1
|
Clauss NJ, Mayer FP, Owens WA, Vitela M, Clarke KM, Bowman MA, Horton RE, Gründemann D, Schmid D, Holy M, Gould GG, Koek W, Sitte HH, Daws LC. Ethanol inhibits dopamine uptake via organic cation transporter 3: Implications for ethanol and cocaine co-abuse. Mol Psychiatry 2023; 28:2934-2945. [PMID: 37308680 PMCID: PMC10615754 DOI: 10.1038/s41380-023-02064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 06/14/2023]
Abstract
Concurrent cocaine and alcohol use is among the most frequent drug combination, and among the most dangerous in terms of deleterious outcomes. Cocaine increases extracellular monoamines by blocking dopamine (DA), norepinephrine (NE) and serotonin (5-HT) transporters (DAT, NET and SERT, respectively). Likewise, ethanol also increases extracellular monoamines, however evidence suggests that ethanol does so independently of DAT, NET and SERT. Organic cation transporter 3 (OCT3) is an emergent key player in the regulation of monoamine signaling. Using a battery of in vitro, in vivo electrochemical, and behavioral approaches, as well as wild-type and constitutive OCT3 knockout mice, we show that ethanol's actions to inhibit monoamine uptake are dependent on OCT3. These findings provide a novel mechanistic basis whereby ethanol enhances the neurochemical and behavioral effects of cocaine and encourage further research into OCT3 as a target for therapeutic intervention in the treatment of ethanol and ethanol/cocaine use disorders.
Collapse
Affiliation(s)
- N J Clauss
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - F P Mayer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - W A Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M Vitela
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - K M Clarke
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M A Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - R E Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - D Gründemann
- Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - D Schmid
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - M Holy
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - G G Gould
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - W Koek
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - H H Sitte
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Center for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090, Vienna, Austria
| | - L C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Ethanol inhibition of lateral orbitofrontal cortex neuron excitability is mediated via dopamine D1/D5 receptor-induced release of astrocytic glycine. Neuropharmacology 2021; 192:108600. [PMID: 33965399 DOI: 10.1016/j.neuropharm.2021.108600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 01/25/2023]
Abstract
Recent findings from this laboratory demonstrate that ethanol reduces the intrinsic excitability of orbitofrontal cortex (OFC) neurons via activation of strychnine-sensitive glycine receptors. Although the mechanism linking ethanol to the release of glycine is currently unknown, astrocytes are a source of neurotransmitters including glycine and activation of dopamine D1-like receptors has been reported to enhance extracellular levels of glycine via a functional reversal of the astrocytic glycine transporter GlyT1. We recently reported that like ethanol, dopamine or a D1/D5 receptor agonist increases a tonic current in lateral OFC (lOFC) neurons. Therefore, in this study, we used whole-cell patch-clamp electrophysiology to examine whether ethanol inhibition of OFC spiking involves the release of glycine from astrocytes and whether this release is dopamine receptor dependent. Ethanol, applied acutely, decreased spiking of lOFC neurons and this effect was blocked by antagonists of GlyT1, the norepinephrine transporter or D1-like but not D2-like receptors. Ethanol enhanced the tonic current of OFC neurons and occluded the effect of dopamine suggesting that ethanol and dopamine may share a common pathway. Altering astrocyte function by suppressing intracellular astrocytic calcium signaling or blocking the astrocyte-specific Kir4.1 potassium channels reduced but did not completely abolish ethanol inhibition of OFC neuron firing. However, when both astrocytic calcium signaling and Kir4.1 channels were inhibited, ethanol had no effect on firing. Ethanol inhibition was also prevented by inhibitors of phospholipase C and conventional isoforms of protein kinase C (cPKC) previously shown to block D1R-induced GlyT1 reversal and PKC inhibition of Kir4.1 channels. Finally, the membrane potential of OFC astrocytes was depolarized by bath application of a Kir4.1 blocker, a D1 agonist or ethanol and ethanol effect was blocked by a D1 antagonist. Together, these findings suggest that acute ethanol inhibits OFC neuron excitability via a D1 receptor-mediated dysregulation of astrocytic glycine transport.
Collapse
|
3
|
Sung U, Binda F, Savchenko V, Owens WA, Daws LC. Ca 2+ dependent surface trafficking of norepinephrine transporters depends on threonine 30 and Ca 2+ calmodulin kinases. J Chem Neuroanat 2016; 83-84:19-35. [PMID: 28017803 DOI: 10.1016/j.jchemneu.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/28/2022]
Abstract
The antidepressant-sensitive norepinephrine (NE) transporter (NET) inactivates NE released during central and peripheral neuronal activity by transport into presynaptic cells. Altered NE clearance due to dysfunction of NET has been associated with the development of mental illness and cardiovascular diseases. NET activity in vivo is influenced by stress, neuronal activity, hormones and drugs. We investigated the mechanisms of Ca2+ regulation of NET and found that Ca2+ influenced both Vmax and Km for NE transport into cortical synaptosomes. Changes in extracellular Ca2+ triggered rapid and bidirectional surface trafficking of NET expressed in cultured cells. Deletion of residues 28-47 in the NET NH2-terminus abolished the Ca2+ effect on surface trafficking. Mutagenesis studies identified Thr30 in this region as the essential residue for both Ca2+- dependent phosphorylation and trafficking of NET. Depolarization of excitable cells increased surface NET in a Thr30 dependent manner. A proteomic analysis, RNA interference, and pharmacological inhibition supported roles of CaMKI and CaMKII in Ca2+-modulated NE transport and NET trafficking. Depolarization of primary noradrenergic neurons in culture with elevated K+ increased NET surface expression in a process that required external Ca2+ and depended on CaMK activity. Hippocampal NE clearance in vivo was also stimulated by depolarization, and inhibitors of CaMK signaling prevented this stimulation. In summary, Ca2+ signaling influenced surface trafficking of NET through a CaMK-dependent mechanism requiring Thr30.
Collapse
Affiliation(s)
- Uhna Sung
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-8548, United States.
| | - Francesca Binda
- Institute of Cellular and Integrative Neurosciences, CNRS, Strasbourg, France
| | - Valentina Savchenko
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-8548, United States
| | - William A Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
4
|
Methner DNR, Mayfield RD. Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem 2010; 285:10310-7. [PMID: 20133946 DOI: 10.1074/jbc.m109.029561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamic membrane trafficking of the monoamine dopamine transporter (DAT) regulates dopaminergic signaling. Various intrinsic and pharmacological modulators can alter this trafficking. Previously we have shown ethanol potentiates in vitro DAT function and increases surface expression. However, the mechanism underlying these changes is unclear. In the present study, we found ethanol directly regulates DAT function by altering endosomal recycling of the transporter. We defined ethanol action on transporter regulation by [(3)H]DA uptake functional analysis combined with biochemical and immunological assays in stably expressing DAT HEK-293 cells. Short-term ethanol exposure potentiated DAT function in a concentration-, but not time-dependent manner. This potentiation was accompanied by a parallel increase in DAT surface expression. Ethanol had no effect on function or surface localization of the ethanol-insensitive mutant (G130T DAT), suggesting a trafficking-dependent mechanism in mediating the ethanol sensitivity of the transporter. The ethanol-induced increase in DAT surface expression occurred without altering the overall size of DAT endosomal recycling pools. We found ethanol increased the DAT membrane insertion rate while having no effect on internalization of the transporter. Ethanol had no effect on the surface expression or trafficking of the endogenously expressing transferrin receptor, suggesting ethanol does not have a nonspecific effect on endosomal recycling. These results define a novel trafficking mechanism by which ethanol regulates DAT function.
Collapse
Affiliation(s)
- D Nicole Riherd Methner
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
5
|
Boyce-Rustay JM, Palachick B, Hefner K, Chen YC, Karlsson RM, Millstein RA, Harvey-White J, Holmes A. Desipramine potentiation of the acute depressant effects of ethanol: modulation by alpha2-adrenoreceptors and stress. Neuropharmacology 2008; 55:803-11. [PMID: 18625256 PMCID: PMC2632577 DOI: 10.1016/j.neuropharm.2008.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/15/2008] [Accepted: 06/18/2008] [Indexed: 12/15/2022]
Abstract
Ethanol exerts effects on the brain noradrenergic system, and these are thought to contribute to the sedative/hypnotic (depressant) effects of ethanol. Recent studies suggest that the norepinephrine transporter (NET) plays an important role in modulating ethanol's depressant effects. The aim of the present study was to further characterize this role. Transporter blockers with varying affinity for NET versus the serotonin transporter (desipramine>fluoxetine>citalopram) were tested for their ability to alter ethanol's depressant effects, and for comparison, hypothermic effects. Effects of desipramine on another depressant, pentobarbital, were examined. Desipramine potentiation of ethanol's depressant effects was assessed following depletion of brain norepinephrine via N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) treatment, or depletion of brain 5-HT via para-chlorophenylalanine methyl ester hydrochloride (PCPA) treatment. The effects of co-administration of either the selective alpha2-adrenoreceptor agonist (dexmedetomidine) or the selective alpha2-adrenoreceptor antagonist (atipamezole) on desipramine's effect on ethanol's depressant effects were examined. Given the close link between stress, ethanol and norepinephrine, desipramine potentiation of ethanol's depressant effects was tested following repeated forced swim stress. Results showed that desipramine, but not SERT-selective doses of citalopram or fluoxetine, strongly potentiated the depressant (not hypothermic) effects of ethanol. These effects were mimicked by dexmedetomidine and blocked by atipamezole, but not by depletion of either norepinephrine or 5-HT. Desipramine potentiation of ethanol's depressant effects was abolished following repeated stress. Present findings further support a major role for NET and the alpha2-adrenoreceptor in modulating the depressant effects of ethanol, with possible implications for understanding the role of noradrenergic dysfunction in stress-related alcoholism.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Daws LC, Montañez S, Munn JL, Owens WA, Baganz NL, Boyce-Rustay JM, Millstein RA, Wiedholz LM, Murphy DL, Holmes A. Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 2006; 26:6431-8. [PMID: 16775130 PMCID: PMC6674049 DOI: 10.1523/jneurosci.4050-05.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Brain serotonin (5-HT) modulates the neural and behavioral effects of ethanol in a manner that remains poorly understood. Here we show that treatment with physiologically relevant (i.e., moderately intoxicating) doses of ethanol inhibits clearance of 5-HT from extracellular fluid in the mouse hippocampus. This finding demonstrates, in vivo, a key molecular mechanism by which ethanol modulates serotonergic neurotransmission. The 5-HT transporter (5-HTT) is the principle means of 5-HT reuptake in the brain and an obvious candidate mechanism for the effect of ethanol to inhibit 5-HT clearance. However, our second major finding was that genetic inactivation of the 5-HTT in a knock-out mouse not only failed to prevent ethanol-induced inhibition of 5-HT clearance, but actually potentiated this effect. Ethanol-induced inhibition of 5-HT clearance was also potentiated in nonmutant mice by cotreatment with a 5-HTT antagonist. Providing a link with potential behavioral manifestations of this neural phenotype, 5-HTT knock-out mice also exhibited exaggerated sensitivity to behavioral intoxication, as assayed by the sedative/hypnotic effects of ethanol. This clearly demonstrates that the 5-HTT is not necessary for the neural and behavioral effects of ethanol observed herein and that genetic or pharmacological inactivation of the 5-HTT unmasks involvement of other principle mechanisms. These data are intriguing given growing evidence implicating the 5-HTT in the pathophysiology and treatment of alcoholism and neuropsychiatric conditions frequently comorbid with alcoholism, such as depression. The present findings provide new insights into the actions of ethanol on brain function and behavior.
Collapse
Affiliation(s)
- Lynette C Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Carta M, Mameli M, Valenzuela CF. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 2004; 24:3746-51. [PMID: 15084654 PMCID: PMC6729340 DOI: 10.1523/jneurosci.0067-04.2004] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alcohol intoxication alters coordination and motor skills, and this is responsible for a significant number of traffic accident-related deaths around the world. Although the precise mechanism of action of ethanol (EtOH) is presently unknown, studies suggest that it acts, in part, by interfering with normal cerebellar functioning. An important component of cerebellar circuits is the granule cell. The excitability of these abundantly expressed neurons is controlled by the Golgi cell, a subtype of GABAergic interneuron. Granule cells receive GABAergic input in the form of phasic and tonic currents that are mediated by synaptic and extrasynaptic receptors, respectively. Using the acute cerebellar slice preparation and patch-clamp electrophysiological techniques, we found that ethanol induces a parallel increase in both the frequency of spontaneous IPSCs and the magnitude of the tonic current. EtOH (50 mm) did not produce this effect when spontaneous action potentials were blocked with tetrodotoxin. Recordings in the loose-patch cell-attached configuration demonstrated that ethanol increases the frequency of spontaneous action potentials in Golgi cells. Taken together, these findings indicate that ethanol enhances GABAergic inhibition of granule cells via a presynaptic mechanism that involves an increase in action potential-dependent GABA release from Golgi cells. This effect is likely to have an impact on the flow of information through the cerebellar cortex and may contribute to the mechanism by which acute ingestion of alcoholic beverages induces motor impairment.
Collapse
Affiliation(s)
- Mario Carta
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
8
|
Mao L, Li G, Abdel-Rahman AA. Effect of ethanol on reductions in norepinephrine electrochemical signal in the rostral ventrolateral medulla and hypotension elicited by I1-receptor activation in spontaneously hypertensive rats. Alcohol Clin Exp Res 2004; 27:1471-80. [PMID: 14506409 DOI: 10.1097/01.alc.0000086062.95225.0c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mechanism of the antagonistic hemodynamic interaction between ethanol and centrally acting sympatholytics is not known. In this study, we tested the hypothesis that the imidazoline (I1)-receptor modulation of norepinephrine (NE) release within the rostral ventrolateral medulla (RVLM) plays a pivotal role in this clinically relevant hemodynamic interaction. METHOD In anesthetized spontaneously hypertensive rats, the effects of centrally acting sympatholytics on RVLM NE electrochemical signal were investigated by in vivo electrochemistry along with cardiovascular responses in the absence and presence of ethanol. In vivo microdialysis in conscious spontaneously hypertensive rats was used to confirm the electrochemical findings. RESULTS Clonidine (30 microg/kg, intravenously) or rilmenidine (400, 600, or 800 microg/kg) significantly reduced RVLM NE electrochemical signal (index of neuronal activity) and mean arterial pressure; rilmenidine effects were dose-related, and ethanol (1 g/kg) counteracted these responses. Ethanol (1 g/kg) pretreatment increased both RVLM NE electrochemical signal and blood pressure but did not influence the reductions in both variables elicited by subsequently administered clonidine. The alpha2-adrenergic antagonist 2-methoxyidazoxan (30 microg/kg) counteracted rilmenidine (800 microg/kg)-evoked responses. In vivo microdialysis in conscious spontaneously hypertensive rats confirmed the electrochemical findings since clonidine- (30 microg/kg, intravenously) evoked reductions in RVLM NE and the associated hypotension were counteracted by ethanol (1 g/kg). CONCLUSIONS (1) Ethanol counteracts centrally mediated hypotension, at least in part, by increasing RVLM NE; (2) the interaction involves the I1 receptor modulation of RVLM neuronal activity; (3) the alpha2-adrenergic receptor contributes to the electrochemical and cardiovascular effects of high doses of rilmenidine, and (4) the RVLM is a neuroanatomical target for systemically administered ethanol.
Collapse
Affiliation(s)
- Limin Mao
- Division of pharmacology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, USA
| | | | | |
Collapse
|
9
|
Maiya R, Mayfield RD. Dopamine Transporter Network and Pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 61:79-96. [PMID: 15482812 DOI: 10.1016/s0074-7742(04)61004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rajani Maiya
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
10
|
Maiya R, Buck KJ, Harris RA, Mayfield RD. Ethanol-sensitive sites on the human dopamine transporter. J Biol Chem 2002; 277:30724-9. [PMID: 12070173 DOI: 10.1074/jbc.m204914200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that ethanol enhanced [(3)H]dopamine uptake in Xenopus oocytes expressing the dopamine transporter (DAT). This increase in DAT activity was mirrored by an increase in the number of transporters expressed at the cell surface. In the present study, ethanol potentiated the function of DAT expressed in HeLa cells but inhibited the function of the related norepinephrine transporter (NET). Chimeras generated between DAT and NET were examined for ethanol sensitivity and demonstrated that a 76-amino acid region spanning transmembrane domains (TMD) 2 and 3 was essential for ethanol potentiation of DAT function. The second intracellular loop between TMD 2 and 3 of DAT, which differs from that of NET by four amino acids, was explored for possible sites of ethanol action. Site-directed mutagenesis was used to replace each of these residues in DAT with the corresponding residue in NET, and the resulting cRNA were expressed in Xenopus oocytes. We found that mutations G130T or I137F abolished ethanol potentiation of DAT function, whereas the mutations F123Y and L138F had no significant effect. These results identify novel sites in the second intracellular loop that are important for ethanol modulation of DAT activity.
Collapse
Affiliation(s)
- Rajani Maiya
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
11
|
Mayfield RD, Maiya R, Keller D, Zahniser NR. Ethanol potentiates the function of the human dopamine transporter expressed in Xenopus oocytes. J Neurochem 2001; 79:1070-9. [PMID: 11739621 DOI: 10.1046/j.1471-4159.2001.00656.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ethanol alters a variety of properties of brain dopaminergic neurons including firing rate, synthesis, release, and metabolism. Recent studies suggest that ethanol's action on central dopamine systems may also involve modulation of dopamine transporter (DAT) activity. The human DAT was expressed in Xenopus oocytes to examine directly the effects of ethanol on transporter function. [3H]Dopamine (100 nM) accumulation into DAT-expressing oocytes increased significantly in response to ethanol (10 min; 10-100 mM). In two-electrode voltage-clamp experiments, DAT-mediated currents were also enhanced significantly by ethanol (10-100 mM). The magnitude of the ethanol-induced potentiation of DAT function depended on ethanol exposure time and substrate concentration. Cell surface DAT binding ([3H]WIN 35,428; 4 nM) also increased as a function of ethanol exposure time. Thus, the increase in dopamine uptake was associated with a parallel increase in the number of DAT molecules expressed at the cell surface. These experiments demonstrate that DAT-mediated substrate translocation and substrate-associated ionic conductances are sensitive to intoxicating concentrations of ethanol and suggest that DAT may represent an important site of action for ethanol's effects on central dopaminergic transmission. A potential mechanism by which ethanol acts to enhance DAT function may involve regulation of DAT expression on the cell surface.
Collapse
Affiliation(s)
- R D Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA.
| | | | | | | |
Collapse
|
12
|
Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl- -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 2001; 92:21-55. [PMID: 11750035 DOI: 10.1016/s0163-7258(01)00158-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Na+/Cl- -dependent neurotransmitter transporters, which constitute a gene superfamily, are crucial for limiting neurotransmitter activity. Thus, it is critical to understand their regulation. This review focuses primarily on the norepinephrine transporter, the dopamine transporter, the serotonin transporter, and the gamma-aminobutyric acid transporter GAT1. Chronic administration of drugs that alter neurotransmitter release or inhibit transporter activity can produce persistent compensatory changes in brain transporter number and activity. However, regulation has not been universally observed. Transient alterations in norepinephrine transporter, dopamine transporter, serotonin transporter, and GAT1 function and/or number occur in response to more acute manipulations, including membrane potential changes, substrate exposure, ethanol exposure, and presynaptic receptor activation/inhibition. In many cases, acute regulation has been shown to result from a rapid redistribution of the transporter between the cell surface and intracellular sites. Second messenger systems involved in this rapid regulation include protein kinases and phosphatases, of which protein kinase C has been the best characterized. These signaling systems share the common characteristic of altering maximal transport velocity and/or cell surface expression, consistent with regulation of transporter trafficking. Although less well characterized, arachidonic acid, reactive oxygen species, and nitric oxide also alter transporter function. In addition to post-translational modifications, cytoskeleton interactions and transporter oligomerization regulate transporter activity and trafficking. Furthermore, promoter regions involved in transporter transcriptional regulation have begun to be identified. Together, these findings suggest that Na+/Cl- -dependent neurotransmitter transporters are regulated both long-term and in a more dynamic manner, thereby providing several distinct mechanisms for altering synaptic neurotransmitter concentrations and neurotransmission.
Collapse
Affiliation(s)
- N R Zahniser
- Department of Pharmacology, C-236, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
13
|
Fenton RA, Chung ES. Chronic Ethanol Enhances Adenosine Antiadrenergic Actions in the Isolated Rat Heart. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02304.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
In vivo electrochemical detection was employed to study the chronic effect of nitric oxide on iron-induced alterations in dopamine dynamics, including K+ -evoked dopamine overflows and the clearance of exogenous dopamine in rat striatum. Intranigral infusion of fresh S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide donor, did not alter either dopamine dynamics in the striatum or the lipid peroxidation in substantia nigra 7 days after the infusion, indicating that nitric oxide is not neurodestructive. By contrast, infusion of iron in substantia nigra chronically degenerated the nigrostriatal dopaminergic system. Co-infusion of iron and fresh SNAP, but not aged SNAP, prevented the iron-induced reductions in K+ -evoked dopamine overflows. Furthermore, the clearance of exogenous dopamine was attenuated in the striatum ipsilateral to the substantia nigra infused with iron. An improvement by fresh SNAP of iron-induced reduction in dopamine clearance was observed in rats co-infused with fresh SNAP and iron mixture compared to iron-lesioned group. Taken together, our in vivo electrochemical study suggests that nitric oxide does not alter dopamine dynamics in nigrostriatal dopaminergic system. Rather, nitric oxide appears to protect dopamine dynamics from iron-induced oxidative stress in rat brain.
Collapse
Affiliation(s)
- A M Lin
- Department of Medical Education and Research, Veterans General Hospital-Taipei, Taiwan, ROC.
| |
Collapse
|
15
|
Kim CH, Kim HS, Cubells JF, Kim KS. A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. J Biol Chem 1999; 274:6507-18. [PMID: 10037744 DOI: 10.1074/jbc.274.10.6507] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.
Collapse
Affiliation(s)
- C H Kim
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
16
|
Mao L, Abdel-Rahman AA. Ethanol Counteraction of Clonidine-Evoked Inhibition of Norepinephrine Release in Rostral Ventrolateral Medulla of Rats. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03910.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Wang Y, Palmer MR, Cline EJ, Gerhardt GA. Effects of ethanol on striatal dopamine overflow and clearance: an in vivo electrochemical study. Alcohol 1997; 14:593-601. [PMID: 9401676 DOI: 10.1016/s0741-8329(97)00054-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have shown that the neurotransmitter dopamine (DA) is implicated in the reinforcing effects of ethanol and other abused drugs. Ethanol also alters DA overflow and uptake in vivo. Further studies of the role of DA in the behavioral and neurochemical effects of ethanol may help explain the pharmacological mechanisms by which these effects are produced. In these studies we used in vivo electrochemical recordings to investigate the effects of ethanol (EtOH) on the dynamics of evoked DA overflow and DA uptake in rat dorsal striatum. Local applications of EtOH from a multibarrel micropipette did not produce detectable changes in extracellular levels of endogenous DA in the dorsal striatum. EtOH application did attenuate potassium (K+)-evoked overflow of DA in a time-dependent fashion. In contrast, tyramine-induced DA overflow, a calcium-independent process thought to be carrier mediated, was not altered by local EtOH application in the dorsal striatum. Striatal uptake of locally applied exogenous DA was decreased by nomifensine, an effect that was attenuated by locally applied EtOH. Taken together, these data suggest that one of the effects of EtOH on DA-containing nerve endings in the rat striatum involves functional changes in the high-affinity DA transporter associated with these nerve endings.
Collapse
Affiliation(s)
- Y Wang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Luthman J, Friedemann MN, Hoffer BJ, Gerhardt GA. In vivo electrochemical measurements of serotonin clearance in rat striatum: effects of neonatal 6-hydroxydopamine-induced serotonin hyperinnervation and serotonin uptake inhibitors. J Neural Transm (Vienna) 1997; 104:379-97. [PMID: 9295172 DOI: 10.1007/bf01277658] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diffusion and clearance of extracellular serotonin (5-HT) was examined using in vivo chronoamperometry with "delayed-pulse" recordings after pressure ejections of 1 to 60 picomoles 5-HT into rat striatum at a fixed distance from a Nafion-coated carbon fiber electrode. Signals obtained were identified based on the signal characteristics to consist of 5-HT. Clearance times of 5-HT decreased, while amplitudes and rise times increased with serotonergic hyperinnervation induced by neonatal 6-hydroxydopamine (6-OHDA) lesions of dopamine (DA) neurons. Local applications of the 5-HT uptake inhibitors zimelidine or fluoxetine, in conjunction with 5-HT ejections, produced increased clearance times in both normal and 6-OHDA-treated animals. Thus, direct in vivo evidence was obtained for the importance of high affinity nerve terminal uptake as a key mechanism for clearance of 5-HT from the extracellular space. Inhibitors of 5-HT uptake appear to prolong the extracellular presence of 5-HT by increasing its clearance time.
Collapse
Affiliation(s)
- J Luthman
- Department of Biochemistry, Preclinical R&D, Astra Arcus AB, Södertälje, Sweden
| | | | | | | |
Collapse
|
19
|
Samson HH, Hodge CW, Erickson HL, Niehus JS, Gerhardt GA, Kalivas PW, Floyd EA. The effects of local application of ethanol in the n. accumbens on dopamine overflow and clearance. Alcohol 1997; 14:485-92. [PMID: 9305464 DOI: 10.1016/s0741-8329(96)00216-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The actions of ethanol on extracellular dopamine levels in the n. accumbens were examined in both anesthetized and unanesthetized rats using either in vivo voltammetry or microdialysis. In the voltammetry studies, ethanol was microinjected directly into the accumbens. For the microdialysis studies, the ethanol was injected systemically. The voltammetry studies failed to find any direct effect of local ethanol on extracellular dopamine levels. However, exposure to high ethanol concentrations directly injected into the n. accumbens showed the rise rate and the return to baseline rate to a n. accumbens KCl-stimulated dopamine release. In the microdialysis studies, increased levels of extracellular dopamine in the n. accumbens were found in unanesthetized rats, similar to those reported in the literature. However, in the anesthetized rats, the extracellular dopamine levels were not increased, even with similar local ethanol levels measured in the dialysate. Taken together, the data suggest that the actions of ethanol to increase extracellular dopamine levels in the n. accumbens are most likely not an effect of ethanol at the level of the accumbens but rather an action which increases neural activity within the mesoaccumbens pathway, perhaps via actions at the ventral tegmental area.
Collapse
Affiliation(s)
- H H Samson
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27157-10183, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin AM, Bickford PC, Palmer MR, Cline EJ, Gerhardt GA. Effects of ethanol and nomifensine on NE clearance in the cerebellum of young and aged Fischer 344 rats. Brain Res 1997; 756:287-92. [PMID: 9187345 DOI: 10.1016/s0006-8993(97)00229-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rapid chronoamperometric recordings coupled with local application of drugs by pressure ejection were used to investigate the effects of nomifensine and ethanol (EtOH) on exogenous norepinephrine (NE) clearance in the cerebellum of young (5-month-old) and aged (24-26-month-old) male Fischer 344 rats. In the young rats, local nomifensine application prolonged exogenous NE clearance, indicating transporter mediated uptake inhibition. NE clearance was modestly but significantly prolonged in the aged rats as compared to the young rats, suggesting less efficient uptake. Consistent with this, there was little effect of nomifensine on NE clearance in the aged rats. In contrast to the effect of nomifensine, EtOH inhibited NE clearance in both young and aged rats. These data further support the hypothesis that one effect of EtOH in cerebellar NE systems is inhibition of NE uptake into NE-containing nerve terminals, and they also demonstrate that the effect of nomifensine on exogenous NE clearance in vivo in the cerebellum is altered by the aging process, while the effect of EtOH is not.
Collapse
Affiliation(s)
- A M Lin
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
21
|
Freund RK, Palmer MR. 8-Bromo-cAMP mimics beta-adrenergic sensitization of GABA responses to ethanol in cerebellar Purkinje neurons in vivo. Alcohol Clin Exp Res 1996; 20:408-12. [PMID: 8730238 DOI: 10.1111/j.1530-0277.1996.tb01661.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies in our laboratory indicated that electrophysiological responses of cerebellar Purkinje neurons to GABA were not routinely potentiated by ethanol (EtOH), and the potentiation was not large when it occurred. In the presence of beta-adrenergic agonists, such as isoproterenol, however, GABA inhibitions became sensitive to potentiation by EtOH in nearly every Purkinje neuron tested. beta-adrenergic receptor activation alone also modulates (potentiates) GABA responses on Purkinje neurons, and this has been reported to be mediated by a cAMP second messenger system. Herein, we report that the membrane-permeable cAMP analog, 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP), but not the membrane-impermeable cAMP, can also modulate GABA responses and that EtOH potentiates this facilitatory action of 8-Br-cAMP. These effects are not likely caused by adenosine receptor mechanisms, because this 8-bromoadenosine mediated modulation and sensitization was observed in the presence of systemic theophylline. These data suggest that the beta-adrenergic modulation and sensitization to EtOH of cerebellar Purkinje neuron GABA responses occur via a cAMP second messenger mechanism.
Collapse
Affiliation(s)
- R K Freund
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
22
|
Lin AM, Chai CY. Dynamic analysis of ethanol effects on NMDA-evoked dopamine overflow in rat striatum. Brain Res 1995; 696:15-20. [PMID: 8574663 DOI: 10.1016/0006-8993(95)00688-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study was undertaken to dynamically examine the effects of ethanol on the striatal dopaminergic transmission, in terms of N-methyl-D-aspartate (NMDA)-evoked dopamine release and dopamine uptake. In the striatum of urethane-anesthetized Sprague-Dawley rats, extracellular dopamine was measured using in vivo electrochemical detection coupled with a nafion-coated carbon fiber working electrode. Micro-ejection of NMDA evoked a transient dopamine release from the dopamine-containing nerve terminals in striatum. Local application of ethanol by pressure ejection did not elicit significant changes in spontaneous dopamine release. However, with ethanol pretreatment, the time course of NMDA-induced dopamine release was markedly prolonged while the magnitude and the rate of clearance were significantly reduced. These effects were compared to those of nomifensine, a dopamine uptake blocker. Nominfensine pretreatment was found to augment the time course of NMDA-evoked dopamine release analogous to those by ethanol pretreatment. Furthermore, pretreatment with ethanol did not increase the time course parameters of dopamine signals if dopamine releases were induced by co-application of NMDA and nominfensine. These data suggest that in addition to the attenuation of NMDA-evoked dopamine release, ethanol inhibits dopamine uptake in a similar fashion to that observed with nomifensine in situ in the striatum. Indeed, ethanol altered the uptake of exogenous dopamine from the extracellular space of striatal cortex. The time course of dopamine signals was prolonged and the rate of clearance was reduced after ethanol treatment. Taken together, our data demonstrate that ethanol simultaneously inhibits NMDA-evoked dopamine release and dopamine uptake in the striatum, suggesting the importance of the interplay between release and uptake in ethanol effects on striatal dopaminergic transmission.
Collapse
Affiliation(s)
- A M Lin
- Institute of Biomedical Sciences, Academia Sinica, Nangkang, Taipei, Taiwan, R.O.C
| | | |
Collapse
|
23
|
Cass WA, Friedemann MN, deBernardis JF, Kerkman DJ, Gerhardt GA. Effects of the putative antidepressant, ABT 200, on the clearance of exogenous norepinephrine in rat cerebellum. Synapse 1995; 21:77-84. [PMID: 8525465 DOI: 10.1002/syn.890210111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ABT 200 [(RR,SS)-3-phenyl-1-[1',2',3',4'-tetrahydro-5',6'-methylenedioxy- 1'-naphthalenyl-methyl]-pyrrolidine methanesulfonate] is a potent alpha 2-adrenoceptor antagonist (Ki = 1.2 nM) with modest norepinephrine uptake-blocking activity (IC50 = 841 nM) that is currently under clinical evaluation as an antidepressant. The effects of ABT 200, nomifensine (an inhibitor of catecholamine uptake), and rauwolscine (a selective alpha 2-adrenoceptor antagonist) on the clearance of exogenous norepinephrine in the cerebellum of urethane-anesthetized rats was investigated using a vivo electrochemistry. Chronoamperometric recordings were continuously made at 5 Hz using Nafion-coated, single carbon fiber electrodes. When a calibrated amount of norepinephrine was pressure-ejected at 5-min intervals from a micropipette adjacent (290-330 microM) to the electrode, transient and reproducible norepinephrine signals were detected. In response to systemic ABT 200 (30 mg/kg i.p.) or nomifensine (30 mg/kg i.p.), the signals increased in both amplitude and time course, indicating significant inhibition of the norepinephrine transporter. A lower dose (15 mg/kg i.p.) of either ABT 200 or nomifensine had no effect in this paradigm. Local application of ABT 200 (400 microM) or nomifensine (400 microM) prior to pressure-ejection of norepinephrine also significantly increased the amplitude and time course of the norepinephrine signals. In contrast, systemic administration of rauwolscine (30 mg/kg i.p.) or vehicle solution, and local application of vehicle solution, had no effect on the norepinephrine signals. These data indicate that at the higher dose evaluated, both ABT 200 and nomifensine inhibit cerebellar norepinephrine uptake in vivo.
Collapse
Affiliation(s)
- W A Cass
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536, USA
| | | | | | | | | |
Collapse
|