (pial stroke), or to the lateral cortex by electrocoagulation of the distal branches of the middle cerebral artery (MCA stroke). Plastic processes in the intact hemisphere were documented using Golgi-Cox dendritic analysis and by intracortical microstimulation analysis. Although tests of reflexive responses in forelimb placing identified a contralateral motor impairment following both cortical lesions, quantitative and qualitative measures of skilled reaching identified a severe ipsilateral impairment from which recovery was substantial but incomplete. Golgi-impregnated pyramidal cells in the forelimb area showed an increase in dendritic length and branching. Electrophysiological mapping showed normal size forelimb representations in the lesioned rats relative to control animals. The finding of an enduring ipsilateral impairment in skilled movement is consistent with a large but more anecdotal literature in rats, nonhuman primates and humans, and suggests that plastic changes in the intact hemisphere are related to that hemisphere's contribution to skilled movement.
Collapse
Affiliation(s)
- Claudia L R Gonzalez
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
We compared the effects of three models of permanent ischemia, as well as cortical aspiration, on behaviour and brain morphology. Rats received a stroke either by devascularization or by two different procedures of medial cerebral artery occlusion (MCAO; small vs. large). Animals were trained in a reaching task, forepaw asymmetry, forepaw inhibition, sunflower seed task and tongue extension. Behaviour was assessed 1 week after the lesion and at 2-week intervals for a total of 9 weeks. One week after the surgery all animals were severely impaired on all tasks and although they improved over time they only reached preoperative base lines on tongue extension. Animals with small MCAOs performed better in reaching and sunflower tasks; no other behavioural differences were detected among the groups. Pyramidal cells in forelimb and cingulate areas as well as spiny neurons of the striatum were examined for dendritic branching and spine density using a Golgi-Cox procedure. Each lesion type had a different impact on cell morphology. Overall, different changes (atrophy or hypertrophy) were observed with each kind of lesion and these changes were specific for the region (forelimb, cingulate, striatum) and the condition (intact vs. damaged hemisphere). These results suggest that: (i) different lesions to the motor cortex produce subtle differences in behaviour, and (ii) the method used to induce the lesion produces striking differences in cortical and subcortical plasticity.
Collapse
Affiliation(s)
- C L R Gonzalez
- Department of Psychology and Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada.
| | | |
Collapse
|
41
|
Abstract
Growth associated protein 43 (GAP 43) is involved in synapse formation and it is expressed in the retina in a very specific pattern. Although GAP 43 is downregulated at the time of synapse formation, it can be re-expressed following injury such as axotomy or ischemia. Because of this we sought to characterize the expression of GAP 43 after retinal detachment (RD). Immunoblot, immunocytochemical and quantitative polymerase chain reaction (QPCR) techniques were used to assess the level of GAP 43 expression after experimental RD. GAP 43 was localized to three sublaminae of the inner plexiform layer of the normal retina. GAP 43 became upregulated in a subset of retinal ganglion cells following at least 7 days of RD. By immunoblot GAP 43 could be detected by 3 days. QPCR shows the upregulation of GAP 43 message by 6hr of detachment. To further characterize changes in ganglion cells, we used an antibody to neurofilament 70 and 200kDa (NF) proteins. Anti-NF labels horizontal cells, ganglion cell dendrites in the inner plexiform layer, and ganglion cell axons (fasicles) in the normal retina. Following detachment it is upregulated in horizontal cells and ganglion cells. When detached retina was double labelled with anti-GAP 43 and anti-NF, some cells were labelled with both markers, while others labelled with only one. We have previously shown that second order neurons respond to detachment; here we show that third order neurons are responding as well. Cellular remodelling of this type in response to detachment may explain the slow recovery of vision that often occurs after reattachment, or those changes that are often assumed to be permanent.
Collapse
Affiliation(s)
- Francie E Coblentz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
42
|
Nudo RJ. Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 2003; 14:S57-76. [PMID: 12625638 DOI: 10.1016/s1047-9651(02)00054-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several studies have now demonstrated that the motor cortical representations are dynamically maintained in both normal and brain-injured animals. Functional plasticity in the motor cortex of normal animals is accompanied by changes in synaptic morphology; these changes are skill-dependent rather than simply use-dependent. Finally, motor cortical areas undergo substantial functional alterations after focal ischemic infarcts; motor experience is a potent and adaptive modulator of injury-related plasticity. These recent neuroscientific advances set the stage for the development of new, more effective interventions in chronic stroke populations that are based on the basic mechanisms underlying neuroplasticity.
Collapse
Affiliation(s)
- Randolph J Nudo
- Department of Molecular and Integrative Physiology and Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
43
|
Kamada H, Sato K, Iwai M, Zhang WR, Nagano I, Manabe Y, Shoji M, Abe K. Temporal and spatial changes of free cholesterol and neutral lipids in rat brain after transient middle cerebral artery occlusion. Neurosci Res 2003; 45:91-100. [PMID: 12507728 DOI: 10.1016/s0168-0102(02)00203-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to examine lipid metabolism in relation to neural process following brain ischemia, we investigated temporal and spatial changes of free cholesterol (FC) and neutral lipids (NLs) after 90 min of transient middle cerebral artery occlusion (MCAO). Filipin and Nile Red stainings were performed to detect mainly FC and NLs, respectively. Double stainings for Nile Red plus ED1, MAP2, or GFAP were performed in order to identify cell type of positive stainings. Filipin stanining decreased during 1-7 day and lost at 21 day after transient MCAO in the ischemic core, but did not change in the penumbra. Nile Red positive droplets reached the maximum at 7 day after transient MCAO and gradually decreased in the core, while the peak time delayed in the penumbra. MAP2 immunoreactivity lost at 7 day in the core, and increased in the penumbra during 7-56 day. Most Nile Red positive droplets were double positive for ED1 in the core, and were localized within GFAP positive cells in the penumbra. These results suggest that changes of FC and NLs are different temporally and spatially between the core and penumbra in relation to degenerative and regenerative neural processes following brain ischemia.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Oh SJ, Kim KY, Lee EJ, Park SJ, Kwon SO, Jung CS, Lee MY, Chun MH. Inhibition of nitric oxide synthase induces increased production of growth-associated protein 43 in the developing retina of the postnatal rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 136:179-83. [PMID: 12101035 DOI: 10.1016/s0165-3806(02)00366-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effects of N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, on retinal development in the postnatal rat by immunocytochemistry and immunoblotting using antisera against neuronal nitric oxide synthase (nNOS) or growth-associated protein 43 (GAP-43). An nNOS-immunoreactive band of 155 kDa and a GAP-43-immunoreactive band of 48 kDa were present in the extracts of both control and L-NAME-treated rat retinas. The intensity of the nNOS-immunoreactive band was much weaker in the treated rats, whereas the intensity of the GAP-43-immunoreactive band of 48 kDa was much stronger in the treated rats. Much stronger GAP-43 immunoreactivity was visible in the inner plexiform layer (IPL) of the treated retinas at P10, P14 and P21. Our findings suggest that NO may play an important role in the maturation of the IPL in the developing rat retina.
Collapse
Affiliation(s)
- Su-Ja Oh
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Miyake K, Yamamoto W, Tadokoro M, Takagi N, Sasakawa K, Nitta A, Furukawa S, Takeo S. Alterations in hippocampal GAP-43, BDNF, and L1 following sustained cerebral ischemia. Brain Res 2002; 935:24-31. [PMID: 12062469 DOI: 10.1016/s0006-8993(02)02420-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alterations in factors involved in the regeneration of the neuronal network in the hippocampus of rats with microsphere embolism (ME) were examined. Nine hundred microspheres (48 microm in diameter) were injected into the right hemisphere, and immunochemical and immunohistochemical studies on the hippocampus were performed on the seventh day thereafter. Hematoxylin-eosin staining showed progressive and severe degeneration of the hippocampus after ME. The protein levels of brain-derived neurotrophic factor (BDNF), 43-kDa growth-associated protein (GAP-43), and adhesion protein L1 (L1) in the ipsilateral hippocampus of the ME animal, determined by Western blot analysis or enzyme immunoassay, were increased, unaltered, and decreased, respectively. In contrast, the immunohistochemical study showed increases in a marker of axonal sprouting GAP-43, and a neurotrophic factor BDNF, and a decrease in an adhesion molecule L1 in some areas of the hippocampal ischemic penumbra of such animals. These results suggest that some factors for regeneration of the neuronal network in the ischemic penumbra responded to sustained cerebral ischemia for a certain period, although functional network of the nerve cells in the microsphere-injected hemisphere would be unlikely established after ME.
Collapse
Affiliation(s)
- Keiko Miyake
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, 192-0392 Hachioji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 2001; 24:1000-19. [PMID: 11439375 DOI: 10.1002/mus.1104] [Citation(s) in RCA: 399] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Based upon neurophysiologic, neuroanatomic, and neuroimaging studies conducted over the past two decades, the cerebral cortex can now be viewed as functionally and structurally dynamic. More specifically, the functional topography of the motor cortex (commonly called the motor homunculus or motor map), can be modified by a variety of experimental manipulations, including peripheral or central injury, electrical stimulation, pharmacologic treatment, and behavioral experience. The specific types of behavioral experiences that induce long-term plasticity in motor maps appear to be limited to those that entail the development of new motor skills. Moreover, recent evidence demonstrates that functional alterations in motor cortex organization are accompanied by changes in dendritic and synaptic structure, as well as alterations in the regulation of cortical neurotransmitter systems. These findings have strong clinical relevance as it has recently been shown that after injury to the motor cortex, as might occur in stroke, post-injury behavioral experience may play an adaptive role in modifying the functional organization of the remaining, intact cortical tissue.
Collapse
Affiliation(s)
- R J Nudo
- Center on Aging and Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 5026 Wescoe Pavilion, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
47
|
Ishimaru H, Casamenti F, Uéda K, Maruyama Y, Pepeu G. Changes in presynaptic proteins, SNAP-25 and synaptophysin, in the hippocampal CA1 area in ischemic gerbils. Brain Res 2001; 903:94-101. [PMID: 11382392 DOI: 10.1016/s0006-8993(01)02439-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A general consensus exists that the presynaptic terminals in the hippocampal CA1 area are resistant to ischemic stress in spite of the loss of their target cells (CA1 pyramidal neurons). We have verified this by immunostaining and Western immunoblotting using the antibodies for presynaptic proteins, synaptosomal-associated protein of 25 kDa (SNAP-25) and synaptophysin in gerbils after bilateral carotid artery ligature. In the immunohistochemical analysis, decreases in SNAP-25 and synaptophysin immunoreactivities in the strata radiatum and oriens, especially around the apical dendrite of CA1 neurons, and disappearance of SNAP-25 immunoreactivity in the alveus were observed on day 2 after ischemia. On days 7 and 14, SNAP-25-positive granular materials were expressed in the CA1 area, and intense synaptophysin immunoreactivity around surviving CA1 neurons was observed. Western immunoblot analysis revealed significant decreases of SNAP-25 and synaptophysin (about 60% of control levels) on day 2, and then increase of their proteins (130--140% of control levels) on day 14. These results indicate that presynaptic degeneration occurs in the hippocampal CA1 area after ischemia, and it precedes the delayed neuronal death of CA1 neurons. The presynaptic terminal damage may be responsible for some pathological changes in ischemic brains.
Collapse
Affiliation(s)
- H Ishimaru
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
48
|
Manzur A, Sosa M, Seltzer AM. Transient increase in rab 3A and synaptobrevin immunoreactivity after mild hypoxia in neonatal rats. Cell Mol Neurobiol 2001; 21:39-52. [PMID: 11440197 DOI: 10.1023/a:1007169228329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. In the present work we describe the short term effects of mild neonatal hypoxia on the synapse as assessed by the immunoreactivity (IR) of two synaptic proteins: rab 3A and synaptobrevin (VAMP). 2. Using the sensitive methodology of immunoblotting, we measured rab 3A and VAMP-IR in homogenates from the cerebral cortex, hippocampus, and corpus striatum of control (breathing room air) and hypoxiated (breathing 95.5% N2-6.5% O2 for 70 min) 4-day-old rats at 1, 2, and 6 h after the end of the hypoxia. Immunostaining with examination by light microscopy was performed using the synaptic protein-specific antibodies on fixed brain sections from animals belonging to the same litter and submitted to hypoxia. 3. A transient increase of VAMP-IR was observed in the hippocampus and corpus striatum, and for rab 3A in the striatum, 1 h after initiating reoxygenation. At the following time points the values returned to control levels. This effect was less clearly observed in the immunostained sections. 4. Mild hypoxia has an effect on sensitive brain regions, eliciting an increase in the IR of at least two proteins involved in the synaptic vesicle cycle. The transient nature of this effect possibly indicates the activation of endogenous neuroprotective mechanisms.
Collapse
Affiliation(s)
- A Manzur
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
49
|
Witte OW, Bidmon HJ, Schiene K, Redecker C, Hagemann G. Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab 2000; 20:1149-65. [PMID: 10950376 DOI: 10.1097/00004647-200008000-00001] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transient and permanent focal cerebral ischemia results in a series of typical pathophysiologic events. These consequences evolve in time and space and are not limited to the lesion itself, but they can be observed in perilesional (penumbra) and widespread ipsi- and sometimes contralateral remote areas (diaschisis). The extent of these areas is variable depending on factors such as the type of ischemia, the model, and the functional modality investigated. This review describes some typical alterations attributable to focal cerebral ischemia using the following classification scheme to separate different lesioned and perilesional areas: (1) The lesion core is the brain area with irreversible ischemic damage. (2) The penumbra is a brain region that suffers from ischemia, but in which the ischemic damage is potentially, or at least partially, reversible. (3) Remote brain areas are brain areas that are not directly affected by ischemia. With respect to the etiology, several broad categories of remote changes may be differentiated: (3a) remote changes caused by brain edema; (3b) remote changes caused by waves of spreading depression; (3c) remote changes in projection areas; and (3d) remote changes because of reactive plasticity and systemic effects. The various perilesional areas are not necessarily homogeneous; but a broad differentiation of separate topographic perilesional areas according to their functional state and sequelae allows segregation into several signaling cascades, and may help to understand the functional consequences and adaptive processes after focal brain ischemia.
Collapse
Affiliation(s)
- O W Witte
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
50
|
Nguyen TT, Yamamoto T, Stevens RT, Hodge CJ. Reorganization of adult rat barrel cortex intrinsic signals following kainic acid induced central lesion. Neurosci Lett 2000; 288:5-8. [PMID: 10869802 DOI: 10.1016/s0304-3940(00)01183-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A plasticity model studying the adult rat barrel cortex intrinsic signal after a central lesion was developed. Repeated optical imaging studies of the barrel cortex of five rats were performed over variable periods of time (2 days to 6 weeks) after intracortical injection of kainic acid. The signal of the elicited principal whisker corresponding to the injected barrel in the repeat studies relocated to the perimeter of the lesion. The area of the signals of this principal whisker and of surrounding whiskers were larger in the first two weeks studies than those obtained before injection (P<0.01) resulting in increase overlapping of adjacent signals (P=0.01). Even though the signal of the PW remains relocated in the later studies (>2 weeks), all the signals returned to normal size. These findings demonstrate recovery and reorganization of sensory representation in the somatosensory cortex following a central lesion.
Collapse
Affiliation(s)
- T T Nguyen
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|