1
|
Leavell Y, Simpson DM. The role of the capsaicin 8% patch in the treatment of painful diabetic peripheral neuropathy. Pain Manag 2022; 12:595-609. [PMID: 35152709 DOI: 10.2217/pmt-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment of painful diabetic peripheral neuropathy (PDPN) is challenging and often limited by drug tolerability and adverse effects. This review article focuses on the high-dose (8%) capsaicin patch that allows for improved efficacy and reduced application frequency in comparison to low-dose capsaicin formulations. Systemic absorption is minimal resulting in fewer systemic side effects than first-line oral medications. There is evidence that capsaicin patch treatment is well-tolerated, safe and provides effective pain relief maintained for several weeks; well-powered studies are needed to confirm these findings. The capsaicin 8% patch may benefit patients at high risk for adverse effects from oral medication, polypharmacy or inadequate pain relief from first-line therapies.
Collapse
Affiliation(s)
- Yaowaree Leavell
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - David M Simpson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
3
|
Fernández-Montoya J, Buendia I, Martin YB, Egea J, Negredo P, Avendaño C. Sensory Input-Dependent Changes in Glutamatergic Neurotransmission- Related Genes and Proteins in the Adult Rat Trigeminal Ganglion. Front Mol Neurosci 2016; 9:132. [PMID: 27965535 PMCID: PMC5124698 DOI: 10.3389/fnmol.2016.00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/11/2016] [Indexed: 11/13/2022] Open
Abstract
Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites, and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left–right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| | - Izaskun Buendia
- Instituto de Investigación Sanitaria, Hospital Universitario de La PrincesaMadrid, Spain; Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de MadridMadrid, Spain
| | - Yasmina B Martin
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de MadridMadrid, Spain; Departamento de Anatomía, Universidad Francisco de VitoriaMadrid, Spain
| | - Javier Egea
- Instituto de Investigación Sanitaria, Hospital Universitario de La PrincesaMadrid, Spain; Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Negredo
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| | - Carlos Avendaño
- Departamento de Anatomía, Histología y Neurociencia, Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
4
|
Fernandes ES, Cerqueira ARA, Soares AG, Costa SKP. Capsaicin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:91-125. [PMID: 27771922 DOI: 10.1007/978-3-319-41342-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.
Collapse
Affiliation(s)
- E S Fernandes
- Programa de Pós-Graduação, Universidade Ceuma, São Luís-MA, Brazil.,Vascular Biology Section, Cardiovascular Division, King's College London, London, UK
| | - A R A Cerqueira
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - A G Soares
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Wallace M, Pappagallo M. Qutenza®: a capsaicin 8% patch for the management of postherpetic neuralgia. Expert Rev Neurother 2014; 11:15-27. [DOI: 10.1586/ern.10.182] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:39-76. [PMID: 24941664 DOI: 10.1007/978-3-0348-0828-6_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1.
Collapse
|
7
|
Adams MJ, Almaghrabi SY, Ahuja KDK, Geraghty DP. Vanilloid-Like Agents: Potential Therapeutic Targeting of Platelets? Drug Dev Res 2013. [DOI: 10.1002/ddr.21102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Murray J. Adams
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| | - Safa Y. Almaghrabi
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| | - Kiran D. K. Ahuja
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| | - Dominic P. Geraghty
- School of Human Life Sciences; University of Tasmania; Bag 1320 Launceston; Tasmania; 7250; Australia
| |
Collapse
|
8
|
O'Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 2013; 64:939-71. [PMID: 23023032 DOI: 10.1124/pr.112.006163] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes.
Collapse
Affiliation(s)
- Jessica O'Neill
- Neuroscience, Physiology and Pharmacology, University College London, London.
| | | | | | | | | | | |
Collapse
|
9
|
Granmo M, Jensen T, Schouenborg J. Nociceptive transmission to rat primary somatosensory cortex--comparison of sedative and analgesic effects. PLoS One 2013; 8:e53966. [PMID: 23320109 PMCID: PMC3540052 DOI: 10.1371/journal.pone.0053966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
CO(2)-laser C-fibre evoked cortical potentials (LCEPs) is a potentially useful animal model for studies of pain mechanisms. A potential confounding factor when assessing analgesic effects of systemically administered drugs using LCEP is sedation. This study aims to clarify: 1) the relation between level of anaesthesia and magnitude of LCEP, 2) the effects of a sedative and an analgesic on LCEP and dominant EEG frequency 3) the effects of a sedative and analgesic on LCEP when dominant EEG frequency is kept stable. LCEP and EEG were recorded in isoflurane/nitrous-oxide anaesthetized rats. Increasing isoflurane level gradually reduced LCEPs and lowered dominant EEG frequencies. Systemic midazolam (10 μmol/kg) profoundly reduced LCEP (19% of control) and lowered dominant EEG frequency. Similarly, morphine 1 and 3 mg/kg reduced LCEP (39%, 12% of control, respectively) and decreased EEG frequency. When keeping the dominant EEG frequency stable, midazolam caused no significant change of LCEP. Under these premises, morphine at 3 mg/kg, but not 1 mg/kg, caused a significant LCEP reduction (26% of control). In conclusion, the present data indicate that the sedative effects should be accounted for when assessing the analgesic effects of drug. Furthermore, it is suggested that LCEP, given that changes in EEG induced by sedation are compensated for, can provide information about the analgesic properties of systemically administrated drugs.
Collapse
Affiliation(s)
- Marcus Granmo
- Neuronano Research Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
10
|
Zotova EG, Arezzo JC. NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT. PHYSIOLOGY JOURNAL 2013; 2013:254789. [PMID: 23580940 PMCID: PMC3620683 DOI: 10.1155/2013/254789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p<0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p<0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.
Collapse
Affiliation(s)
- Elena G. Zotova
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Joseph C. Arezzo
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
11
|
Haanpää M, Treede RD. Capsaicin for neuropathic pain: linking traditional medicine and molecular biology. Eur Neurol 2012; 68:264-75. [PMID: 23037991 DOI: 10.1159/000339944] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 12/13/2022]
Abstract
Capsaicin has long been used as a traditional medicine to treat pain and, recently, its mechanism of analgesic action has been discovered. This review article documents the clinical development of capsaicin to demonstrate that pharmacognosy still has a profound influence on modern-day drug development programs. Capsaicin is a highly selective agonist for the transient receptor potential channel vanilloid-receptor type 1 (TRPV1), which is expressed on central and peripheral terminals of nociceptive primary sensory neurons. Knockout studies have revealed the importance of TRPV1 as a molecular pain integrator and target for novel analgesic agents. Topical application of capsaicin at the peripheral terminal of TRPV1-expressing neurons superficially denervates the epidermis in humans in a highly selective manner and results in hypoalgesia. In three recent randomized controlled trials, a patch containing high-concentration capsaicin demonstrated meaningful efficacy and tolerability relative to a low-concentration capsaicin control patch in patients with peripheral neuropathic pain. Data from clinical practice will determine if the high-concentration capsaicin patch is effective in real-world settings.
Collapse
Affiliation(s)
- Maija Haanpää
- Department of Neurosurgery, Helsinki University Central Hospital, Töölö Hospital, Helsinki, Finland
| | | |
Collapse
|
12
|
SCHNITZER THOMASJ, PELLETIER JEANPIERRE, HASELWOOD DOUGM, ELLISON WILLIAMT, ERVIN JOHNE, GORDON RICHARDD, LISSE JEFFREYR, ARCHAMBAULT WTAD, SAMPSON ALLANR, FEZATTE HEIDIB, PHILLIPS SCOTTB, BERNSTEIN JOELE. Civamide Cream 0.075% in Patients with Osteoarthritis of the Knee: A 12-Week Randomized Controlled Clinical Trial with a Longterm Extension. J Rheumatol 2011; 39:610-20. [DOI: 10.3899/jrheum.110192] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective.To evaluate the safety and efficacy of civamide cream 0.075% for the treatment of osteoarthritis (OA) of the knee.Methods.We conducted a 12-week, multicenter, randomized, double-blind study with a 52-week open-label extension. Patients with OA of the knee received either civamide cream 0.075% or a lower dose of civamide cream, 0.01%, as the control. The 3 co-primary endpoints in the double-blind study were the time-weighted average (TWA) of change from baseline to Day 84 in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale, the WOMAC physical function subscale, and the Subject Global Evaluation (SGE). In the 52-week open-label extension study, the Osteoarthritis Pain Score and SGE were assessed.Results.A total of 695 patients were randomized to receive civamide cream 0.075% (n = 351) or civamide cream 0.01% (control; n = 344) in the double-blind study. Significance in favor of civamide cream 0.075% was achieved for the TWA for all 3 co-primary efficacy variables: WOMAC pain (p = 0.009), WOMAC physical function (p < 0.001), and SGE (p = 0.008); and at Day 84 for these 3 variables (p = 0.013, p < 0.001, and p = 0.049, respectively). These analyses accounted for significant baseline-by-treatment interactions. In the 52-week open-label extension, efficacy was maintained. Civamide cream 0.075% was well tolerated throughout the studies.Conclusion.These studies demonstrate the efficacy of civamide cream for up to 1 year of continuous use. Civamide cream, with its lack of systemic absorption, does not have the potential for serious systemic toxicity, in contrast to several other OA treatments.
Collapse
|
13
|
Khodorova A, Strichartz GR. Remarkably long-lasting tachyphylaxis of pain responses to ET-1: evidence against central nervous system involvement. Can J Physiol Pharmacol 2011; 88:668-75. [PMID: 20628433 DOI: 10.1139/y10-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A profound tachyphylaxis of the acute nocifensive flinching (pain) response to subcutaneous injection of endothelin-1 (ET-1) into the hind paw footpad is shown by the reduced response to a second injection. Flinching from the second injection was 20% +/- 5%, 57% +/- 18%, 79% +/- 35%, and 100% +/- 17% of that from the first injection (both 200 micromol/L, 2 nmol) at respective intervals of 24, 30, 48, and 72 h. Inhibition of afferent impulses by local anesthesia of the sciatic nerve, reducing initial flinching to 6%-13% of control, did not affect the tachyphylaxis for the second injection at 24 h. There was no cross-desensitization between formalin and ET-1 injected sequentially into the same paw. Suppression of descending inhibitory effects from endogenous opiates by naloxone (5-8 mg/kg, i.p.), given 30 min before the second ET-1 injection, did not prevent tachyphylaxis. Diffuse effects caused by an initial subcutaneous ET-1 injection into the tail or forepaw resulted in sensitization of the response to ET-1 in the hind paw, rather than tachyphylaxis. In contrast, selective inhibition of local ETA receptors during the initial administration of ET-1, by the antagonist BQ-123 (3.2 mmol/L), reduced tachyphylaxis of nocifensive flinching. Therefore, prolonged pain tachyphylaxis is not due to reduced responsiveness of the CNS, but rather depends on the functional sensitivity or availability of peripheral ET(A) receptors.
Collapse
Affiliation(s)
- Alla Khodorova
- Department of Anesthesiology, Perioperative and Pain Medicine, Pain Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | | |
Collapse
|
14
|
Fukushima T, Takasusuki T, Tomitori H, Hori Y. Possible involvement of syntaxin 1A downregulation in the late phase of allodynia induced by peripheral nerve injury. Neuroscience 2011; 175:344-57. [DOI: 10.1016/j.neuroscience.2010.11.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 11/16/2022]
|
15
|
Jensen T, Granmo M, Schouenborg J. Altered nociceptive C fibre input to primary somatosensory cortex in an animal model of hyperalgesia. Eur J Pain 2010; 15:368-75. [PMID: 20947398 DOI: 10.1016/j.ejpain.2010.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Evaluating potentially analgesic effects of drugs and various treatments is critically dependent on valid animal models of pain. Since primary somatosensory (SI) cortex is likely to play an important role in processing sensory aspects of pain, we here assess whether monitoring SI cortex nociceptive C fibre evoked potentials can provide useful information about central changes related to hyperalgesia in rats. Recordings of tactile and CO(2)-laser C fibre evoked potentials (LCEPs) in forelimb and hind limb SI cortex were made 20-24h after UV-B irradiation of the heel at a dose that produced behavioural signs of hyperalgesia. LCEPs from irradiated skin increased significantly in duration but showed no significant change in magnitude, measured as area under curve (AUC). By contrast, LCEPs in hind limb SI cortex from skin sites nearby the irradiated skin showed no increase in duration or onset latency but increased significantly in magnitude after UV-B irradiation. The LCEPs in forelimb or hind limb SI cortex elicited from forelimb skin did not change in magnitude, but were significantly delayed in hind limb SI cortex. Tramadol, a centrally acting analgesic known to reduce hyperalgesia, induced changes that counteracted the changes produced by UV-B irradiation on transmission to SI cortex from the hind paw, but had no significant effect on time course of LCEPs from forelimb skin. Tactile evoked potentials were not affected by UV-B irradiation or tramadol. We conclude that altered sensory processing related to hyperalgesia is reflected in altered LCEPs in SI cortex.
Collapse
Affiliation(s)
- Tanja Jensen
- Neuronano Research Center, Section for Neuroscience, Lund University, BMC F10, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
16
|
Goswami C, Hucho T. Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 2008; 275:4684-99. [PMID: 18754773 DOI: 10.1111/j.1742-4658.2008.06617.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much work has focused on the electrophysiological properties of transient receptor potential channels. Recently, a novel aspect of importance emerged: the interplay of transient receptor potential channels with the cytoskeleton. Recent data suggest a direct interaction and functional repercussion for both binding partners. The bi-directionality of physical and functional interaction renders therefore, the cytoskeleton a potent integration point of complex biological signalling events, from both the cytoplasm and the extracellular space. In this minireview, we focus mostly on the interaction of the cytoskeleton with transient receptor potential vanilloid channels. Thereby, we point out the functional importance of cytoskeleton components both as modulator and as modulated downstream effector. The resulting implications for patho-biological situations are discussed.
Collapse
Affiliation(s)
- Chandan Goswami
- Department for Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | |
Collapse
|
17
|
Hagenacker T, Büsselberg D. Modulation of intracellular calcium influences capsaicin-induced currents of TRPV-1and voltage-activated channel currents in nociceptive neurones. J Peripher Nerv Syst 2007; 12:277-84. [DOI: 10.1111/j.1529-8027.2007.00149.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Grorud KW, Jensen KT, Provenzano PP, Vanderby R. Adjuvant neuropeptides can improve neuropathic ligament healing in a rat model. J Orthop Res 2007; 25:703-12. [PMID: 17290418 DOI: 10.1002/jor.20335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diminished healing in neuropathic tissues suggests an important regulatory role for peripheral neurogenic factors in connective tissue healing. Although neurogenic factors, including neuropeptides, can induce cell proliferation and influence inflammatory cell chemotaxis in vitro, there is little appreciation of the potential of neuropeptides to affect connective tissue healing in vivo. We created both efferent and afferent peripheral neuropathies in 55 female Wistar rats. First, we showed that neuropathy led to impaired healing of ruptured ligaments. We then showed that local delivery of specific neuropeptides could reverse the functional deficits of these neuropathic ligaments in only 2 weeks. In substance P and vasoactive intestinal peptide-treated medial collateral ligaments (MCLs), the mechanical properties of these healing neuropathic tissues returned to values at or above normally innervated, intact ligaments. In addition, neuropeptide Y stimulated MCL healing in this model. These findings suggest a new paradigm to improve neuropathic soft connective tissue healing.
Collapse
Affiliation(s)
- Kelley W Grorud
- Orthopedic Research Laboratories, Department of Orthopedics and Rehabilitation, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
19
|
Goswami C, Dreger M, Otto H, Schwappach B, Hucho F. Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 2005; 96:254-66. [PMID: 16336230 DOI: 10.1111/j.1471-4159.2005.03551.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transmission of pain signalling involves the cytoskeleton, but mechanistically this is poorly understood. We recently demonstrated that the capsaicin receptor TRPV1, a non-selective cation channel expressed by nociceptors that is capable of detecting multiple pain-producing stimuli, directly interacts with the tubulin cytoskeleton. We hypothesized that the tubulin cytoskeleton is a downstream effector of TRPV1 activation. Here we show that activation of TRPV1 results in the rapid disassembly of microtubules, but not of the actin or neurofilament cytoskeletons. TRPV1 activation mainly affects dynamic microtubules that contain tyrosinated tubulins, whereas stable microtubules are apparently unaffected. The C-terminal fragment of TRPV1 exerts a stabilizing effect on microtubules when over-expressed in F11 cells. These findings suggest that TRPV1 activation may contribute to cytoskeleton remodelling and so influence nociception.
Collapse
Affiliation(s)
- C Goswami
- Freie Universität Berlin, Institut für Chemie/Biochemie, Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Malmberg AB, Mizisin AP, Calcutt NA, von Stein T, Robbins WR, Bley KR. Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch. Pain 2004; 111:360-367. [PMID: 15363880 DOI: 10.1016/j.pain.2004.07.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 06/02/2004] [Accepted: 07/15/2004] [Indexed: 11/15/2022]
Abstract
Capsaicin-containing plant extracts have been used as topical treatments for a variety of pain syndromes for many centuries. Current products containing capsaicin in low concentrations (usually 0.025-0.075% w/w) have shown efficacy against a variety of pain conditions in clinical studies. However, in order to produce significant analgesic effects, these formulations require frequent re-dosing, often as much as three to five times daily for several weeks. Previous functional and immunohistochemical studies following prolonged exposures to low-concentration capsaicin cream suggested that the duration and onset of analgesic efficacy correlate with a reduction of cutaneous nociceptive sensory nerve fiber responsiveness and immunostaining. The purpose of the present study was to determine whether a single topical application of a high-concentration capsaicin-containing (8%w/w) patch for 120 min or less would induce similar effects on cutaneous nociceptive nerve fibers. Seven days following patch application, changes in heat and cold perception thresholds were determined by quantitative sensory testing and punch biopsies were collected to assess epidermal nerve fiber (ENF) immunostaining density at the application site using PGP 9.5 as a marker. The results show a significant reduction of heat, but not cold, sensitivity and reduction of ENF immunostaining with high-capsaicin concentration patch applications for 60 or 120 min, compared to placebo patch applications. Application sites exposed to low-capsaicin concentration (0.04%w/w) patches for 120 min or high-concentration patches for 30 min were not significantly different from placebo with respect to either thermal threshold detection or ENF immunostaining. The ability of a single 60 min high-concentration patch application to mimic effects produced by prolonged exposure to low-concentration capsaicin creams suggests a new approach to the management of chronic pain syndromes.
Collapse
Affiliation(s)
- Annika B Malmberg
- NeurogesX, Inc., 981F Industrial Road, San Carlos, CA 94070, USA Department of Pathology, University of California, San Diego, 9500 Gillman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
22
|
McMullan S, Simpson DAA, Lumb BM. A reliable method for the preferential activation of C- or A-fibre heat nociceptors. J Neurosci Methods 2004; 138:133-9. [PMID: 15325121 DOI: 10.1016/j.jneumeth.2004.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 03/15/2004] [Accepted: 03/30/2004] [Indexed: 11/21/2022]
Abstract
There is strong evidence that A- and C-fibre nociceptors evoke significantly different sensory experiences, are differentially sensitive to pharmacological intervention, and play different roles in pain pathology. It is therefore of considerable interest to be able to selectively activate one fibre type or the other in studies of nociceptive processing. Here, we report significant modifications to a non-invasive technique, first described by Yeomans et al. [Pain 59 (1994) 85; Pain 68 (1996) 141; Pain 68 (1996) 133], which uses different rates of skin heating to preferentially activate A- or C-nociceptors. A copper disk (diameter: 4mm) was used to transfer heat evenly across the dorsal surface of the rat hindpaw. Initial experiments established the relationship between the temperature at the skin surface and the sub-epidermal temperature. Subsequently, the vanilloid capsaicin, which sensitises unmyelinated C-mechanoheat nociceptors, was shown to decrease the thresholds of reflex responses evoked by slow rates of heating. In contrast thresholds of responses to fast rates of skin heating were unchanged, indicating that nociceptors activated by this stimulus were capsaicin-insensitive A-fibre heat nociceptors.
Collapse
Affiliation(s)
- Simon McMullan
- Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
23
|
Dray A. Pain Processing in the Periphery Development of Analgesics. Pain 2003. [DOI: 10.1201/9780203911259.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors. Toxicol Sci 2003; 73:170-81. [PMID: 12721390 PMCID: PMC2423488 DOI: 10.1093/toxsci/kfg044] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results have demonstrated that capsaicinoids contained in pepper spray products produce airway inflammation and cause respiratory epithelial cell death. The mechanisms of these cellular responses to capsaicinoids appear to proceed via distinct cellular pathways, but both pathways are initiated by TRPV1.
Collapse
Affiliation(s)
- Christopher A Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sakurada T, Matsumura T, Moriyama T, Sakurada C, Ueno S, Sakurada S. Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice. Pharmacol Biochem Behav 2003; 75:115-21. [PMID: 12759119 DOI: 10.1016/s0091-3057(03)00066-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intraplantar injection of capsaicin (1.6 microg/paw) into the mouse hindpaw produced an acute paw-licking/biting response. This study was designed (1) to investigate the antinociceptive effects of intraplantar administration of capsazepine, a competitive vanilloid receptor antagonist, and ruthenium red, a noncompetitive antagonist, in the nociceptive licking/biting response induced by intraplantar injection of capsaicin, and (2) to determine whether these compounds were able to prevent capsaicin-induced desensitization in mice. Both capsazepine and ruthenium red produced a dose-dependent reduction in the capsaicin-induced nociceptive response. In licking/biting response to intraplantar capsaicin, ruthenium red was more potent than capsazepine in producing antinociceptive activity as assayed by the capsaicin test. The first injection of capsaicin induced a profound desensitization to the second and third injections of capsaicin at the interval of 15 or 30 min. The capsaicin-induced desensitization was prevented dose-dependently by antinociceptive doses of capsazepine, whereas ruthenium red in doses exhibiting antinociceptive activity was without effect on capsaicin-induced desensitization. The present results suggest that both capsazepine and ruthenium red can produce a local peripheral antinociceptive action, which may be mediated by inhibiting the membrane ion channel activated by capsaicin. In addition, these data suggest that capsazepine may act in the mechanism clearly different from ruthenium red in the capsaicin-induced nociceptive desensitization.
Collapse
Affiliation(s)
- Tsukasa Sakurada
- Department of Biochemistry, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Acute nociceptive, inflammatory, and neuropathic pain all depend to some degree on the peripheral activation of primary sensory afferent neurons. The localized peripheral administration of drugs, such as by topical application, can potentially optimize drug concentrations at the site of origin of the pain, while leading to lower systemic levels and fewer adverse systemic effects, fewer drug interactions, and no need to titrate doses into a therapeutic range compared with systemic administration. Primary sensory afferent neurons can be activated by a range of inflammatory mediators such as prostanoids, bradykinin, ATP, histamine, and serotonin, and inhibiting their actions represents a strategy for the development of analgesics. Peripheral nerve endings also express a variety of inhibitory neuroreceptors such as opioid, alpha-adrenergic, cholinergic, adenosine and cannabinoid receptors, and agonists for these receptors also represent viable targets for drug development. At present, topical and other forms of peripheral administration of nonsteroidal anti-inflammatory drugs, opioids, capsaicin, local anesthetics, and alpha-adrenoceptor agonists are being used in a variety of clinical states. There also are some clinical data on the use of topical antidepressants and glutamate receptor antagonists. There are preclinical data supporting the potential for development of local formulations of adenosine agonists, cannabinoid agonists, cholinergic ligands, cytokine antagonists, bradykinin antagonists, ATP antagonists, biogenic amine antagonists, neuropeptide antagonists, and agents that alter the availability of nerve growth factor. Given that activation of sensory neurons involves multiple mediators, combinations of agents targeting different mechanisms may be particularly useful. Topical analgesics represent a promising area for future drug development.
Collapse
Affiliation(s)
- Jana Sawynok
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
27
|
Abstract
Traumatic injuries to peripheral nerves pose complex challenges to both military and civilian physicians. Treatment of nerve injuries must consider all aspects of the inherent disability. Pain control is of paramount importance. Little will be accomplished until pain is brought down to tolerable levels. Rehabilitation needs to be instituted as first-line treatment. Focus must be first placed on protection of the affected area from complications stemming from disuse and immobility and then on enhancement of strength, flexibility, sensory discrimination, and dexterity. Early intervention sets the stage for optimal physiologic and functional recovery.
Collapse
|
28
|
Minami T, Bakoshi S, Nakano H, Mine O, Muratani T, Mori H, Ito S. The Effects of Capsaicin Cream on Prostaglandin-Induced Allodynia. Anesth Analg 2001. [DOI: 10.1213/00000539-200108000-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Minami T, Bakoshi S, Nakano H, Mine O, Muratani T, Mori H, Ito S. The effects of capsaicin cream on prostaglandin-induced allodynia. Anesth Analg 2001; 93:419-23, 4th contents page. [PMID: 11473873 DOI: 10.1097/00000539-200108000-00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Although intradermal injection of capsaicin produces acute pain and secondary hyperalgesia, long-term topical application of capsaicin cream has been used as a medication for pain relief in various pain conditions. We previously reported that intrathecal administration of prostaglandin (PG) E(2) and PGF(2alpha) into mice induced touch-evoked pain (allodynia) through capsaicin-sensitive and capsaicin-insensitive afferent fibers, respectively. To clarify the mechanism of an analgesic effect by capsaicin cream, here we applied it to the tail and hind paws of mice and investigated its effects on PGE(2)- and PGF(2alpha)-induced allodynia. Twenty-four-hour pretreatment of mice with 0.025% or 0.05% capsaicin cream markedly alleviated allodynia induced by PGE(2), but not by PGF(2alpha). These results suggest that the topical application of capsaicin cream modulates capsaicin-sensitive afferents and ameliorates allodynia evoked by PGE(2) at the spinal level. IMPLICATIONS Topical application of capsaicin cream alleviates touch-evoked pain induced by the intrathecal administration of prostaglandin E(2). This study may provide a rationale for the use of capsaicin cream as a therapeutic drug for pain relief.
Collapse
Affiliation(s)
- T Minami
- Department of Anesthesiology, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Quantitative Analysis of Capsaicinoids in Fresh Peppers, Oleoresin Capsicum and Pepper Spray Products. J Forensic Sci 2001. [DOI: 10.1520/jfs14999j] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Avelino A, Cruz F. Peptide immunoreactivity and ultrastructure of rat urinary bladder nerve fibers after topical desensitization by capsaicin or resiniferatoxin. Auton Neurosci 2000; 86:37-46. [PMID: 11269923 DOI: 10.1016/s1566-0702(00)00204-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the present study the decrease of neuropeptide containing nerve fibers and the increase in the volume threshold to reflex micturition occurring in the rat bladder after intravesical application of capsaicin or resiniferatoxin were compared. The ultrastructure of bladder terminal axons was evaluated at the moment of maximal peptide depletion and compared to that of nerve fibers after systemic capsaicin application. Adult Wistar rats were treated intravesically for 30 min with 0.5 ml of 100 nM RTX, 1 mM capsaicin or 30% ethanol in saline, the vehicle solution. Twenty-four hours and 1, 2, 3, 4 and 8 weeks later the bladders were immunostained for CGRP, SP, VIP and NPY. Cystomanometric studies were performed 24 h and 1, 8, and 12 weeks after vanilloid instillation. Twenty-four hours after systemic capsaicin or intravesical capsaicin or RTX, bladders were prepared for electron microscopic (EM) observation. Intravesical capsaicin or RTX decreased, in a similar way, the number of CGRP and SP-IR (immunoreactive) fibers coursing in the muscular layer and the mucosa. IR fibers amounted to less than 20% of controls at 24 h and returned to normal levels in the eighth week. At the EM level, bladders treated with topical vanilloids did not show morphological changes in terminal axons coursing in the mucosa. In contrast, bladders from animals treated systemically with capsaicin contained numerous grossly degenerated nerve fibers. VIP and NPY-IR fibers were not affected by the treatment. Cystometrograms showed an increase of the volume threshold to reflex micturition that started at 24 h and disappeared at 12 weeks. We conclude that intravesical capsaicin or RTX were equally effective in terms of reducing the number of SP and CGRP-IR fibers and increasing the volume threshold for reflex micturition. Both changes were transient and were not associated with ultrastructural changes of the bladder nerve fibers, excluding terminal axon degeneration as the main mechanism of action of intravesical vanilloids.
Collapse
Affiliation(s)
- A Avelino
- Institute of Histology and Embryology, Faculty of Medicine of Oporto, IBMC of University of Oporto, 4200 Oporto, Portugal
| | | |
Collapse
|
32
|
Yoshimura M, Yonehara N, Ito T, Kawai Y, Tamura T. Effects of topically applied capsaicin cream on neurogenic inflammation and thermal sensitivity in rats. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:116-21. [PMID: 10877529 DOI: 10.1254/jjp.82.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of capsaicin cream on neurogenic inflammation and thermal nociceptive threshold were investigated in rats. Firstly, for topical application of capsaicin cream to hind paw, we shaped boots from dental cement to prevent the animals from licking off the drug. Capsaicin cream (1%) led to significant increases in the amounts of Evans blue and substance P (SP) released into the perfusate, and the former response was significantly suppressed by pretreatment with RP67580, an NK1-receptor antagonist, but not by treatment with an NK2-receptor antagonist. Subsequent electrical stimulation of the sciatic nerve resulted in a significant reduction in Evans blue and SP extravasation 24 h after topical application of capsaicin cream. On the other hand, when capsaicin cream was repeatedly applied to both hind paws once a day, withdrawal latency for noxious heat stimulation decreased after 24 h, and this thermal hyperalgesia was reversed 3 days later. These results suggest that capsaicin cream initially affects neurogenic inflammation mechanisms and then blocks the pain transmission mechanism.
Collapse
Affiliation(s)
- M Yoshimura
- Central Research Laboratories, Maruishi Pharmaceutical Co., Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
33
|
Vieira C, Evangelista S, Cirillo R, Lippi A, Maggi CA, Manzini S. Effect of ricinoleic acid in acute and subchronic experimental models of inflammation. Mediators Inflamm 2000; 9:223-8. [PMID: 11200362 PMCID: PMC1781768 DOI: 10.1080/09629350020025737] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Observational studies indicate that topical application of ricinoleic acid (RA), the main component of castor oil, exerts remarkable analgesic and anti-inflammatory effects. Pharmacological characterization has shown similarities between the effects of RA and those of capsaicin, suggesting a potential interaction of this drug on sensory neuropeptide-mediated neurogenic inflammation. The aim of this study was to assess RA anti-inflammatory activities in comparison with capsaicin in several models of acute and subchronic inflammation. The acute inflammation was induced by intradermal injection of carrageenan in the mouse or by histamine in the guinea-pig eyelid. In either experiment, the extent of the oedema thickness was measured. Subchronic oedema was induced by complete Freund's adjuvant injection in the ventral right paw of mice. Tissue substance P (SP) was measured in the carrageenan experiments by radioimmunoassay (RIA). It was found that the acute topical application of RA (0.9 mg/mouse) or capsaicin (0.09 mg/mouse) significantly increased the mouse paw oedema induced by carrageenan, while an 8-day repeated topical treatment with the same doses of both compounds resulted in a marked inhibition of carrageenan-induced paw oedema matched by a reduction in SP tissue levels. Similar effects were found against histamine-induced eyelid oedema in guinea-pigs after acute or repeated application of RA or capsaicin. RA and capsaicin given for 1-3 weeks reduced the established oedema induced by Freund's adjuvant, a subchronic model of inflammation, particularly if given by the intradermal route. Either in mouse paw or in guinea-pig eyelid, capsaicin but not RA by itself produced a slight hyperemia and activation of a behavioural response (e.g. scratching of the eyelids). On the basis of the present results, RA may be seen as a new capsaicin-like, non-pungent anti-inflammatory agent suitable for peripheral application.
Collapse
Affiliation(s)
- C Vieira
- Department of Pharmacology, Menarini Ricerche spa, Pomezia Roma, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Intradermal injection of capsaicin in humans produces degeneration and subsequent reinnervation of epidermal nerve fibers: correlation with sensory function. J Neurosci 1998. [PMID: 9787000 DOI: 10.1523/jneurosci.18-21-08947.1998] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability of capsaicin to excite and subsequently to desensitize a select group of small sensory neurons has made it a useful tool to study their function. For this reason, application of capsaicin to the skin has been used for a variety of painful syndromes. We examined whether intradermal injection of capsaicin produced morphological changes in cutaneous nerve fibers that would account for its analgesic properties by comparing cutaneous innervation in capsaicin-treated skin with psychophysical measures of sensation. At various times after capsaicin injection, nerve fibers were visualized immunohistochemically in skin biopsies and were quantified. In normal skin the epidermis is heavily innervated by nerve fibers immunoreactive for protein gene product (PGP) 9.5, whereas fibers immunoreactive for substance P (SP) and calcitonin gene-related peptide (CGRP) are typically associated with blood vessels. There was nearly complete degeneration of epidermal nerve fibers and the subepidermal neural plexus in capsaicin-treated skin, as indicated by the loss of immunoreactivity for PGP 9.5 and CGRP. The effect of capsaicin on dermal nerve fibers immunoreactive for SP was less obvious. Capsaicin decreased sensitivity to pain produced by sharp mechanical stimuli and nearly eliminated heat-evoked pain within the injected area. Limited reinnervation of the epidermis and partial return of sensation occurred 3 weeks after treatment; reinnervation of the epidermis was approximately 25% of normal, and sensation improved to 50-75% of normal. These data show that sensory dysfunction after capsaicin application to the skin results from rapid degeneration of intracutaneous nerve fibers.
Collapse
|
35
|
Cruz F. Desensitization of bladder sensory fibers by intravesical capsaicin or capsaicin analogs. A new strategy for treatment of urge incontinence in patients with spinal detrusor hyperreflexia or bladder hypersensitivity disorders. Int Urogynecol J 1998; 9:214-20. [PMID: 9795827 DOI: 10.1007/bf01901607] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent experimental studies have identified a category of unmyelinated type C bladder afferent fibers in the pelvic nerves which are extremely sensitive to capsaicin. Sensory input conveyed by these fibers triggers a spinal reflex which, in chronic spinalized animals, facilitates and controls micturition. In addition, bladder C fibers were also shown to have a role in bladder pain perception. In humans capsaicin-sensitive afferent fibers also innervate the bladder and contribute to the reflexogenic control of the detrusor muscle and to bladder pain perception. Desensitization of such fibers by intravesical administration of capsaicin, presumably by blocking sensory transmission, has been shown to reduce involuntary micturition and to increase bladder capacity in patients with detrusor hyperreflexia of spinal origin, and to reduce the intensity of bladder pain in patients with bladder hypersensitivity. Very recently, resiniferatoxin, an ultrapotent capsaicin analog, was shown to have a similar clinical effect in this subset of patients. However, unlike capsaicin, resiniferatoxin did not evoke acute irritative urinary symptoms during bladder instillation.
Collapse
Affiliation(s)
- F Cruz
- Department of Urology, Hospital São João, Oporto, Portugal
| |
Collapse
|
36
|
Desensitization of Bladder Sensory Fibers by Intravesical Capsaicin has Long Lasting Clinical and Urodynamic Effects in Patients With Hyperactive or Hypersensitive Bladder Dysfunction. J Urol 1997. [DOI: 10.1097/00005392-199702000-00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Cruz F, Guimaraes M, Silva C, Rio ME, Coimbra A, Reis M. Desensitization of Bladder Sensory Fibers by Intravesical Capsaicin has Long Lasting Clinical and Urodynamic Effects in Patients With Hyperactive or Hypersensitive Bladder Dysfunction. J Urol 1997. [DOI: 10.1016/s0022-5347(01)65211-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Francisco Cruz
- Departments of Urology and Neurology, Hospital S. Joao, and Institute of Histology and Embryology, Faculty of Medicine of Porto, Porto, Portugal
| | - Miguel Guimaraes
- Departments of Urology and Neurology, Hospital S. Joao, and Institute of Histology and Embryology, Faculty of Medicine of Porto, Porto, Portugal
| | - Carlos Silva
- Departments of Urology and Neurology, Hospital S. Joao, and Institute of Histology and Embryology, Faculty of Medicine of Porto, Porto, Portugal
| | - Maria Edite Rio
- Departments of Urology and Neurology, Hospital S. Joao, and Institute of Histology and Embryology, Faculty of Medicine of Porto, Porto, Portugal
| | - Antonio Coimbra
- Departments of Urology and Neurology, Hospital S. Joao, and Institute of Histology and Embryology, Faculty of Medicine of Porto, Porto, Portugal
| | - Mario Reis
- Departments of Urology and Neurology, Hospital S. Joao, and Institute of Histology and Embryology, Faculty of Medicine of Porto, Porto, Portugal
| |
Collapse
|
38
|
Collateral sprouting of uninjured primary afferent A-fibers into the superficial dorsal horn of the adult rat spinal cord after topical capsaicin treatment to the sciatic nerve. J Neurosci 1996. [PMID: 8756447 DOI: 10.1523/jneurosci.16-16-05189.1996] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
That terminals of uninjured primary sensory neurons terminating in the dorsal horn of the spinal cord can collaterally sprout was first suggested by Liu and Chambers (1958), but this has since been disputed. Recently, horseradish peroxidase conjugated to the B subunit of cholera toxin (B-HRP) and intracellular HRP injections have shown that sciatic nerve section or crush produces a long-lasting rearrangement in the organization of primary afferent central terminals, with A-fibers sprouting into lamina II, a region that normally receives only C-fiber input (Woolf et al., 1992). The mechanism of this A-fiber sprouting has been thought to involve injury-induced C-fiber transganglionic degeneration combined with myelinated A-fibers being conditioned into a regenerative growth state. In this study, we ask whether C-fiber degeneration and A-fiber conditioning are both necessary for the sprouting of A-fibers into lamina II. Local application of the C-fiber-specific neurotoxin capsaicin to the sciatic nerve has previously been shown to result in C-fiber damage and degenerative atrophy in lamina II. We have used B-HRP to transganglionically label A-fiber central terminals and have shown that 2 weeks after topical capsaicin treatment to the sciatic nerve, the pattern of B-HRP staining in the dorsal horn is indistinguishable from that seen after axotomy, with lamina II displaying novel staining in the identical region containing capsaicin-treated C-fiber central terminals. These results suggest that after C-fiber injury, uninjured A-fiber central terminals can collaterally sprout into lamina II of the dorsal horn. This phenomenon may help to explain the pain associated with C-fiber neuropathy.
Collapse
|
39
|
Yeomans DC, Pirec V, Proudfit HK. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence. Pain 1996; 68:133-140. [PMID: 9252008 DOI: 10.1016/s0304-3959(96)03176-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several lines of evidence suggest that different classes of nociceptive afferents mediate the responses produced by different rates of noxious skin heating. More specifically, low skin heating rates evoke nociceptive responses that appear to be mediated by the activation of capsaicin-sensitive C-fiber nociceptors, whereas high skin heating rates appear to produce responses mediated by the activation of other nociceptors. This hypothesis was examined by both electrophysiological and behavioral experiments. This report describes the results of experiments designed to determine whether pharmacologic treatments that selectively alter the activity of C-fiber nociceptive afferents also produce selective effects on foot withdrawal responses to either high or low rates of noxious foot heating. The results of these experiments demonstrate that: (1) topical application of a low concentration of capsaicin, which sensitizes C-fiber nociceptors, selectively decreased the latency of responses to low heating rates; (2) topical application of a high concentration of capsaicin, that desensitizes C-fiber nociceptors, selectively increased the latency of responses to low heating rates; (3) low doses of systemic morphine, which selectively attenuate nociception produced by the activation of C-fiber nociceptors, selectively increased response latencies for low skin heating rates. These results support the conclusion that foot withdrawal responses evoked by low skin heating rates are mediated by the activation of capsaicin-sensitive C-fiber nociceptors and foot withdrawal responses evoked by high skin heating rates are mediated by the activation of other nociceptors. This conclusion is supported by the results of the accompanying electrophysiological study which provides direct evidence that low rates of skin heating preferentially activate C-fiber nociceptors while high rates of skin heating preferentially activate A delta nociceptors.
Collapse
Affiliation(s)
- David C Yeomans
- Department of Pharmacology, University of Illinois at Chicago,Chicago, IL 60612,USA
| | | | | |
Collapse
|
40
|
Beydoun A, Dyke DB, Morrow TJ, Casey KL. Topical capsaicin selectively attenuates heat pain and A delta fiber-mediated laser-evoked potentials. Pain 1996; 65:189-96. [PMID: 8826506 DOI: 10.1016/0304-3959(95)00161-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cutaneous stimulation with CO2 laser pulses activates A delta of nociceptive afferents and evokes late cerebral potentials (LEPs), the amplitude of which correlates parametrically with the perceived magnitude estimation of laser pulses. Capsaicin is known to desensitize the nociceptive terminals of C fibers. In this double-blind, vehicle-controlled experiment, we tested the hypothesis that topical capsaicin would inactivate A delta afferents and lead to an attenuation of the LEPs. Subjects applied capsaicin cream to the dorsum of one hand and vehicle cream to the other 3 times daily for a period of 5 weeks. At weekly intervals before starting, during administration and after discontinuation of capsaicin, LEPs were recorded and psychophysical thresholds and magnitude estimation for several sensory modalities were determined. The results of this study showed that topical capsaicin significantly and reversibly decreased the magnitude estimation of suprathreshold heat pain, laser pulses and amplitude of the LEPs. There was no statistically significant difference in light touch, deep pain and mechanical pain detection thresholds between the capsaicin- and vehicle-treated hands. It indicated that topical capsaicin caused a definite functional and reversible inactivation of A delta nociceptive afferent transmission. The decline in the magnitude estimation of laser pulses concomitantly with the attenuation of LEP amplitudes supports the hypothesis that some A delta afferents mediate noxious heat in humans. These findings demonstrate the usefulness of LEP in the physiological evaluation of nociceptive pathways and its potential usefulness in objectively documenting the effect of pharmacological treatment on pain perception.
Collapse
Affiliation(s)
- A Beydoun
- Department of Neurology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
41
|
Cruz F, Avelino A, Coimbra A. Desensitization follows excitation of bladder primary afferents by intravesical capsaicin, as shown by c-fos activation in the rat spinal cord. Pain 1996; 64:553-557. [PMID: 8783321 DOI: 10.1016/0304-3959(95)00157-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of the protooncogene c-fos at spinal cord segments T12-L2 and L5-S1 was used to study the effects of topical administration of capsaicin on bladder primary afferents coursing in the hypogastric (HGN) or pelvic (PN) nerves of adult rats. Two hours after capsaicin instillation in the bladder numerous Fos cells occurred in lamina I at T12-L2 and in lamina I, intermediolateral gray matter (ILG) and dorsal commissure (DCM) at L5-S1. Twenty-four hours later, the Fos immunoreaction had disappeared from the spinal cord. At this time, instillation of 1% acetic acid into the bladder of capsaicin-treated rats induced considerably fewer Fos cells than in animals that had been instilled only with the vehicle solution for capsaicin. The difference in the average number of Fos cells was statistically significant in lamina I, ILG and DCM at L5-S1 but not in lamina I at T12-L2. Thus, intravesical capsaicin at the doses used excites bladder primary afferents coursing in the HGN and PN, but only desensitizes those coursing in the PN. It is suggested that this may depend on the differential occurrence of capsaicin receptors in the two nerves.
Collapse
Affiliation(s)
- Francisco Cruz
- Faculty of Medicine, Institute of Histology and Embryology, University of Porto, 4200-Porto, Portugal Department of Urology, Hospital S. João, 4200-Porto, Portugal
| | | | | |
Collapse
|
42
|
Craft RM, Cohen SM, Porreca F. Long-lasting desensitization of bladder afferents following intravesical resiniferatoxin and capsaicin in the rat. Pain 1995; 61:317-323. [PMID: 7659443 DOI: 10.1016/0304-3959(94)00193-i] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was conducted to determine whether long-lasting desensitization of bladder afferents could be achieved using a single local application of the capsaicin (CAP)-like irritant resiniferatoxin (RTX), and to compare the effects of RTX and CAP on behavioral and histological endpoints. While rats were anesthetized, vehicle (VEH), RTX (10-100 nmol) or CAP (10-100 mumol) was instilled in the bladder (intravesical, i.ves.) via a cannula surgically implanted into the bladder dome. Beginning 1 week after treatment, once per week for 4 weeks, rats were tested behaviorally for desensitization to i.ves. RTX (10 nmol) using the abdominal lick test. Rats pretreated with low doses of RTX and CAP were partially desensitized at week 1; desensitization diminished over weeks 2-3. In contrast, rats pretreated with high doses of RTX or CAP were more completely desensitized at week 1, and desensitization did not diminish by week 4. Separate groups of rats tested 8 weeks after treatment showed substantial recovery. Rats pretreated with RTX but tested only with VEH for the first 3 weeks showed desensitization at week 4 approximately equivalent to that of RTX-treated rats tested with RTX every week. Sensitivity of corneal afferents to RTX (1.0 microgram/ml) at week 4 was not different between VEH- and RTX- or CAP-treated rats. Gross and histological examination of bladder tissue indicated that both RTX and CAP produced inflammation, which diminished in a dose- and time-dependent manner (1-8 weeks post-treatment).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Craft
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724 USA Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | | | | |
Collapse
|
43
|
Craft RM, Porreca F. Temporal parameters of desensitization to intravesical resiniferatoxin in the rat. Physiol Behav 1994; 56:479-85. [PMID: 7972397 DOI: 10.1016/0031-9384(94)90290-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Temporal factors affecting desensitization of bladder sensory afferents to the capsaicin-like irritant resiniferatoxin (RTX) were studied, to determine optimal treatment parameters for clinical application of such substances. Four days after implantation of a chronic cannula into the bladder dome, vehicle or RTX (0.1-10 nmol) was injected into the bladders of awake, freely moving rats four times at 60-min intervals for exposure durations of 5, 15, or 45 min, or at intervals of 15, 60, or 120 min (duration 5 min). The first RTX injection dose-dependently increased time spent engaged in abdominal licking. Regardless of exposure interval and duration, time spent licking increased to a lesser extent with each subsequent injection, indicating desensitization of sensory afferents. Magnitude and duration of desensitization were dose dependent for all exposure regimens, and there were few differences between groups. Desensitization at 24 h was also greater in rats exposed four times compared to rats exposed once. Following four exposures to RTX, nearly complete recovery occurred within 7-14 days, in a dose-dependent manner. Thus, magnitude and duration of desensitization to locally administered RTX depend primarily on dose and number of exposures to RTX; duration of exposure and interval between exposures within the ranges studied were less important determinants.
Collapse
Affiliation(s)
- R M Craft
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson 85724
| | | |
Collapse
|
44
|
Epstein JB, Marcoe JH. Topical application of capsaicin for treatment of oral neuropathic pain and trigeminal neuralgia. ORAL SURGERY, ORAL MEDICINE, AND ORAL PATHOLOGY 1994; 77:135-40. [PMID: 8139830 DOI: 10.1016/0030-4220(94)90275-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neuropathic pain may be a major cause of pain in the head and neck. Trigeminal neuralgia may appear as intraoral pain. This article reviews a series of 24 consecutive cases of oral pain treated with topical capsaicin. Complete remission of neuropathic pain was seen in 31.6% of patients; partial remission was achieved in 31.6% of patients. Trigeminal neuralgia with an intraoral trigger was less responsive to topical therapy than neuropathic pain. Further study is needed to clarify the efficacy of topical capsaicin in neuropathic and neuralgic pain and the effect of differing dosages and frequency of application. On the basis of the findings in this open-label clinical trial, controlled clinical study of capsaicin in neuropathic oral pain states appears warranted.
Collapse
Affiliation(s)
- J B Epstein
- British Columbia Cancer Agency, Vancouver General Hospital, University of British Columbia, Canada
| | | |
Collapse
|
45
|
Green PG, Luo J, Heller PH, Levine JD. Further substantiation of a significant role for the sympathetic nervous system in inflammation. Neuroscience 1993; 55:1037-43. [PMID: 8232896 DOI: 10.1016/0306-4522(93)90317-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study provides significant new evidence substantiating a role of the postganglionic sympathetic neuron in plasma extravasation in the knee-joint of the rat. Increased plasma extravasation produced by the potent inflammatory mediator bradykinin was mimicked by 6-hydroxydopamine, a selective stimulator of sympathetic fibers. Various treatments (chemical sympathectomy, co-perfusion with the local anesthetic lidocaine, or co-perfusion with depolarizing concentrations of potassium) similarly modulated plasma extravasation induced by both bradykinin and 6-hydroxydopamine, but not that produced by platelet activating factor. We also showed that bradykinin is able to release norepinephrine in the knee-joint, indicating action on the sympathetic postganglionic neuron. In summary, these experiments provide substantial additional evidence supporting a significant contribution of the sympathetic post-ganglionic neuron terminal to inflammatory plasma extravasation.
Collapse
Affiliation(s)
- P G Green
- Department of Medicine, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
46
|
Szallasi A, Blumberg PM. Mechanisms and therapeutic potential of vanilloids (capsaicin-like molecules). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1993; 24:123-55. [PMID: 8504062 DOI: 10.1016/s1054-3589(08)60936-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A Szallasi
- Department of Pharmacology, Menarini Ricerche Sud, Pomezia, Roma, Italy
| | | |
Collapse
|
47
|
Lynn B, Ye W, Cotsell B. The actions of capsaicin applied topically to the skin of the rat on C-fibre afferents, antidromic vasodilatation and substance P levels. Br J Pharmacol 1992; 107:400-6. [PMID: 1384912 PMCID: PMC1907877 DOI: 10.1111/j.1476-5381.1992.tb12758.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. Single applications of solutions of capsaicin were made to the intact skin of anaesthetized rats and the effects on cutaneous blood flow and the firing of C-nociceptor afferents determined. Blood flow was measured by laser-Doppler flowmetry. C-fibre activity was recorded from filaments dissected from the saphenous nerve. 2. Following the application of a capsaicin solution (concentration > or = 1 mM) to rat saphenous skin, low frequency firing occurred in C-polymodal nociceptors that sometimes continued for > 10 min. At the some time, large increases in skin blood flow occurred exceeding 300% in some instances. 3. After the initial excitation, some C-polymodal nociceptors lost their sensitivity to pressure whilst their sensitivity to heat was lost or enhanced depending on the vehicle used. 4. Sensitivity of C-polymodal nociceptors to heat recovered in < 1 day following a single application of 33 mM capsaicin. Thresholds to mechanical pressure, however, were still significantly elevated by 123% on day 1, but had recovered on day 2. 5. Vasodilatation in response to saphenous nerve stimulation ('antidromic vasodilatation') was significantly reduced by 35%, 2 days after a single application of 33 mM capsaicin, but was normal at 4 days. 6. Following a single application of 33 mM capsaicin, skin substance P levels fell to only half the normal value at day 1 and remained at this level throughout the 4 day period examined. 7. It is suggested that the ability of relatively low concentrations of capsaicin to desensitize C-fibre nociceptors may underlie the analgesic action of topical capsaicin in man.
Collapse
Affiliation(s)
- B Lynn
- Department of Physiology, University College London
| | | | | |
Collapse
|
48
|
Abstract
Capsaicin activates poorly myelinated primary afferent neurons, many of which are polymodal nociceptors. Activation is accompanied by membrane depolarization and the opening of a unique, cation-selective, ion channel which can be blocked by the polyvalent dye ruthenium red. The capsaicin-induced activation is mimicked by resiniferatoxin, a potent analogue, and by low pH. Activation is mediated by a specific membrane receptor which can be selectively and competitively antagonized by capsazepine. Repetitive administration of capsaicin produces a desensitization and an inactivation of sensory neurons. Several mechanisms are involved including receptor inactivation, block of voltage activated calcium channels, intracellular accumulation of ions leading to osmotic changes, and activation of proteolytic enzyme processes. Systemic and topical capsaicin produces a reversible antinociceptive and anti-inflammatory action after an initial undesirable algesic effect. Capsaicin analogues, such as olvanil, have similar properties with minimal initial algesic activity. Antinociception produced by capsaicin does not involve neurotoxicity, sensory neuropeptide depletion or activity at peripheral receptors; rather, systemic capsaicin produces antinociception by activating capsaicin receptors on afferent nerve terminals in the spinal cord. Spinal neurotransmission is blocked by a prolonged inactivation of sensory neurotransmitter release. However, local or topical applications of capsaicin block C-fibre conduction and inactive neuropeptide release from peripheral nerve endings. These mechanisms account for localized antinociception and the reduction of neurogenic inflammation, respectively.
Collapse
Affiliation(s)
- A Dray
- Sandoz Institute for Medical Research, London, U.K
| |
Collapse
|
49
|
Baranowski AP, Anand U, McMahon SB. Retrograde labelling of dorsal root ganglion cells in the rat: a quantitative and morphological comparison of Fluoro-Gold with horseradish peroxidase labelling. Neurosci Lett 1992; 141:53-6. [PMID: 1380681 DOI: 10.1016/0304-3940(92)90332-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have compared retrograde labelling of rat primary sensory neurons using Fluoro-Gold (FG) and horseradish peroxide conjugated with wheat germ agglutinin (HRP-WGA). Fluoro-Gold 2.5% after 48 h transit time and FG 5% after 24 and 48 h retrogradely labelled similar numbers of cell profiles as HRP-WGA (P greater than 0.1% Student's t-test). The calculated cell size distribution for the above FG groups were similar to those for the HRP-WGA. However, FG 2.5% after a 24 h transit time labelled significantly fewer cells (P less than 0.001 Student's t-test). FG retrograde transport may be used to identify the same population of DRG cells as HRP-WGA.
Collapse
Affiliation(s)
- A P Baranowski
- Department of Physiology, St. Thomas' Hospital Medical School, UMDS, London, UK
| | | | | |
Collapse
|
50
|
Abstract
Desensitization of sensory afferents with topical capsaicin has been employed to treat a variety of neuropathic disorders in humans, however, few studies have been undertaken to systematically evaluate treatment parameters to determine the optimal dose and frequency of treatment needed to achieve and maintain desensitization. The effects of several treatment parameters, including dose, number of exposures, interval between exposures and duration of exposure, on the development, magnitude and duration of desensitization following local treatment with capsaicin and related compounds are described.
Collapse
Affiliation(s)
- R M Craft
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson 85724
| | | |
Collapse
|