1
|
Rana M, Terpstra K, Gutierrez C, Xu K, Arya H, Bhatt TK, Mirica LM, Sharma AK. Evaluation of Anti-Alzheimer's Potential of Azo-Stilbene-Thioflavin-T derived Multifunctional Molecules: Synthesis, Metal and Aβ Species Binding and Cholinesterase Activity. Chemistry 2024:e202402748. [PMID: 39476334 DOI: 10.1002/chem.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Inhibition of amyloid β (Aβ) aggregation and cholinesterase activity are two major therapeutic targets for Alzheimer's disease (AD). Multifunctional Molecules (MFMs) specifically designed to address other contributing factors, such as metal ion induced abnormalities, oxidative stress, toxic Aβ aggregates etc. are very much required. Several multifunctional molecules have been developed using different molecular scaffolds. Reported herein is a new series of four MFMs based on ThT, Azo-stilbene and metal ion chelating pockets. The synthesis, characterization, and metal chelation ability for [Cu2+ and Zn2+] are presented herein. Furthermore, we explored their multifunctionality w.r.t. to their (i) recognition of Aβ aggregates and monomeric form, (ii) utility in modulating the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) ex-vivo staining of amyloid plaques in 5xFAD mice brain sections, (iv) ability to scavenge free radicals and (v) ability to inhibit cholinesterase activity. Molecular docking studies were also performed with Aβ peptides and acetylcholinesterase enzyme to understand the observed inhibitory effect on activity. Overall, the studies presented here establish the multifunctional nature of these molecules and qualify them as promising candidates for furthermore investigation in the quest for finding Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Kerui Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Tarun K Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Anuj K Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
2
|
Pant S, Kumar K R, Rana P, Anthwal T, Ali SM, Gupta M, Chauhan M, Nain S. Novel Substituted Pyrimidine Derivatives as Potential Anti-Alzheimer's Agents: Synthesis, Biological, and Molecular Docking Studies. ACS Chem Neurosci 2024; 15:783-797. [PMID: 38320262 DOI: 10.1021/acschemneuro.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The most frequent type of age-related dementia is Alzheimer's disease. To discover novel therapeutic agents for Alzheimer's disease, a series of substituted pyrimidine derivatives were synthesized and evaluated for anti-Alzheimer's activity. All the synthesized compounds were validated by 1HNMR, 13CNMR, and HRMS to assess the structural conformance of the newly synthesized compounds. The synthesized compounds were then evaluated for their in vivo acute toxicity study. Evaluation of acute toxicity showed that none of the synthesized compounds showed toxicity up to 1000 mg/kg. After in vivo acute toxicity studies, the compounds were subjected to behavioral and biochemical studies. Compound N4-(4-chlorophenyl)-N2-(2-(piperidin-1-yl)ethyl)pyrimidine-2,4-diamine 5b (SP-2) displayed an excellent anti-Alzheimer's profile, while the rest of the compounds showed satisfactory results in comparison to donepezil. Docking studies confirmed the results obtained through in vivo experiments and showed that 5b (SP-2) showed a similar interaction to that of donepezil. Further, in silico molecular property predictions showed that 5b (SP-2) possesses favorable drug-likeness and ADME properties for CNS activity. These results implied that 5b could serve as an appropriate lead molecule for the development of anti-Alzheimer's agent.
Collapse
Affiliation(s)
- Swati Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| | - Ranjith Kumar K
- Department of Chemistry, Vidya Vikas Institute of Engineering and Technology, VTU, Mysuru, Karnataka 570028, India
| | - Preeti Rana
- Department of Medicinal Chemistry, National Institute for Pharmaceutical Education and Research (NIPER) Balangar, Hyderabad 500064, india
| | - Tulika Anthwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| | - Syed Mastan Ali
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Andhra Pradesh 522510, India
| | - Mohan Gupta
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| | - Monika Chauhan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan 304022, India
| |
Collapse
|
3
|
Subramanian N, Watson B, Li CZ, Moss M, Liu C. Patterning amyloid-β aggregation under the effect of acetylcholinesterase using a biological nanopore - an in vitro study. SENSORS AND ACTUATORS REPORTS 2023; 6:100170. [PMID: 37663321 PMCID: PMC10469531 DOI: 10.1016/j.snr.2023.100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aggregation of amyloid-β peptide (Aβ) is hypothesized to be the primary cause of Alzheimer's disease (AD) progression. Aβ aggregation has been widely studied using conventional sensing tools like emission fluorescence, electron microscopy, mass spectroscopy, and circular dichroism. However, none of these techniques can provide cost-efficient, highly sensitive quantification of Aβ aggregation kinetics at the molecular level. Among the influences on Aβ aggregation of interest to disease progression is the acceleration of Aβ aggregation by acetylcholinesterase (AChE), which is present in the brain and inflicts the fast progression of disease due to its direct interaction with Aβ. In this work, we demonstrate the ability of a biological nanopore to map and quantify AChE accelerated aggregation of Aβ monomers to mixed oligomers and small soluble aggregates with single-molecule precision. This method will allow future work on testing direct and indirect effects of therapeutic drugs on AChE accelerated Aβ aggregation as well as disease prognosis.
Collapse
Affiliation(s)
- Nandhini Subramanian
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Watson
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Chen-Zhong Li
- Biomedical Engineering Program, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Melissa Moss
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Chang Liu
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Shahanaj I, Ramakrishnan J, Poomani K, Devarajan N. Lawsonia inermis flower aqueous extract expressed better anti-alpha-glucosidase and anti-acetylcholinesterase activity and their molecular dynamics. J Biomol Struct Dyn 2023; 41:13752-13765. [PMID: 36905654 DOI: 10.1080/07391102.2023.2179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/13/2023]
Abstract
Lawsonia inermis (henna) has been used in traditional medicine throughout the world and biological property of its flower has been least explored. In the present study, the phytochemical characterization and biological activity (in vitro radical scavenging activity, anti-alpha glucosidase and anti-acetylcholinesterase) of aqueous extract prepared from henna flower (HFAE) was carried out by both Qualitative and quantitative phytochemical analysis and Fourier-transform infrared spectroscopy revealed the functional group of the phytoconstituents such as phenolics, flavonoids, saponin, tannins and glycosides. The phytochemicals present in HFAE was preliminary identified by liquid chromatography/electrospray ionization tandem mass spectrometry. The HFAE showed potent in vitro antioxidant activity and the HFAE inhibited mammalian α-glucosidase (IC50 = 129.1 ± 5.3 µg/ml; Ki = 38.92 µg/ml) and acetylcholinesterase (AChE; IC50 = 137.77 ± 3.5 µg/ml; Ki = 35.71 µg/ml) activity by competitive manner. In silico molecular docking analysis revealed the interaction of active constituents identified in HFAE with human α-glucosidase and AChE. Molecular dynamics simulation for 100 ns showed the stable binding of top two ligand/enzyme complexes with lowest binding energy such as 1,2,3,6-Tetrakis-O-galloyl-beta-D-glucose (TGBG)/human α-glucosidase, Kaempferol 3-glucoside-7-rhamnoside (KGR)/α-glucosidase, agrimonolide 6-O-β-D-glucopyranoside (AMLG)/human AChE and KGR/AChE. Through MM/GBSA analysis, the binding energy for TGBG/human α-glucosidase, KGR/α-glucosidase, AMLG/human AChE and KGR/AChE was found to be -46.3216, -28.5772, -45.0077 and -47.0956 kcal/mol, respectively. Altogether, HFAE showed an excellent antioxidant, anti-alpha glucosidase and anti-AChE activity under in vitro. This study suggest HFAE with remarkable biological activities could be further explored for therapeutics against type 2 diabetes and diabetes-associated cognitive decline.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ismail Shahanaj
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| | - Jaganathan Ramakrishnan
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu, India
| | - Kumaradhas Poomani
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, Tamil Nadu, India
| | - Natarajan Devarajan
- Natural Drug Research Laboratory, Department of Biotechnology, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
5
|
Sang Z, Bai P, Ban Y, Wang K, Wu A, Mi J, Hu J, Xu R, Zhu G, Wang J, Zhang J, Wang C, Tan Z, Tang L. Novel donepezil-chalcone-rivastigmine hybrids as potential multifunctional anti-Alzheimer's agents: Design, synthesis, in vitro biological evaluation, in vivo and in silico studies. Bioorg Chem 2022; 127:106007. [PMID: 35849893 DOI: 10.1016/j.bioorg.2022.106007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a chronic, progressive brain neurodegenerative disorder. Up to now, there is no effective drug to halt or reverse the progress of AD. Given the complex pathogenesis of AD, the multi-target-directed ligands (MTDLs) strategy is considered as the promising therapy. Herein, a series of novel donepezil-chalone-rivastigmine hybrids was rationally designed and synthesized by fusing donepezil, chalone and rivastigmine. The in vitro bioactivity results displayed that compound 10c was a reversible huAChE (IC50 = 0.87 μM) and huBuChE (IC50 = 3.3 μM) inhibitor. It also presented significant anti-inflammation effects by suppressing the level of IL-6 and TNF-α production, and significantly inhibited self-mediated Aβ1-42 aggregation (60.6%) and huAChE-mediated induced Aβ1-40 aggregation (46.2%). In addition, 10c showed significant neuroprotective effect on Aβ1-42-induced PC12 cell injury and activated UPS pathway in HT22 cells to degrade tau and amyloid precursor protein (APP). Furthermore, compound 10c presented good stabilty in artificial gastrointestinal fluids and liver microsomes in vitro. The pharmacokinetic study showed that compound 10c was rapidly absorbed in rats and distributed in rat brain after intragastric administration. The PET-CT imaging demonstrated that [11C]10c could quickly enter the brain and washed out gradually in vivo. Further, compound 10c at a dose of 5 mg/kg improved scopolamine-induced memory impairment, deserving further investigations.
Collapse
Affiliation(s)
- Zhipei Sang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China; School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yujuan Ban
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Keren Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Southwest Medical University, Luzhou 646000, China
| | - Jing Mi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jiaqi Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Rui Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China.
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
6
|
Chitra L, Penislusshiyan S, Soundariya M, Logeswari S, Rajesh RV, Palvannan T. Anti-acetylcholinesterase activity of Corallocarpus epigaeus tuber: In vitro kinetics, in silico docking and molecular dynamics analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Zhu Q, Lin M, Zhuo W, Li Y. Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study. Molecules 2021; 26:molecules26237299. [PMID: 34885880 PMCID: PMC8659057 DOI: 10.3390/molecules26237299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Screening the lead compounds which could interact both with PAS and CAS of acetylcholinesterase (AChE) is an important trend in finding innovative drugs for Alzheimer's disease (AD). In this paper, four sesquiterpenes, i.e., atractylenolide III (1), atractylenolide IV (2), 3-acetyl-atractylon (3) and β-eudesmol (4), were obtained from the wild Atractylode macrocephala grown in Qimen for the first time. Their structures were elucidated mainly by NMR spectroscopy. To screen the potential dual site inhibitors of AChE, the compounds 1, 2, 3, as well as a novel and rare bisesquiterpenoid lactone, biatractylenolide II (5), which was also obtained from the tilted plant in our previous investigation, were evaluated their AChE inhibitory activities by using Ellman's colorimetric method. The results showed that biatractylenolide II displayed moderate inhibitory activity (IC50 = 19.61 ± 1.11 μg/mL) on AChE. A further molecular docking study revealed that biatractylenolide II can interact with both the peripheral anionic site (PAS) and the catalytic active site (CAS) of AChE. These data suggest that biatractylenolide II can be considered a new lead compound to research and develop more potential dual site inhibitors of AChE.
Collapse
Affiliation(s)
- Qiannan Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
| | - Min Lin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
| | - Wanying Zhuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
| | - Yunzhi Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; (Q.Z.); (M.L.); (W.Z.)
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Correspondence:
| |
Collapse
|
8
|
Kandasamy S, Loganathan C, Sakayanathan P, Karthikeyan S, Stephen AD, Marimuthu DK, Ravichandran S, Sivalingam V, Thayumanavan P. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase. Int J Biol Macromol 2021; 185:750-760. [PMID: 34216669 DOI: 10.1016/j.ijbiomac.2021.06.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are considered important target for drug design against Alzheimer's disease. In the present study in silico analysis; theoretical analysis of biointerface between ligand and interacting amino acid residues of proteins; and in vitro analysis of enzyme inhibition kinetics were carried out to delineate the inhibitory property of amine compounds against AChE/BChE. High throughput virtual screening of amine compounds identified three compounds (2-aminoquinoline, 2-aminobenzimidazole and 2-amino-1-methylbenzimidazole) that best interacted with AChE/BChE. Molecular docking analysis revealed the interaction of these compounds in the active site gorge of AChE/BChE, in particular with amino acid residues present in the peripheral anionic site. Molecular dynamics simulation confirmed the stable binding of these compounds with AChE/BChE. Binding energy calculated through MMGBSA method identified the non-covalent interactions (electrostatic and Van der Waals interactions) have contributed to the stable binding of the amine compounds with the AChE/BChE. Biointerface between amine compounds and AChE/BChE were visualized through Hirshfeld surface analysis. The inter-fragment interaction energies for the possible contacts between amine compounds and amino acid residues were carried out for the first time. All the amine compounds showed mixed-type of inhibition with moderate Ki value in in vitro analysis.
Collapse
Affiliation(s)
- Saravanan Kandasamy
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, Warsaw 02093, Poland; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Chitra Loganathan
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | | | - Subramani Karthikeyan
- G. S. Gill Research Institute, Guru Nanak College (Autonomous), Chennai 600 042, India
| | | | | | | | - Vignesh Sivalingam
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu 636011, India
| | | |
Collapse
|
9
|
Ghanei-Nasab S, Hadizadeh F, Foroumadi A, Marjani A. A QSAR Study for the Prediction of Inhibitory Activity of Coumarin Derivatives for the Treatment of Alzheimer’s Disease. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Pérez-Sánchez H, den Haan H, Pérez-Garrido A, Peña-García J, Chakraborty S, Erdogan Orhan I, Senol Deniz FS, Villalgordo JM. Combined Structure and Ligand-Based Design of Selective Acetylcholinesterase Inhibitors. J Chem Inf Model 2020; 61:467-480. [PMID: 33320652 DOI: 10.1021/acs.jcim.0c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase is a prime target for therapeutic intervention in Alzheimer's disease. Acetylcholinesterase inhibitors (AChEIs) are used to improve cognitive abilities, playing therefore an important role in disease management. Drug repurposing screening has been performed on a corporate chemical library containing 11 353 compounds using a target fishing approach comprising three-dimensional (3D) shape similarity and pharmacophore modeling against an approved drug database, Drugbank. This initial screening identified 108 hits. Among them, eight molecules showed structural similarity to the known AChEI drug, pyridostigmine. Further structure-based screening using a pharmacophore-guided rescoring method identifies one more potential hit. Experimental evaluations of the identified hits sieve out a highly selective AChEI scaffold. Further lead optimization using a substructure search approach identifies 24 new potential hits. Three of the 24 compounds (compounds 10b, 10h, and 10i) based on a 6-(2-(pyrrolidin-1-yl)pyrimidin-4-yl)-thiazolo[3,2-a]pyrimidine scaffold showed highly promising AChE inhibition ability with IC50 values of 13.10 ± 0.53, 16.02 ± 0.46, and 6.22 ± 0.54 μM, respectively. Moreover, these compounds are highly selective toward AChE. Compound 10i shows AChE inhibitory activity similar to a known Food and Drug Administration (FDA)-approved drug, galantamine, but with even better selectivity. Interaction analysis reveals that hydrophobic and hydrogen-bonding interactions are the primary driving forces responsible for the observed high affinity of the compound with AChE.
Collapse
Affiliation(s)
- Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Helena den Haan
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain.,Parque Tecnológico de Fuente Álamo, Villapharma Research, Ctra. El Estrecho-Lobosillo, Km. 2,5- Av. Azul, 30320 Fuente Álamo de Murcia, Murcia, Spain
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Guadalupe 30107, Spain
| | | | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | | | - José Manuel Villalgordo
- Parque Tecnológico de Fuente Álamo, Villapharma Research, Ctra. El Estrecho-Lobosillo, Km. 2,5- Av. Azul, 30320 Fuente Álamo de Murcia, Murcia, Spain
| |
Collapse
|
11
|
Ostrowska K. Coumarin-piperazine derivatives as biologically active compounds. Saudi Pharm J 2020; 28:220-232. [PMID: 32042262 PMCID: PMC7000312 DOI: 10.1016/j.jsps.2019.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/29/2019] [Indexed: 11/06/2022] Open
Abstract
A number of psychiatric disorders, including anxiety, schizophrenia, Parkinson's disease, depression and others CNS diseases are known to induce defects in the function of neural pathways sustained by the neurotransmitters, like dopamine and serotonin. N-arylpiperazine moiety is important for CNS-activity, particularly for serotonergic and dopaminergic activity. In the scientific literature there are many examples of coumarin-piperazine derivatives, particularly with arylpiperazines linked to a coumarin system via an alkyl liner, which can modulate serotonin, dopamine and adrenergic receptors. Numerous studies have revealed that the inclusion of a piperazine moiety could occasionally provide unexpected improvements in the bioactivity of various biologically active compounds. The piperazine analogs have been shown to have a potent antimicrobial activity and they can also act as BACE-1 inhibitors. On the other hand, arylpiperazines linked to coumarin derivatives have been shown to have antiproliferative activity against leukemia, lung, colon, breast, and prostate tumors. Recently, it has been reported that coumarin-piperazine derivatives exhibit a Fneuroprotective effect by their antioxidant and anti-inflammatory activities and they also show activity as acetylcholinesterase inhibitors and antifilarial activity. In this work we provide a summary of the latest advances in coumarin-related chemistry relevant for biological activity.
Collapse
|
12
|
Kong XP, Liu EY, Chen ZC, Xu ML, Yu AX, Wu QY, Xia YJ, Duan R, Dong TT, Tsim KW. Synergistic Inhibition of Acetylcholinesterase by Alkaloids Derived from Stephaniae Tetrandrae Radix, Coptidis Rhizoma and Phellodendri Chinensis Cortex. Molecules 2019; 24:molecules24244567. [PMID: 31847089 PMCID: PMC6943709 DOI: 10.3390/molecules24244567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Alkaloids having acetylcholinesterase (AChE) inhibitory activity are commonly found in traditional Chinese medicine (TCM); for example, berberine from Coptis chinensis, galantamine from Lycoris radiata, and huperzine A from Huperzia serrata. In practice of TCM, Stephaniae Tetrandrae Radix (STR) is often combined with Coptidis Rhizoma (CR) or Phellodendri Chinensis Cortex (PCC) as paired herbs during clinical application. Fangchinoline from STR and coptisine and/or berberine from CR and/or PCC are active alkaloids in inhibiting AChE. The traditional usage of paired herbs suggests the synergistic effect of fangchinoline–coptisine or fangchinoline–berberine pairing in AChE inhibition. HPLC was applied to identify the main components in herbal extracts of STR, CR, and PCC, and the AChE inhibition of their main components was determined by Ellman assay. The synergism of herb combination and active component combination was calculated by median-effect principle. Molecular docking was applied to investigate the underlying binding mechanisms of the active components with the AChE protein. It was found that fangchinoline showed AChE inhibitory potency; furthermore, fangchinoline–coptisine/berberine pairs (at ratios of 1:5, 1:2, 1:1, and 2:1) synergistically inhibited AChE; the combination index (CI) at different ratios was less than one when Fa = 0.5, suggesting synergistic inhibition of AChE. Furthermore, the molecular docking simulation supported this enzymatic inhibition. Therefore, fangchinoline–coptisine/berberine pairs, or their parental herbal mixtures, may potentially be developed as a possible therapeutic strategy for Alzheimer’s patients.
Collapse
Affiliation(s)
- Xiang-Peng Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, 121 Daxue Road, Yuci District, Jinzhong 030619, China
| | - Etta Y.L. Liu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhi-Cong Chen
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Anna X.D. Yu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qi-Yun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina T.X. Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: (T.T.X.D.); (K.W.K.T.); Tel.: +86-755-8671-5683 (T.T.X.D.); +852-2358-7332 (K.W.K.T.)
| | - Karl W.K. Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Hi-Tech Park, Shenzhen 518057, China; (X.-P.K.); (Z.-C.C.); (M.L.X.); (Q.-Y.W.); (Y.-J.X.); (R.D.)
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Correspondence: (T.T.X.D.); (K.W.K.T.); Tel.: +86-755-8671-5683 (T.T.X.D.); +852-2358-7332 (K.W.K.T.)
| |
Collapse
|
13
|
Onder S, Biberoglu K, Tacal O. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by methylene violet 3RAX. Chem Biol Interact 2019; 314:108845. [DOI: 10.1016/j.cbi.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 02/03/2023]
|
14
|
In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int J Biol Macromol 2019; 140:1147-1157. [DOI: 10.1016/j.ijbiomac.2019.08.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
|
15
|
Baruah P, Basumatary G, Yesylevskyy SO, Aguan K, Bez G, Mitra S. Novel coumarin derivatives as potent acetylcholinesterase inhibitors: insight into efficacy, mode and site of inhibition. J Biomol Struct Dyn 2018; 37:1750-1765. [DOI: 10.1080/07391102.2018.1465853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Prayasee Baruah
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| | - Grace Basumatary
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| | - Semen O. Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine , Kyiv, Ukraine
| | - Kripamoy Aguan
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine , Kyiv, Ukraine
| | - Ghanashyam Bez
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| | - Sivaprasad Mitra
- Centre for Advanced Studies in Chemistry and Department of Biotechnology & Bioinformatics, North-Eastern Hill University , Shillong, India
| |
Collapse
|
16
|
Campanari ML, Navarrete F, Ginsberg SD, Manzanares J, Sáez-Valero J, García-Ayllón MS. Increased Expression of Readthrough Acetylcholinesterase Variants in the Brains of Alzheimer's Disease Patients. J Alzheimers Dis 2018; 53:831-41. [PMID: 27258420 DOI: 10.3233/jad-160220] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is characterized by a decrease in the enzymatic activity of the enzyme acetylcholinesterase (AChE). AChE is expressed as multiple splice variants, which may serve both cholinergic degradative functions and non-cholinergic functions unrelated with their capacity to hydrolyze acetylcholine. We have recently demonstrated that a prominent pool of enzymatically inactive AChE protein exists in the AD brain. In this study, we analyzed protein and transcript levels of individual AChE variants in human frontal cortex from AD patients by western blot analysis using specific anti-AChE antibodies and by quantitative real-time PCR (qRT-PCR). We found similar protein and mRNA levels of the major cholinergic "tailed"-variant (AChE-T) and the anchoring subunit, proline-rich membrane anchor (PRiMA-1) in frontal cortex obtained from AD patients and non-demented controls. Interestingly, we found an increase in the protein and transcript levels of the non-cholinergic "readthrough" AChE (AChE-R) variants in AD patients compared to controls. Similar increases were detected by western blot using an antibody raised against the specific N-terminal domain, exclusive of alternative N-extended variants of AChE (N-AChE). In accordance with a subset of AChE-R monomers that display amphiphilic properties that are upregulated in the AD brain, we demonstrate that the increase of N-AChE species is due, at least in part, to N-AChE-R variants. In conclusion, we demonstrate selective alterations in specific AChE variants in AD cortex, with no correlation in enzymatic activity. Therefore, differential expression of AChE variants in AD may reflect changes in the pathophysiological role of AChE, independent of cholinergic impairment or its role in degrading acetylcholine.
Collapse
Affiliation(s)
- Maria-Letizia Campanari
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, USA
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| |
Collapse
|
17
|
Kumar J, Gill A, Shaikh M, Singh A, Shandilya A, Jameel E, Sharma N, Mrinal N, Hoda N, Jayaram B. Pyrimidine-Triazolopyrimidine and Pyrimidine-Pyridine Hybrids as Potential Acetylcholinesterase Inhibitors for Alzheimer's Disease. ChemistrySelect 2018. [DOI: 10.1002/slct.201702599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jitendra Kumar
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi- 110025 India
| | - Asim Gill
- Laboratory of Molecular Biology; South Asian University; New Delhi- 110021 India
| | - Marziya Shaikh
- Laboratory of Molecular Biology; South Asian University; New Delhi- 110021 India
| | - Anju Singh
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi- 110025 India
| | - Ashutosh Shandilya
- Department of Chemistry; Indian Institute of Technology Delhi, Hauz Khas; New Delhi- 110016 India
| | - Ehtesham Jameel
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi- 110025 India
| | - Nitin Sharma
- Laboratory of Molecular Biology; South Asian University; New Delhi- 110021 India
| | - Nirotpal Mrinal
- Laboratory of Molecular Biology; South Asian University; New Delhi- 110021 India
| | - Nasimul Hoda
- Department of Chemistry; Jamia Millia Islamia (Central University); New Delhi- 110025 India
| | - B. Jayaram
- Department of Chemistry; Indian Institute of Technology Delhi, Hauz Khas; New Delhi- 110016 India
- Kusuma School of Biological Sciences; IIT Delhi; New Delhi- 110016 India
- Supercomputing facility for Bioinformatics & Computational Biology; IIT Delhi; New Delhi- 110016 India
| |
Collapse
|
18
|
Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2- c ]chromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg Med Chem 2017; 25:3980-3988. [DOI: 10.1016/j.bmc.2017.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
|
19
|
Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med Chem 2017; 9:659-671. [DOI: 10.4155/fmc-2016-0237] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A series of 2-benzylidene-benzofuran-3-ones were designed from the structures of Ebselen analogs and aurone derivatives and synthesized in good yields. Materials & methods: The target compounds were prepared by the condensation reaction between appropriate benzofuranones with amino alkoxy aldehydes and evaluated as cholinesterase inhibitors by Ellman’s method. Results: The in vitro anti-acetylcholinesterase (AChE)/butyrylcholinesterase activities of the synthesized compounds revealed that 7e (IC50 = 0.045 μM) is the most active compound against AChE. Furthermore, the docking study confirmed the results obtained through in vitro experiments and predicted the possible binding conformation. Conclusion: The anticholinesterase activities of benzylidene-benzofurane-3-ones as aurone analogs revealed that the compounds bearing piperidinylethoxy residue showed better activities against AChE, introducing these compounds for further drug discovery developments. [Formula: see text]
Collapse
|
20
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
21
|
Kulkarni A, Khan Y, Ray K. Heterotrimeric kinesin-2, together with kinesin-1, steers vesicular acetylcholinesterase movements toward the synapse. FASEB J 2016; 31:965-974. [PMID: 27920150 DOI: 10.1096/fj.201600759rrr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022]
Abstract
Acetylcholinesterase (AChE), which is implicated in the pathophysiology of neurological disorders, is distributed along the axon and enriched at the presynaptic basal lamina. It hydrolyses the neurotransmitter acetylcholine, which inhibits synaptic transmission. Aberrant AChE activity and ectopic axonal accumulation of the enzyme are associated with neurodegenerative disorders, such as Alzheimer's disease. The molecular mechanism that underlies AChE transport is still unclear. Here, we show that expression of Drosophila AChE tagged with photoactivatable green fluorescent protein and m-Cherry (GPAC) in cholinergic neurons compensates for the RNA interference-mediated knockdown of endogenous AChE activity. GPAC-AChE, which is enriched in the neuropil region of the brain, moves in the apparently vesicular form in axons with an anterograde bias in Drosophila larvae. Two anterograde motors, kinesin-1 and -2, propel distinct aspects of GPAC-AChE movements. Total loss of kinesin-2 reduces the density of anterograde traffic and increases bidirectional movements of GPAC-AChE vesicles without altering their speed. A partial loss of kinesin-1 reduces both the density and speed of anterograde GPAC-AChE traffic and enhances the pool of stationary vesicles. Together, these results suggest that combining activity of a relatively weak kinesin-2 with that of a stronger kinesin-1 motor could steer AChE-containing vesicles toward synapse, and provides a molecular basis for the observed subcellular distribution of the enzyme.-Kulkarni, A., Khan, Y., Ray, K. Heterotrimeric kinesin-2, together with kinesin-1, steers vesicular acetylcholinesterase movements toward the synapse.
Collapse
Affiliation(s)
- Anuttama Kulkarni
- Sophia College, Mumbai, India.,Tata Institute of Fundamental Research, Mumbai, India
| | | | - Krishanu Ray
- Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
22
|
Shidore M, Machhi J, Shingala K, Murumkar P, Sharma MK, Agrawal N, Tripathi A, Parikh Z, Pillai P, Yadav MR. Benzylpiperidine-Linked Diarylthiazoles as Potential Anti-Alzheimer’s Agents: Synthesis and Biological Evaluation. J Med Chem 2016; 59:5823-46. [DOI: 10.1021/acs.jmedchem.6b00426] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahesh Shidore
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Jatin Machhi
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Kaushik Shingala
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Prashant Murumkar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mayank Kumar Sharma
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Neetesh Agrawal
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Ashutosh Tripathi
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Zalak Parikh
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Prakash Pillai
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Mange Ram Yadav
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| |
Collapse
|
23
|
He D, Wu H, Wei Y, Liu W, Huang F, Shi H, Zhang B, Wu X, Wang C. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur J Pharmacol 2015; 768:96-107. [PMID: 26526348 DOI: 10.1016/j.ejphar.2015.10.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency.
Collapse
Affiliation(s)
- Dandan He
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Hui Wu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Yue Wei
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Wei Liu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Fei Huang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Hailian Shi
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Beibei Zhang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Xiaojun Wu
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| | - Changhong Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China.
| |
Collapse
|
24
|
Tonelli M, Catto M, Tasso B, Novelli F, Canu C, Iusco G, Pisani L, Stradis AD, Denora N, Sparatore A, Boido V, Carotti A, Sparatore F. Multitarget Therapeutic Leads for Alzheimer's Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β-Amyloid (Aβ) Aggregation. ChemMedChem 2015; 10:1040-53. [PMID: 25924599 DOI: 10.1002/cmdc.201500104] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/23/2022]
Abstract
Multitarget therapeutic leads for Alzheimer's disease were designed on the models of compounds capable of maintaining or restoring cell protein homeostasis and of inhibiting β-amyloid (Aβ) oligomerization. Thirty-seven thioxanthen-9-one, xanthen-9-one, naphto- and anthraquinone derivatives were tested for the direct inhibition of Aβ(1-40) aggregation and for the inhibition of electric eel acetylcholinesterase (eeAChE) and horse serum butyrylcholinesterase (hsBChE). These compounds are characterized by basic side chains, mainly quinolizidinylalkyl moieties, linked to various bi- and tri-cyclic (hetero)aromatic systems. With very few exceptions, these compounds displayed inhibitory activity on both AChE and BChE and on the spontaneous aggregation of β-amyloid. In most cases, IC50 values were in the low micromolar and sub-micromolar range, but some compounds even reached nanomolar potency. The time course of amyloid aggregation in the presence of the most active derivative (IC50 =0.84 μM) revealed that these compounds might act as destabilizers of mature fibrils rather than mere inhibitors of fibrillization. Many compounds inhibited one or both cholinesterases and Aβ aggregation with similar potency, a fundamental requisite for the possible development of therapeutics exhibiting a multitarget mechanism of action. The described compounds thus represent interesting leads for the development of multitarget AD therapeutics.
Collapse
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy).
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", V. Orabona 4, 70125 Bari (Italy).
| | - Bruno Tasso
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy)
| | - Federica Novelli
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy)
| | - Caterina Canu
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy)
| | - Giovanna Iusco
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy)
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", V. Orabona 4, 70125 Bari (Italy)
| | - Angelo De Stradis
- Istituto di Virologia Vegetale del CNR, Università degli Studi di Bari "Aldo Moro", V. Amendola 165A, 70126 Bari (Italy)
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", V. Orabona 4, 70125 Bari (Italy)
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche "P. Pratesi", Università degli Studi di Milano, V. Mangiagalli 25, 20133 Milano (Italy)
| | - Vito Boido
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy)
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", V. Orabona 4, 70125 Bari (Italy)
| | - Fabio Sparatore
- Dipartimento di Farmacia, Università degli Studi di Genova, V. le Benedetto XV, 3, 16132 Genova (Italy)
| |
Collapse
|
25
|
Cholinesterase inhibitors for the treatment of Alzheimer's disease:: getting on and staying on. CURRENT THERAPEUTIC RESEARCH 2014; 64:216-35. [PMID: 24944370 DOI: 10.1016/s0011-393x(03)00059-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2003] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cholinesterase (ChE) inhibitors currently used in the treatment of Alzheimer's disease (AD) are the acetylcholinesterase (AChE)-selective inhibitors, donepezil and galantamine, and the dual AChE and butyrylcholinesterase (BuChE) inhibitor, rivastigmine. In addition to differences in selectivity for AChE and BuChE, ChE inhibitors also differ in pharmacokinetic and pharmacodynamic properties, and these differences could significantly impact on safety, tolerability, and efficacy. OBJECTIVE The aim of this article was to provide an overview of the ChE inhibitors widely used in AD, focusing on key pharmacologic differences among agents and how these may translate into important differences in safety, tolerability, and efficacy in clinical practice. METHODS Using published literature collected over time by the author, a review was conducted, focusing on the pharmacology and clinical data of donepezil, galantamine, and rivastigmine. RESULTS All ChE inhibitors have the potential to induce centrally mediated cholinergic adverse events (AEs), such as nausea and vomiting, if the dose is increased too rapidly or in increments that are too large. These AEs, which are most likely to occur during the "getting on," or dose-escalation, phase of treatment, may result in patients discontinuing treatment early without achieving optimum therapeutic benefit. To reduce the incidence of these AEs, a slow dose-escalation schedule has been established in clinical practice, consisting of a "start low, go slow" procedure with a minimum of 4 weeks between dose increases. After "getting on" treatment, maintaining treatment in the long term, or "staying on," may be achieved with good safety, tolerability, and sustained symptomatic efficacy across the key symptom domains (activities of daily living, behavior, and cognition). CONCLUSIONS ChE inhibitors provide symptomatic benefit in AD across key symptom domains. Factors influencing the safety, tolerability, and efficacy of these agents in clinical practice include ChE enzymes inhibited, brain and brain-region ChE selectivity, and metabolism route. Class-specific cholinergic AEs can be minimized using slow, flexible dose escalation.
Collapse
|
26
|
Xu ZC, Wang XB, Yu WY, Xie SS, Li SY, Kong LY. Design, synthesis and biological evaluation of benzylisoquinoline derivatives as multifunctional agents against Alzheimer's disease. Bioorg Med Chem Lett 2014; 24:2368-73. [PMID: 24726809 DOI: 10.1016/j.bmcl.2014.03.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/01/2014] [Accepted: 03/18/2014] [Indexed: 11/17/2022]
Abstract
A novel series of benzylisoquinoline derivatives were designed, synthesized, and evaluated as multifunctional agents against Alzheimer's disease (AD). The screening results showed that most of the compounds significantly inhibited cholinesterases (ChEs), human cholinesterases (h-ChEs) and self-induced β-amyloid (Aβ) aggregation. In particular, compound 9k showed the strongest acetylcholinesterase (AChE) inhibitory activity, being 1000-fold and 3-fold more potent than its precursor benzylisoquinoline (10) and the positive control galanthamine, respectively. In addition, 9k was a moderately potent inhibitor for h-ChEs. Compared with precursor benzylisoquinoline (36.0% at 20μМ), 9k (78.4% at 20μМ) could further inhibit Aβ aggregation. Moreover, 9k showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Therefore, compound 9k might be a promising lead compound for AD treatment.
Collapse
Affiliation(s)
- Zi-Chen Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wen-Ying Yu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Sai-Sai Xie
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Su-Yi Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
27
|
Relkin NR. Beyond symptomatic therapy: a re-examination of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Rev Neurother 2014; 7:735-48. [PMID: 17561789 DOI: 10.1586/14737175.7.6.735] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholinesterase inhibitors (AChEIs) are generally regarded as palliative treatments for Alzheimer's disease that slow the progression of dementia symptoms without altering Alzheimer's disease's underlying pathogenic mechanisms. This concept is based on inference rather than evidence, and has limited the scope and persistence of AChEI use in clinical practice. Recent preclinical studies demonstrate that AChEIs exhibit a number of biological effects in addition to cholinesterase inhibition. A broader understanding of the possible mechanisms of action of AChEIs in Alzheimer's disease could result in more effective use and assist in the development of new and improved therapies. The available evidence brings into question the prevailing view that AChEIs are exclusively symptomatic treatments and supports the use of these agents persistently throughout the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Norman R Relkin
- Joan and Sanford I. Weill Medical College of Cornell University, 428 East 72nd Street, Suite 500, NY 10017, USA.
| |
Collapse
|
28
|
Acetylcholinesterase Protein Level Is Preserved in the Alzheimer's Brain. J Mol Neurosci 2013; 53:446-53. [DOI: 10.1007/s12031-013-0183-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 01/15/2023]
|
29
|
Luo Z, Sheng J, Sun Y, Lu C, Yan J, Liu A, Luo HB, Huang L, Li X. Synthesis and evaluation of multi-target-directed ligands against Alzheimer's disease based on the fusion of donepezil and ebselen. J Med Chem 2013; 56:9089-99. [PMID: 24160297 DOI: 10.1021/jm401047q] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel series of compounds obtained by fusing the cholinesterase inhibitor donepezil and the antioxidant ebselen were designed as multi-target-directed ligands against Alzheimer's disease. An in vitro assay showed that some of these molecules did not exhibit highly potent cholinesterase inhibitory activity but did have various other ebselen-related pharmacological effects. Among the molecules, compound 7d, one of the most potent acetylcholinesterase inhibitors (IC50 values of 0.042 μM for Electrophorus electricus acetylcholinesterase and 0.097 μM for human acetylcholinesterase), was found to be a strong butyrylcholinesterase inhibitor (IC50 = 1.586 μM), to possess rapid H2O2 and peroxynitrite scavenging activity and glutathione peroxidase-like activity (ν0 = 123.5 μM min(-1)), and to be a substrate of mammalian TrxR. A toxicity test in mice showed no acute toxicity at doses of up to 2000 mg/kg. According to an in vitro blood-brain barrier model, 7d is able to penetrate the central nervous system.
Collapse
Affiliation(s)
- Zonghua Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 2013; 21:4928-37. [DOI: 10.1016/j.bmc.2013.06.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/18/2022]
|
31
|
Study of the interaction of Huperzia saururus Lycopodium alkaloids with the acetylcholinesterase enzyme. J Mol Graph Model 2013; 44:136-44. [PMID: 23827878 DOI: 10.1016/j.jmgm.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/14/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022]
Abstract
In the present study, we describe and compare the binding modes of three Lycopodium alkaloids (sauroine, 6-hydroxylycopodine and sauroxine; isolated from Huperzia saururus) and huperzine A with the enzyme acetylcholinesterase. Refinement and rescoring of the docking poses (obtained with different programs) with an all atom force field helped to improve the quality of the protein-ligand complexes. Molecular dynamics simulations were performed to investigate the complexes and the alkaloid's binding modes. The combination of the latter two methodologies indicated that binding in the active site is favored for the active compounds. On the other hand, similar binding energies in both the active and the peripheral sites were obtained for sauroine, thus explaining its experimentally determined lack of activity. MM-GBSA predicted the order of binding energies in agreement with the experimental IC50 values.
Collapse
|
32
|
Chitra L, Kumar CR, Basha HM, Ponne S, Boopathy R. Interaction of metal chelators with different molecular forms of acetylcholinesterase and its significance in Alzheimer's disease treatment. Proteins 2013; 81:1179-91. [DOI: 10.1002/prot.24267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Loganathan Chitra
- DRDO-BU Center for Life Sciences; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | - Chinnadurai Raj Kumar
- Department of Biotechnology; School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | - Haleema M. Basha
- Department of Biotechnology; School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | - Saravanaraman Ponne
- Department of Biotechnology; School of Biotechnology and Genetic Engineering; Bharathiar University; Coimbatore; 641 046; Tamil Nadu; India
| | | |
Collapse
|
33
|
Razavi SF, Khoobi M, Nadri H, Sakhteman A, Moradi A, Emami S, Foroumadi A, Shafiee A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur J Med Chem 2013; 64:252-9. [PMID: 23644208 DOI: 10.1016/j.ejmech.2013.03.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
A series of 4-hydroxycoumarin derivatives were designed and synthesized as new acetylcholinesterase (AChE) inhibitors which could be considered for Alzheimer's disease therapeutics. Among the 19 coumarin-derived compounds tested toward Electrophorus electricus acetylcholinesterase (eelAChE) and horse serum butyrylcholinesterase (eqBChE), N-(1-benzylpiperidin-4-yl)acetamide derivative 4m displayed highest AChE inhibitory activity (IC50 = 1.2 μM) and good selectivity (37 times). The docking study of the most potent compound 4m, indicated that Phe330 is responsible for ligand recognition and trafficking by forming π-cation interaction with benzylpiperidine moiety. Furthermore, the formation of an additional π-π interaction between coumarin moiety and Trp279 of peripheral anionic site could stabilize the ligand in the active site resulting in more potent inhibition of the enzyme.
Collapse
|
34
|
Kannan M, Manivel P, Geetha K, Muthukumaran J, Rao HSP, Krishna R. Synthesis and in silico evaluation of 1N-methyl-1S-methyl-2-nitroethylene (NMSM) derivatives against Alzheimer disease: to understand their interacting mechanism with acetylcholinesterase. J Chem Biol 2012; 5:151-66. [PMID: 24052808 DOI: 10.1007/s12154-012-0084-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/04/2012] [Indexed: 11/24/2022] Open
Abstract
Anomalous action of human acetylcholinesterase (hAChE) in Alzheimer's disease (AD) was restrained by various AChE inhibitors, of which the specific and potent lead candidate Donepezil is used for treating the disease AD. Besides the specificity, the observed undesirable side effects caused by Donepezil invoked the quest for new lead molecules with the increased potency and specificity for AChE. The present study elucidates the potency of six 1N-methyl-1S-methyl-2-nitroethylene (NMSM) derivatives to form a specific interaction with the peripheral anionic site and catalytic anionic subsite residues of hAChE. The NMSMs were prepared in good yield from 1,1-di(methylsulfanyl)-2-nitroethylene and primary amine (or) amino acid esters. In silico interaction analysis reveals specific and potent interactions between hAChE and selected ligand molecules. The site-specific interactions formed between these molecules also results in a conformational change in the orientation of active site residues of hAChE, which prevents them from being accessed by beta-amyloid protein (Aβ), which is a causative agent for amyloid plaque formation and acetylcholine (ACh). In silico interaction analysis between the ligand-bounded hAChE with Aß and ACh confirms this observation. The variation in the conformation of hAChE associated with the decreased ability of Aβ and ACh to access the respective functional residues of hAChE induced by the novel NMSMs favors their selection for in vivo analysis to present themselves as new members of hAChE inhibitors.
Collapse
Affiliation(s)
- M Kannan
- Centre for Bioinformatics, Pondicherry University, Pondicherry, 605 014 India
| | | | | | | | | | | |
Collapse
|
35
|
Ronco C, Carletti E, Colletier JP, Weik M, Nachon F, Jean L, Renard PY. Huprine Derivatives as Sub-Nanomolar Human Acetylcholinesterase Inhibitors: From Rational Design to Validation by X-ray Crystallography. ChemMedChem 2011; 7:400-5. [DOI: 10.1002/cmdc.201100438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Indexed: 11/06/2022]
|
36
|
Liu J, Dumontet V, Simonin AL, Iorga BI, Guerineau V, Litaudon M, Nguyen VH, Gueritte F. Benzofurans from Styrax agrestis as acetylcholinesterase inhibitors: structure-activity relationships and molecular modeling studies. JOURNAL OF NATURAL PRODUCTS 2011; 74:2081-2088. [PMID: 21939219 DOI: 10.1021/np200308j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An extract of Styrax agrestis fruits, collected in Vietnam, significantly inhibited acetylcholinesterase (AChE) in vitro. Bioassay-guided fractionation revealed three new egonol-type benzofurans: egonol-9(Z),12(Z) linoleate (1), 7-demethoxyegonol-9(Z),12(Z) linoleate (2), and 7-demethoxyegonol oleate (4). Ten known egonol-type benzofurans were also isolated (3, 5, 6-13). In order to better understand structure-activity relationships in this series, egonol derivatives 14-19 were prepared by chemical modifications and evaluated for their inhibition of AChE, butyrylcholinesterase (BChE), and AChE-induced Aβ aggregation. Compounds 1-4 were the most potent inhibitors of the series, which exhibited inhibitory activity against AChE (IC50 1.4-3.1 μM) and, for 1, Aβ aggregation (77.6%). Molecular docking studies were also performed to investigate interaction of these compounds with the active site of AChE.
Collapse
Affiliation(s)
- Jiawei Liu
- Research Center of Medicinal Plants Resource Science and Engineering, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Paz A, Xie Q, Greenblatt HM, Fu W, Tang Y, Silman I, Qiu Z, Sussman JL. The Crystal Structure of a Complex of Acetylcholinesterase with a Bis-(−)-nor-meptazinol Derivative Reveals Disruption of the Catalytic Triad. J Med Chem 2009; 52:2543-9. [DOI: 10.1021/jm801657v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aviv Paz
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Qiong Xie
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Harry M. Greenblatt
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Wei Fu
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Yun Tang
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Israel Silman
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Zhuibai Qiu
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| | - Joel L. Sussman
- Departments of Structural Biology and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel, Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, P.R. China, School of Pharmacy, East China University of Science and Technology, Shanghai 200237 P.R. China
| |
Collapse
|
38
|
Pera M, Martínez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A, Clos M. Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Mol Cell Neurosci 2009; 40:217-24. [DOI: 10.1016/j.mcn.2008.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 10/09/2008] [Accepted: 10/16/2008] [Indexed: 11/16/2022] Open
|
39
|
Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Mol Neurobiol 2008; 38:178-98. [DOI: 10.1007/s12035-008-8041-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/16/2008] [Indexed: 01/09/2023]
|
40
|
Xie Q, Wang H, Xia Z, Lu M, Zhang W, Wang X, Fu W, Tang Y, Sheng W, Li W, Zhou W, Zhu X, Qiu Z, Chen H. Bis-(−)-nor-meptazinols as Novel Nanomolar Cholinesterase Inhibitors with High Inhibitory Potency on Amyloid-β Aggregation. J Med Chem 2008; 51:2027-36. [DOI: 10.1021/jm070154q] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zheng Xia
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Meiyan Lu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Weiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xinghai Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yun Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hongzhuan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 138 Yixueyuan Road, Shanghai 200032, P. R. China, Department of Pharmacology, Institute of Medical Sciences, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P. R. China, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
41
|
Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008; 51:347-72. [PMID: 18181565 DOI: 10.1021/jm7009364] [Citation(s) in RCA: 855] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Muñoz-Torrero D, Camps P. Huprines for Alzheimer's disease drug development. Expert Opin Drug Discov 2007; 3:65-81. [DOI: 10.1517/17460441.3.1.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
Belluti F, Rampa A, Piazzi L, Bisi A, Gobbi S, Bartolini M, Andrisano V, Cavalli A, Recanatini M, Valenti P. Cholinesterase inhibitors: xanthostigmine derivatives blocking the acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem 2005; 48:4444-56. [PMID: 15974596 DOI: 10.1021/jm049515h] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In continuing research that led us to identify a new class of carbamate derivatives acting as potent (Rampa et al. J. Med. Chem. 1998, 41, 3976) and long-lasting (Rampa et al. J. Med. Chem. 2001, 44, 3810) acetylcholinesterase (AChE) inhibitors, we obtained some analogues able to simultaneously block both the catalytic and the beta-amyloid (Abeta) proaggregatory activities of AChE. The key feature of these derivatives is a 2-arylidenebenzocycloalkanone moiety that provides the ability to bind at the AChE peripheral site responsible for promoting the Abeta aggregation. The new carbamates were tested in vitro for the inhibition of both cholinesterases and also for the ability to prevent the AChE-induced Abeta aggregation. All of the compounds had AChE IC(50) values in the nanomolar range and showed the ability to block the AChE-induced Abeta aggregation, thus supporting the feasibility of this new strategy in the search of compounds for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Federica Belluti
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bussini S, Meda L, Scarpini E, Clementi E, Conti G, Tiriticco M, Bresolin N, Baron P. Heparan sulfate proteoglycan induces the production of NO and TNF-alpha by murine microglia. IMMUNITY & AGEING 2005; 2:11. [PMID: 16022734 PMCID: PMC1208935 DOI: 10.1186/1742-4933-2-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 07/16/2005] [Indexed: 11/10/2022]
Abstract
Background A common feature of Alzheimer's disease (AD) pathology is the abundance of activated microglia in neuritic plaques containing amyloid-beta protein (Aβ) and associated molecules including heparan sulfate proteoglycan (HSPG). Besides the role as pathological chaperone favouring amyloidogenesis, little is known about whether or not HSPG can induce microglial activation. Cultures of primary murine microglia were used to assess the effect of HSPG on production of proinflammatory molecules that are known to be present in neuritic plaques of AD. Results HSPG stimulated up-regulation of tumor necrosis factor-alpha (TNF-α), production of inducible nitric oxide synthase (iNOS) mRNA and accumulation of TNF-α protein and nitrite (NO2-) in a time- and concentration-dependent manner. The effects of HSPG were primarily due to the property of the protein core as indicated by the lack of microglial accumulation of TNF-α and NO2- in response to denaturated HSPG or heparan sulfate GAG chains (HS). Conclusion These data demonstrate that HSPG may contribute to chronic microglial activation and neurodegeneration seen in neuritic plaques of AD.
Collapse
Affiliation(s)
- Simona Bussini
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| | - Lucia Meda
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| | - Elio Scarpini
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| | - Emilio Clementi
- Dept. Preclinical Sciences, University of Milano, 20157 - Milano and E.Medea Scientific Institute 23842 - Bosisio Pasini, Italy
| | - Giancarlo Conti
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| | - Marco Tiriticco
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| | - Pierluigi Baron
- Department of Neurological Sciences, Centre for Excellence on Neurodegenerative Diseases and "Dino Ferrari" Center, University of Milan, Fondazione IRCCS "Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena", Via F. Sforza 35, 20122 Milan, Italy
| |
Collapse
|
45
|
Cotman SL, Halfter W, Cole GJ. Agrin binds to beta-amyloid (Abeta), accelerates abeta fibril formation, and is localized to Abeta deposits in Alzheimer's disease brain. Mol Cell Neurosci 2000; 15:183-98. [PMID: 10673326 DOI: 10.1006/mcne.1999.0816] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agrin is an extracellular matrix heparan sulfate proteoglycan (HSPG) well known for its role in modulation of the neuromuscular junction during development. Although agrin is one of the major HSPGs of the brain, its function there remains elusive. Here we provide evidence suggesting a possible function for agrin in Alzheimer's disease brain. Agrin protein binds the amyloidogenic peptide Abeta (1-40) in its fibrillar state via a mechanism that involves the heparan sulfate glycosaminoglycan chains of agrin. Furthermore, agrin is able to accelerate Abeta fibril formation and protect Abeta (1-40) from proteolysis, in vitro. Supporting a biological significance for these in vitro data, immunocytochemical studies demonstrate agrin's presence within senile plaques and cerebrovascular amyloid deposits, and agrin immunostained capillaries exhibit pathological alterations in AD brain. These data therefore suggest that agrin may be an important factor in the progression of Abeta peptide aggregation and/or its persistence in Alzheimer's disease brain.
Collapse
Affiliation(s)
- S L Cotman
- Neurobiotechnology Center and, Department of Neuroscience, The Ohio State University, 1060 Carmack Road, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
46
|
|
47
|
Marchot P, Bourne Y, Prowse CN, Bougis PE, Taylor P. Inhibition of mouse acetylcholinesterase by fasciculin: crystal structure of the complex and mutagenesis of fasciculin. Toxicon 1998; 36:1613-22. [PMID: 9792178 DOI: 10.1016/s0041-0101(98)00154-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Fasciculins are members of the superfamily of three-fingered peptidic toxins from Elapidae venoms. They selectively inhibit mammalian and electric fish acetylcholinesterases (AChE) with Ki values in the pico- to nanomolar range. Kinetic studies performed in solution indicate that fasciculin does not totally occlude ligand access to the active site of AChE, but rather binds to a peripheral site of the enzyme to inhibit catalysis, perhaps allosterically. The crystal structure of the Fas2-mouse AChE complex delineated a large contact area consistent with the low dissociation constant of the complex; the Fas2 and AChE residues participating in the binding interface were unambiguously established, and major hydrophobic interactions were identified. The structure however suggests that fasciculin totally occludes substrate entry into the catalytic site of AChE, and does not reveal to what extent each contact between Fas2 and AChE contributes to the overall binding energy. New probes, designed to delineate the individual contributions of the fasciculin residues to the complex formation and conformation, were generated by site-directed mutagenesis of a synthetic Fas2 gene. A fully processed recombinant fasciculin, rFas2, that is undistinguishable from the natural, venom-derived Fas2, was expressed in a mammalian system; fourteen mutants, encompassing 16 amino acid residues distributed among the three loops (fingers) of Fas2, were developed from both the kinetic and structural data and analyzed for inhibition of mouse AChE. The determinants identified by the structural and the functional approaches do coincide. However, only a few of the many residues which make up the overall interactive site of the Fas2 molecule provide the strong interactions required for high affinity binding and enzyme inhibition. Potential drug design from the fasciculin molecule is discussed.
Collapse
Affiliation(s)
- P Marchot
- CNRS UMR 6560 Ingénierie des Protéines, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
Alzheimer's disease (AD) is an archetype of a class of diseases characterized by abnormal protein deposition. In each case, deposition manifests itself in the form of amyloid deposits composed of fibrils of otherwise normal, soluble proteins or peptides. An ever-increasing body of genetic, physiologic, and biochemical data supports the hypothesis that fibrillogenesis of the amyloid beta-protein is a seminal event in Alzheimer's disease. Inhibiting A beta fibrillogenesis is thus an important strategy for AD therapy. However, before this strategy can be implemented, a mechanistic understanding of the fibrillogenesis process must be achieved and appropriate steps selected as therapeutic targets. Following a brief introduction to AD, I review here the current state of knowledge of A beta fibrillogenesis. Special emphasis is placed on the morphologic, structural, and kinetic aspects of this complex process.
Collapse
Affiliation(s)
- D B Teplow
- Department of Neurology (Neuroscience), Harvard Medical School Boston, MA, USA.
| |
Collapse
|
49
|
Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci 1998. [PMID: 9547230 DOI: 10.1523/jneurosci.18-09-03213.1998] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain acetylcholinesterase (AChE) forms stable complexes with amyloid-beta peptide (Abeta) during its assembly into filaments, in agreement with its colocalization with the Abeta deposits of Alzheimer's brain. The association of the enzyme with nascent Abeta aggregates occurs as early as after 30 min of incubation. Analysis of the catalytic activity of the AChE incorporated into these complexes shows an anomalous behavior reminiscent of the AChE associated with senile plaques, which includes a resistance to low pH, high substrate concentrations, and lower sensitivity to AChE inhibitors. Furthermore, the toxicity of the AChE-amyloid complexes is higher than that of the Abeta aggregates alone. Thus, in addition to its possible role as a heterogeneous nucleator during amyloid formation, AChE, by forming such stable complexes, may increase the neurotoxicity of Abeta fibrils and thus may determine the selective neuronal loss observed in Alzheimer's brain.
Collapse
|
50
|
Bronfman FC, Alvarez A, Morgan C, Inestrosa NC. Laminin blocks the assembly of wild-type A beta and the Dutch variant peptide into Alzheimer's fibrils. Amyloid 1998; 5:16-23. [PMID: 9547001 DOI: 10.3109/13506129809007285] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyloid fibril formation is believed to be a nucleation-dependent polymerization process which may be influenced by various other factors with important consequences for the development, prevention or treatment of amyloidosis. We have previously shown that laminin inhibits A beta peptide fibril formation in vitro. Here we present a kinetic study that indicates laminin to be a potent anti-amyloidosis factor, as it not only inhibited A beta 1-40 fibril aggregation, but also inhibited the aggregation of the Dutch A beta 1-40 variant, a peptide with a higher capacity to aggregate than the wild-type A beta 1-40. The inhibitory effect of laminin on amyloid fibril formation was not overcome by the addition of pre-formed A beta fibrils, suggesting that laminin inhibits the fibril elongation process. At the present time, however, we cannot rule out the possibility that laminin also affects the initial nucleation process of A beta fibril formation. On other hand, laminin was not able to counteract the amyloid fibril formation promoted by acetylcholinesterase (AChE), another component of the amyloid deposits found in AD brains. The effect of laminin may be important as an inhibitor of A beta amyloidogenesis in vivo, specifically at the level of cerebral blood vessels.
Collapse
Affiliation(s)
- F C Bronfman
- Department of Cellular and Molecular Biology, Catholic University of Chile, Santiago, Chile
| | | | | | | |
Collapse
|