1
|
Schaible HG, König C, Ebersberger A. Spinal pain processing in arthritis: Neuron and glia (inter)actions. J Neurochem 2024; 168:3644-3662. [PMID: 36520021 DOI: 10.1111/jnc.15742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diseases of joints are among the most frequent causes of chronic pain. In the course of joint diseases, the peripheral and the central nociceptive system develop persistent hyperexcitability (peripheral and central sensitization). This review addresses the mechanisms of spinal sensitization evoked by arthritis. Electrophysiological recordings in anesthetized rats from spinal cord neurons with knee input in a model of acute arthritis showed that acute spinal sensitization is dependent on spinal glutamate receptors (AMPA, NMDA, and metabotropic glutamate receptors) and supported by spinal actions of neuropeptides such as neurokinins and CGRP, by prostaglandins, and by proinflammatory cytokines. In several chronic arthritis models (including immune-mediated arthritis and osteoarthritis) spinal glia activation was observed to be coincident with behavioral mechanical hyperalgesia which was attenuated or prevented by intrathecal application of minocycline, fluorocitrate, and pentoxyfylline. Some studies identified specific pathways of micro- and astroglia activation such as the purinoceptor- (P2X7-) cathepsin S/CX3CR1 pathway, the mobility group box-1 protein (HMGB1), and toll-like receptor 4 (TLR4) activation, spinal NFκB/p65 activation and others. The spinal cytokines TNF, interleukin-6, interleukin-1β, and others form a functional spinal network characterized by an interaction between neurons and glia cells which is required for spinal sensitization. Neutralization of spinal cytokines by intrathecal interventions attenuates mechanical hyperalgesia. This effect may in part result from local suppression of spinal sensitization and in part from efferent effects which attenuate the inflammatory process in the joint. In summary, arthritis evokes significant spinal hyperexcitability which is likely to contribute to the phenotype of arthritis pain in patients.
Collapse
Affiliation(s)
- Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| |
Collapse
|
2
|
Tadokoro T, Bravo-Hernandez M, Agashkov K, Kobayashi Y, Platoshyn O, Navarro M, Marsala S, Miyanohara A, Yoshizumi T, Shigyo M, Krotov V, Juhas S, Juhasova J, Nguyen D, Kupcova Skalnikova H, Motlik J, Studenovska H, Proks V, Reddy R, Driscoll SP, Glenn TD, Kemthong T, Malaivijitnond S, Tomori Z, Vanicky I, Kakinohana M, Pfaff SL, Ciacci J, Belan P, Marsala M. Precision spinal gene delivery-induced functional switch in nociceptive neurons reverses neuropathic pain. Mol Ther 2022; 30:2722-2745. [PMID: 35524407 PMCID: PMC9372322 DOI: 10.1016/j.ymthe.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously-induced change in developmentally-imprinted excitatory neurotransmitter phenotype of these neurons to inhibitory has not yet been achieved. Here we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-Aminobutyric acid,) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) which persisted for minimum 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (such as sedation, motor weakness or loss of normal sensation) were seen between 2-13 months post-treatment in naive adult mice, pigs and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord- or peripheral nerve-injury induced neuropathic pain.
Collapse
Affiliation(s)
- Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Department of Anesthesiology, University of Ryukyus, Okinawa, Japan; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Mariana Bravo-Hernandez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Kirill Agashkov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yoshiomi Kobayashi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michael Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Neurgain Technologies, 9620 Towne Centre Drive, Suite 100, San Diego, CA 92121, USA
| | - Atsushi Miyanohara
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Vector Core Laboratory, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Tetsuya Yoshizumi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Michiko Shigyo
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Volodymyr Krotov
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Duong Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Vladimir Proks
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Department of Biomaterials and Bioanalogous Systems, Heyrovsky Square 2,162 06 Prague 6, Czech Republic
| | - Rajiv Reddy
- Department of Anesthesiology, Pain Medicine, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas D Glenn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Kaengkhoi District, Saraburi 18110, Thailand
| | - Zoltan Tomori
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia
| | | | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Pavel Belan
- Departments of Sensory Signaling and Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine; Kyiv Academic University, Kyiv, Ukraine
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA; Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
3
|
Fazzari J, Linher-Melville K, Singh G. Tumour-Derived Glutamate: Linking Aberrant Cancer Cell Metabolism to Peripheral Sensory Pain Pathways. Curr Neuropharmacol 2018; 15:620-636. [PMID: 27157265 PMCID: PMC5543678 DOI: 10.2174/1570159x14666160509123042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Chronic pain is a major symptom that develops in cancer patients, most commonly emerging during advanced stages of the disease. The nature of cancer-induced pain is complex, and the efficacy of current therapeutic interventions is restricted by the dose-limiting side-effects that accompany common centrally targeted analgesics. Methods This review focuses on how up-regulated glutamate production and export by the tumour converge at peripheral afferent nerve terminals to transmit nociceptive signals through the transient receptor cation channel, TRPV1, thereby initiating central sensitization in response to peripheral disease-mediated stimuli. Results Cancer cells undergo numerous metabolic changes that include increased glutamine catabolism and over-expression of enzymes involved in glutaminolysis, including glutaminase. This mitochondrial enzyme mediates glutaminolysis, producing large pools of intracellular glutamate. Up-regulation of the plasma membrane cystine/glutamate antiporter, system xc-, promotes aberrant glutamate release from cancer cells. Increased levels of extracellular glutamate have been associated with the progression of cancer-induced pain and we discuss how this can be mediated by activation of TRPV1. Conclusion With a growing population of patients receiving inadequate treatment for intractable pain, new targets need to be considered to better address this largely unmet clinical need for improving their quality of life. A better understanding of the mechanisms that underlie the unique qualities of cancer pain will help to identify novel targets that are able to limit the initiation of pain from a peripheral source–the tumour.
Collapse
Affiliation(s)
| | | | - Gurmit Singh
- Department of Pathology and Molecular Medicine; Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON. Canada
| |
Collapse
|
4
|
Buettner C, Melo-Carrillo A, Burstein R. Terminating Migraine-Associated Allodynia Using Oral Suspension Diclofenac: A Prospective Non-Randomized Drug Trial. Headache 2017; 57:478-486. [PMID: 28225188 PMCID: PMC7181471 DOI: 10.1111/head.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine Buettner
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
6
|
Woode E, Ameyaw EO, Boakye-Gyasi E, Abotsi WKM, Oppong Kyekyeku J, Adosraku R, Biney RP. Effects of an ethanol extract and the diterpene, xylopic acid, of Xylopia aethiopica fruits in murine models of musculoskeletal pain. PHARMACEUTICAL BIOLOGY 2016; 54:2978-2986. [PMID: 27430751 DOI: 10.1080/13880209.2016.1199040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/19/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Fruits of Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) are used traditionally to manage arthritis, headache and other pain disorders. OBJECTIVE The analgesic properties of the X. aethiopica ethanol fruit extract (XAE) and xylopic acid (XA) were evaluated in musculoskeletal pain models. MATERIALS AND METHODS Acute muscle pain was induced in gastrocnemius muscle of Sprague-Dawley rats with 3% carrageenan (i.m.). Rats received XAE (30-300 mg/kg), XA (10-100 mg/kg) or morphine (1-10 mg/kg) after 12 h. Effects of XAE and XA on muscle pain were assessed by measuring post-treatment grip strength of the rats. Chronic muscle pain was similarly induced, but drug treatment was on the eighth day and effects of XAE and XA assessed with Randall-Selitto test for hyperlagesia. Acute-skeletal pain was induced in knee joints of rats with 3% carrageenan-kaolin mixture and effects determined 12-h later. Similar induction protocol was used for chronic knee pain with treatment and measurement as done for chronic muscle pain. RESULTS XAE and XA significantly and dose-dependently ameliorated both acute muscle (ED50 mg/kg: XAE = 22.9; XA = 6.2) and skeletal hyperalgesia (XAE = 39.9; XA = 17.7) induced by 3% carrageenan. Similarly, chronic skeletal hyperalgesia was reduced by XAE and XA treatment similar to morphine (ED50: XAE = 13.0; XA = 4.6). This reduction was also seen in chronic muscle hyperalgesia (ED50: XAE = 79.1; XA = 42.7). XAE and XA significantly reduced the spread of hyperalgesia to contralateral limbs in both models of chronic hyperalgesia. CONCLUSION These findings establish analgesic properties of the ethanol fruit extract of X. aethiopica and xylopic acid in musculoskeletal pain.
Collapse
Affiliation(s)
- Eric Woode
- a Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences , Kwame Nkrumah University of Science & Technology , Kumasi , Ghana
| | - Elvis Ofori Ameyaw
- b Department of Biomedical and Forensic Sciences, School of Biological Science , University of Cape Coast , Cape Coast , Ghana
| | - Eric Boakye-Gyasi
- a Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences , Kwame Nkrumah University of Science & Technology , Kumasi , Ghana
| | - Wonder Kofi Mensah Abotsi
- a Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences , Kwame Nkrumah University of Science & Technology , Kumasi , Ghana
| | - James Oppong Kyekyeku
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences , Kwame Nkrumah University of Science & Technology , Kumasi , Ghana
| | - Reimmel Adosraku
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences , Kwame Nkrumah University of Science & Technology , Kumasi , Ghana
| | - Robert Peter Biney
- a Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences , Kwame Nkrumah University of Science & Technology , Kumasi , Ghana
| |
Collapse
|
7
|
Förster Y, Schmidt JR, Wissenbach DK, Pfeiffer SEM, Baumann S, Hofbauer LC, von Bergen M, Kalkhof S, Rammelt S. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles. PLoS One 2016; 11:e0159580. [PMID: 27441377 PMCID: PMC4956113 DOI: 10.1371/journal.pone.0159580] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022] Open
Abstract
Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis.
Collapse
Affiliation(s)
- Yvonne Förster
- University Center of Orthopedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, TU Dresden, Dresden, Germany
- * E-mail:
| | - Johannes R. Schmidt
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Dirk K. Wissenbach
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Susanne E. M. Pfeiffer
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sven Baumann
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Lorenz C. Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, University Hospital “Carl Gustav Carus”, TU Dresden, Dresden, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Centre for Microbial Communities, University of Aalborg, Aalborg East, Denmark
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, Coburg, Germany
| | - Stefan Rammelt
- University Center of Orthopedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, TU Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| |
Collapse
|
8
|
Eisenach JC, Tong C, Curry RS. Failure of intrathecal ketorolac to reduce remifentanil-induced postinfusion hyperalgesia in humans. Pain 2015; 156:81-87. [PMID: 25599304 DOI: 10.1016/j.pain.0000000000000005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In rodents, acute exposure to opioids results in transient antinociception followed by longer lasting hypersensitivity to tactile or thermal stimuli, a phenomenon termed opioid-induced hyperalgesia. This hypersensitivity can be blocked or reversed by intrathecally administered cyclooxygenase inhibitors, including ketorolac, suggesting a role for spinal prostaglandins. In surgical patients, the dose of intraoperative opioid, particularly the short-acting drug, remifentanil, is directly related to increased pain and opioid requirements for many hours postoperatively. In addition, experimentally induced tactile hypersensitivity in humans is exaggerated after cessation of remifentanil infusions. The degree of this experimental opioid-induced hyperalgesia is reduced by systemic treatment with cyclooxygenase inhibitors, and investigators have speculated that this reduction reflects the actions in the central nervous system, most likely in the spinal cord. To test this hypothesis, we measured cerebrospinal fluid prostaglandin E2 concentrations during and after remifentanil infusion in 30 volunteers. These volunteers received intrathecal ketorolac or saline in a random, blinded manner during intravenous remifentanil infusion after generation of hypersensitivity by topical capsaicin. Remifentanil reduced pain to noxious heat stimuli and reduced areas of capsaicin-induced hypersensitivity similarly in those receiving intrathecal ketorolac or saline. The primary outcome measure, area of capsaicin-induced hypersensitivity after stopping remifentanil, showed a similar increase in those receiving ketorolac as in those receiving saline. Cerebrospinal fluid prostaglandin E2 concentrations did not increase during postinfusion hyperalgesia compared with those during infusion, and they were not increased during infusion compared with those in historical controls. These data fail to support the hypothesis that acute opioid-induced hyperalgesia reflects spinal cyclooxygenase activation causing central sensitization.
Collapse
Affiliation(s)
- James C Eisenach
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | | |
Collapse
|
9
|
Luo JG, Zhao XL, Xu WC, Zhao XJ, Wang JN, Lin XW, Sun T, Fu ZJ. Activation of spinal NF-κB/p65 contributes to peripheral inflammation and hyperalgesia in rat adjuvant-induced arthritis. Arthritis Rheumatol 2014; 66:896-906. [PMID: 24757142 DOI: 10.1002/art.38328] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 12/17/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE It is known that noxious stimuli from inflamed tissue may increase the excitability of spinal dorsal horn neurons (a process known as central sensitization), which can signal back and contribute to peripheral inflammation. However, the underlying mechanisms have yet to be fully defined. A number of recent studies have indicated that spinal NF-κB/p65 is involved in central sensitization, as well as pain-related behavior. Thus, the aim of this study was to determine whether NF-κB/p65 can facilitate a peripheral inflammatory response in rat adjuvant-induced arthritis (AIA). METHODS Lentiviral vectors encoding short hairpin RNAs that target NF-κB/p65 (LV-shNF-κB/p65) were constructed for gene silencing. The spines of rats with AIA were injected with LV-shNF-κB/p65 on day 3 or day 10 after treatment with Freund's complete adjuvant (CFA). During an observation period of 20 days, pain-related behavior, paw swelling, and joint histopathologic changes were evaluated. Moreover, the expression levels of spinal tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and cyclooxygenase 2 (COX-2) were assessed on day 14 after CFA treatment. RESULTS The presence of peripheral inflammation in rats with AIA induced an increase in NF-κB/p65 expression in the spinal cord, mainly in the dorsal horn neurons and astrocytes. Delivery of LV-shNF-κB/p65 to the spinal cord knocked down the expression of NF-κB/p65 and significantly attenuated hyperalgesia, paw edema, and joint destruction. In addition, spinal delivery of LV-shNF-κB/p65 reduced the overexpression of spinal TNFα, IL-1β, and COX-2. CONCLUSION These findings indicate that spinal NF-κB/p65 plays an important role in the initiation and development of both peripheral inflammation and hyperalgesia. Thus, inhibition of spinal NF-κB/p65 expression may provide a potential treatment to manage painful inflammatory disorders.
Collapse
Affiliation(s)
- Jian-Gang Luo
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Aouad M, Zell V, Juif PE, Lacaud A, Goumon Y, Darbon P, Lelievre V, Poisbeau P. Etifoxine analgesia in experimental monoarthritis: A combined action that protects spinal inhibition and limits central inflammatory processes. Pain 2014; 155:403-412. [DOI: 10.1016/j.pain.2013.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/27/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023]
|
11
|
Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor. J Neurosci 2014; 33:18951-65. [PMID: 24285900 DOI: 10.1523/jneurosci.1221-13.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hyperactivity of the glutamatergic system is involved in the development of central sensitization in the pain neuraxis, associated with allodynia and hyperalgesia observed in patients with chronic pain. Herein we study the ability of type 4 metabotropic glutamate receptors (mGlu4) to regulate spinal glutamate signaling and alleviate chronic pain. We show that mGlu4 are located both on unmyelinated C-fibers and spinal neurons terminals in the inner lamina II of the spinal cord where they inhibit glutamatergic transmission through coupling to Cav2.2 channels. Genetic deletion of mGlu4 in mice alters sensitivity to strong noxious mechanical compression and accelerates the onset of the nociceptive behavior in the inflammatory phase of the formalin test. However, responses to punctate mechanical stimulation and nocifensive responses to thermal noxious stimuli are not modified. Accordingly, pharmacological activation of mGlu4 inhibits mechanical hypersensitivity in animal models of inflammatory or neuropathic pain while leaving acute mechanical perception unchanged in naive animals. Together, these results reveal that mGlu4 is a promising new target for the treatment of chronic pain.
Collapse
|
12
|
Pulsed radiofrequency treatment attenuates increases in spinal excitatory amino acid release in rats with adjuvant-induced mechanical allodynia. Neuroreport 2013; 24:431-6. [DOI: 10.1097/wnr.0b013e32836164f5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Glutaminase immunoreactivity and enzyme activity is increased in the rat dorsal root ganglion following peripheral inflammation. PAIN RESEARCH AND TREATMENT 2011; 2012:414697. [PMID: 22229088 PMCID: PMC3250962 DOI: 10.1155/2012/414697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/29/2011] [Accepted: 09/08/2011] [Indexed: 01/16/2023]
Abstract
Following inflammation, primary sensory neurons in the dorsal root ganglion (DRG) alter the production of several proteins. Most DRG neurons are glutamatergic, using glutaminase as the enzyme for glutamate production, but little is known about glutaminase following inflammation. In the present study, adjuvant-induced arthritis (AIA) was produced in rats with complete Freund's adjuvant into the hindpaw. At 7 days of AIA, DRG were examined with glutaminase immunohistochemistry, Western blot immunoreactivity, and enzyme activity. Image analysis revealed that glutaminase was elevated most in small-sized neurons (21%) (P < 0.05). Western blot analysis revealed a 19% increase (P < 0.05) in total glutaminase and 21% in mitochondrial glutaminase (P < 0.05). Glutaminase enzyme activity was elevated 29% (P < 0.001) from 2.20 to 2.83 moles/kg/hr. Elevated glutaminase in primary sensory neurons could lead to increased glutamate production in spinal primary afferent terminals contributing to central sensitization or in the peripheral process contributing to peripheral sensitization.
Collapse
|
14
|
Kohno T. Zaltoprofen Inhibits Bradykinin-Mediated Enhancement of Glutamate Receptor Activity in Substantia Gelatinosa Neurons. Anesth Analg 2011; 113:412-6. [DOI: 10.1213/ane.0b013e31821c693c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Asante CO, Dickenson AH. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat. Neurosci Lett 2010; 484:108-12. [PMID: 20709148 PMCID: PMC3098387 DOI: 10.1016/j.neulet.2010.08.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 11/25/2022]
Abstract
We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states.
Collapse
Affiliation(s)
- Curtis O Asante
- Department of Neuroscience Physiology and Pharmacology, University College London, Gower Street, London WC1E6BT, UK.
| | | |
Collapse
|
16
|
Buczynski MW, Svensson CI, Dumlao DS, Fitzsimmons BL, Shim JH, Scherbart TJ, Jacobsen FE, Hua XY, Yaksh TL, Dennis EA. Inflammatory hyperalgesia induces essential bioactive lipid production in the spinal cord. J Neurochem 2010; 114:981-93. [PMID: 20492349 DOI: 10.1111/j.1471-4159.2010.06815.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipid molecules play an important role in regulating the sensitivity of sensory neurons and enhancing pain perception, and growing evidence indicates that the effect occurs both at the site of injury and in the spinal cord. Using high-throughput mass spectrometry methodology, we sought to determine the contribution of spinal bioactive lipid species to inflammation-induced hyperalgesia in rats. Quantitative analysis of CSF and spinal cord tissue for eicosanoids, ethanolamides and fatty acids revealed the presence of 102 distinct lipid species. After induction of peripheral inflammation by intra-plantar injection of carrageenan to the ipsilateral hind paw, lipid changes in cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) signaling pathways peaked at 4 h in the CSF. In contrast, changes occurred in a temporally disparate manner in the spinal cord with LOX-derived hepoxilins followed by COX-derived prostaglandin E(2), and subsequently the ethanolamine anandamide. Systemic treatment with the mu opioid agonist morphine, the COX inhibitor ketorolac, or the LOX inhibitor nordihydroguaiaretic acid significantly reduced tactile allodynia, while their effects on the lipid metabolites were different. Morphine did not alter the lipid profile in the presence or absence of carrageenan inflammation. Ketorolac caused a global reduction in eicosanoid metabolism in naïve animals that remained suppressed following injection of carrageenan. Nordihydroguaiaretic acid-treated animals also displayed reduced basal levels of COX and 12-LOX metabolites, but only 12-LOX metabolites remained decreased after carrageenan treatment. These findings suggest that both COX and 12-LOX play an important role in the induction of carrageenan-mediated hyperalgesia through these pathways.
Collapse
Affiliation(s)
- Matthew W Buczynski
- Department of Pharmacology, Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumar N, Laferriere A, Yu JSC, Poon T, Coderre TJ. Metabotropic glutamate receptors (mGluRs) regulate noxious stimulus-induced glutamate release in the spinal cord dorsal horn of rats with neuropathic and inflammatory pain. J Neurochem 2010; 114:281-90. [PMID: 20412385 DOI: 10.1111/j.1471-4159.2010.06761.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In rats with persistent pain, spinal group I metabotropic glutamate receptor (mGluR) activity has been shown to be pronociceptive, whereas spinal group II/III activity is anti-nociceptive. In brain, group I mGluR activity produces positive feedback effects on glutamate release, whereas group II/III activity produces negative feedback effects. It is unknown whether the nociceptive versus anti-nociceptive effects of spinal group I versus group II/III mGluR activity depend on differential regulation of spinal glutamate release. Here, we used behavioral nociceptive testing and in vivo microdialysis to assess the effect of intrathecal treatment with group I mGluR antagonists [cyclopropan[b] chromen-1a-carboxylate, (CPCCOEt), 2-methyl-6-(phenylethynyl) pyridine (MPEP)] or groups II [aminopyrrolidine-2R,4R-dicarboxylate (APDC)] and III [l-2-amino-4-phosphonobutyrate (l-AP4)] mGluR agonists or vehicle, on nociception and noxious stimulus-induced increases in glutamate release in the spinal cord dorsal horn of rats with a chronic constriction injury (CCI) of the sciatic nerve or hind paw injection of complete Freund's adjuvant (CFA). None of the treatments significantly influenced basal spinal glutamate concentrations in either CCI or CFA rats. In CCI rats, formalin-induced nociception and increases in spinal glutamate concentrations were significantly attenuated by pre-treatment with CPCCOEt, MPEP, APDC, or l-AP4. In CFA rats, capsaicin-induced increases in nociception and spinal glutamate concentrations were significantly attenuated by pre-treatment with CPCCOEt, MPEP, or APDC, but not l-AP4. This study demonstrates that group I antagonists and group II/III mGluR agonists attenuated the enhanced nociception and noxious stimulus-induced glutamate release in spinal cord dorsal horn of CCI and/or CFA rats in vivo, and suggests a possible mechanism for their anti-hyperalgesic effects.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
18
|
Kim IT, Park HJ, Nam JH, Park YM, Won JH, Choi J, Choe BK, Lee KT. In-vitro and in-vivo anti-inflammatory and antinociceptive effects of the methanol extract of the roots of Morinda officinalis. J Pharm Pharmacol 2010; 57:607-15. [PMID: 15901350 DOI: 10.1211/0022357055902] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The anti-inflammatory effects of the methanol extract of the roots of Morinda officinalis (MEMO) (Rubiaceae) were evaluated in-vitro and in-vivo. The effects of MEMO on lipopolysaccharide (LPS)-induced responses in the murine macrophage cell line RAW 264.7 were examined. MEMO potently inhibited the production of nitric oxide (NO), prostaglandin E2 and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, and of iNOS, COX-2 and TNF-α at the mRNA level, was also inhibited by MEMO in a concentration-dependent manner. Furthermore, MEMO inhibited the nuclear factor kappa B (NF-κB) activation induced by LPS, and this was associated with the prevention of degradation of the inhibitor κB (IκB), and subsequently with attenuated p65 protein in the nucleus. The anti-inflammatory effect of MEMO was examined in rats using the carrageenan-induced oedema model. The antinociceptive effects of MEMO were assessed in mice using the acetic acid-induced abdominal constriction test and the hot-plate test. MEMO (100, 200 mg kg−1 per day, p.o.) exhibited anti-inflammatory and antinociceptive effects in these animal models. Taken together, the data demonstrate that MEMO has anti-inflammatory and antinociceptive activity, inhibiting iNOS, COX-2 and TNF-α expression by down-regulating NF-κB binding activity.
Collapse
Affiliation(s)
- In-Tae Kim
- College of Pharmacy, Kyung-Hee University, 1 Hoegi-Dong, Dongdaemun-gu, Seoul 130-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Harvey VL, Caley A, Müller UC, Harvey RJ, Dickenson AH. A Selective Role for alpha3 Subunit Glycine Receptors in Inflammatory Pain. Front Mol Neurosci 2009; 2:14. [PMID: 19915732 PMCID: PMC2776487 DOI: 10.3389/neuro.02.014.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/27/2009] [Indexed: 11/15/2022] Open
Abstract
GlyR α3 has previously been found to play a critical role in pain hypersensitivity following spinal PGE2 injection, complete Freund's adjuvant (CFA) and zymosan induced peripheral inflammation. In this study, although all models displayed typical phenotypic behaviours, no significant differences were observed when comparing the pain behaviours of Glra3−/− and wild-type littermates following the injection of capsaicin, carrageenan, kaolin/carrageenan or monosodium iodoacetate, models of rheumatoid and osteoarthritis, respectively. However, clear differences were observed following CFA injection (p < 0.01). No significant differences were observed in the pain behaviours of Glra3−/− and wild-type littermates following experimentally induced neuropathic pain (partial sciatic nerve ligation). Similarly, Glra3−/− and wild-type littermates displayed indistinguishable visceromotor responses to colorectal distension (a model of visceral pain) and in vivo spinal cord dorsal horn electrophysiology revealed no differences in responses to multimodal suprathreshold stimuli, intensities which equate to higher pain scores such as those reported in the clinic. These data suggest that apart from its clear role in CFA- and zymosan-induced pain sensitisation, hypersensitivity associated with other models of inflammation, neuropathy and visceral disturbances involves mechanisms other than the EP2 receptor – GlyR α3 pathway.
Collapse
Affiliation(s)
- Victoria L Harvey
- Neuroscience, Physiology & Pharmacology, University College London London, UK
| | | | | | | | | |
Collapse
|
20
|
Xu GL, Liu F, Ao GZ, He SY, Ju M, Zhao Y, Xue T. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur J Pharmacol 2009; 611:100-6. [DOI: 10.1016/j.ejphar.2009.03.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/15/2009] [Accepted: 03/23/2009] [Indexed: 11/27/2022]
|
21
|
Imbalance between excitatory and inhibitory amino acids at spinal level is associated with maintenance of persistent pain-related behaviors. Pharmacol Res 2009; 59:290-9. [PMID: 19416628 DOI: 10.1016/j.phrs.2009.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/16/2009] [Accepted: 01/27/2009] [Indexed: 11/22/2022]
Abstract
Although the postsynaptic events responsible for development of pathological pain have been intensively studied, the relative contribution of presynaptic neurotransmitters to the whole process remains less elucidated. In the present investigation, we sought to measure temporal changes in spinal release of both excitatory amino acids (EAAs, glutamate and aspartate) and inhibitory amino acids (IAAs, glycine, ?-aminobutyric acid and taurine) in response to peripheral inflammatory pain state. The results showed that following peripheral chemical insult induced by subcutaneous bee venom (BV) injection, there was an initial, parallel increase in spinal release of both EAAs and IAAs, however, the balance between them was gradually disrupted when pain persisted longer, with EAAs remaining at higher level but IAAs at a level below the baseline. Moreover, the EAAs-IAAs imbalance at the spinal level was dependent upon the ongoing activity from the peripheral injury site. Intrathecal blockade of ionotropic (NMDA and non-NMDA) and metabotropic (mGluRI, II, III) glutamate receptors, respectively, resulted in a differential inhibition of BV-induced different types of pain (persistent nociception vs. hyperalgesia, or thermal vs. mechanical hyperalgesia), implicating that spinal antagonism of any specific glutamate receptor subtype fails to block all types of pain-related behaviors. This result provides a new line of evidence emphasizing an importance of restoration of EAAs-IAAs balance at the spinal level to prevent persistence or chronicity of pain.
Collapse
|
22
|
Kang OH, Chae HS, Oh YC, Choi JG, Lee YS, Jang HJ, Kim JH, Kim YC, Sohn DH, Park H, Kwon DY. Anti-nociceptive and anti-inflammatory effects of Angelicae dahuricae radix through inhibition of the expression of inducible nitric oxide synthase and NO production. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2009; 36:913-28. [PMID: 19051357 DOI: 10.1142/s0192415x0800634x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The extract of Angelicae dahuricae radix has traditionally been used as an anti-noceptive remedy in China. In this study, the methanol extract of Angelicae dahuricae radix (MEAD) was evaluated to determine if it has anti-noceptive and anti-inflammatory action. The anti-nociceptive activities of MEAD were evaluated by determining the writhing response and sleeping time, as well as by a formalin test. In addition, the anti-inflammatory activities of MEAD were evaluated by a vascular permeability test as well as by measuring the carrageenan-induced paw edema and conducting a myeloperoxidase (MPO) assay. MEAD (600 and 1200 mg/kg) exhibited anti-inflammatory effects on acetic acid-induced vascular permeability, carrageenan-induced paw edema, and MPO activity. Moreover, the results of the formalin test, the acetic acid-induced writhing response and the pentobarbital-induced sleeping time indicated that MEAD had anti-nociceptive effects that occurred in a concentration-dependent manner. To determine the mechanism by which MEAD exerted its effects on the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) by treated murine macrophage RAW 264.7 cells was evaluated. Similar to the in vivo activities, both the iNOS expression and NO production were significantly suppressed by MEAD in a dose-dependent manner. Furthermore, MEAD inhibited the activating phosphorylation of ERK1/2. These results provide a scientific basis that explains the mechanism by which Angelicae dahuricae radix relieves inflammatory pain.
Collapse
Affiliation(s)
- Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Iksan, Jeonbuk, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Musha Y, Kaneko T, Shigemitsu T, Okuni I, Ushigome N, Harada T, Ohshiro T, Mizutani K. THE EFFECTIVENESS OF LOW LEVEL LASER THERAPY (LLLT) FOR SHOULDER PERIARTHRITIS. Laser Ther 2009. [DOI: 10.5978/islsm.18.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshiro Musha
- Department of Second Orthopedic Surgery, Toho University School of Medicine
| | - Takao Kaneko
- Department of Second Orthopedic Surgery, Toho University School of Medicine
| | - Toshio Shigemitsu
- Department of Second Orthopedic Surgery, Toho University School of Medicine
| | - Ikuko Okuni
- Department of Rehabilitation Medicine, Toho University School of Medicine
| | - Nobuyuki Ushigome
- Department of Rehabilitation Medicine, Toho University School of Medicine
| | - Takashi Harada
- Department of Rehabilitation Medicine, Toho University School of Medicine
| | | | - Kazuhiro Mizutani
- Department of Second Orthopedic Surgery, Toho University School of Medicine
| |
Collapse
|
24
|
Zhou HY, Shin EM, Guo LY, Zou LB, Xu GH, Lee SH, Ze KR, Kim EK, Kang SS, Kim YS. Anti-inflammatory activity of 21(α, β)-methylmelianodiols, novel compounds from Poncirus trifoliata Rafinesque. Eur J Pharmacol 2007; 572:239-48. [PMID: 17662711 DOI: 10.1016/j.ejphar.2007.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/22/2007] [Accepted: 07/04/2007] [Indexed: 01/04/2023]
Abstract
The fruits of Poncirus trifoliata (L.) are widely used in Oriental medicine as a remedy for allergic inflammation. As a part of our program to screen medicinal plants for potential anti-inflammatory compounds, 21alpha-methylmelianodiol (21alpha-MMD) and 21beta-methylmelianodiol (21beta-MMD), which are two isomers of 21-methylmelianodiol isolated from the fruits of P. trifoliata for the first time, were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. 21alpha-MMD and 21beta-MMD attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expressions as well as the mRNA levels of iNOS, COX-2, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta). To investigate the mechanism involved, we examined the effect of 21alpha-MMD and 21beta-MMD on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Both 21alpha-MMD and 21beta-MMD significantly inhibited LPS-induced NF-kappaB transcriptional activity in RAW 264.7 macrophages. Moreover, the in vivo anti-inflammatory effect of 21alpha-MMD was examined in two mouse models of acute inflammation. In the carrageenan-induced paw edema model, administration of 21alpha-MMD (20 and 100 mg/kg, i.p.) dose-dependently reduced paw swelling. In addition, 21alpha-MMD significantly inhibited the dye leakage in an acetic acid-induced vascular permeability assay. Taken together, our data indicate that 21-methylmelianodiol is an important constituent of the fruit of P. trifoliata, and that the inhibition of iNOS and COX-2 expression by 21alpha-MMD and 21beta-MMD might be one of the mechanisms responsible for their anti-inflammatory effects.
Collapse
Affiliation(s)
- Hong Yu Zhou
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 28 Yeonkun-Dong, Jongno-Ku Seoul 110-460, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jakubowski M, Levy D, Kainz V, Zhang XC, Kosaras B, Burstein R. Sensitization of central trigeminovascular neurons: blockade by intravenous naproxen infusion. Neuroscience 2007; 148:573-83. [PMID: 17651900 PMCID: PMC2710388 DOI: 10.1016/j.neuroscience.2007.04.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/11/2007] [Accepted: 04/13/2007] [Indexed: 12/22/2022]
Abstract
We have previously observed that migraine attacks impervious to triptan therapy were readily terminated by subsequent i.v. administration of the non-steroidal anti-inflammatory drug (NSAID) ketorolac. Since such attacks were associated with periorbital allodynia--a symptom of central sensitization--we examined whether infusion of the NSAID naproxen can block sensitization of central trigeminovascular neurons in the medullary dorsal horn, using in vivo single-unit recording in the rat. Topical exposure of the cerebral dura to inflammatory soup (IS) for 5 min resulted in a short-term burst of activity (<8 min) and a long-lasting (>120 min) neuronal hyper-responsiveness to stimulation of the dura and periorbital skin (group 1). Infusion of naproxen (1 mg/kg) 2 h after IS (group 1) brought all measures of neuronal responsiveness back to the baseline values recorded prior to IS, and depressed ongoing spontaneous activity well below baseline. When given preemptively 1 h before IS (group 2), naproxen blocked the short-term burst of activity and every long-term measure of neuronal hyper-responsiveness that was studied in the central neurons. The same preemptive treatment, however, failed to block IS-induced short-term bursts of activity in C-unit meningeal nociceptors (group 3). The results suggest that parenteral administration of naproxen, unlike triptan therapy, can exert direct inhibition over central trigeminovascular neurons in the dorsal horn. Though impractical as a routine migraine therapy, parenteral NSAID administration should be useful as a non-narcotic rescue therapy for migraine in the setting of the emergency department.
Collapse
Affiliation(s)
- Moshe Jakubowski
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Dan Levy
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Vanessa Kainz
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Xi-chun Zhang
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Bela Kosaras
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
- Department of Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Park HJ, Kim IT, Won JH, Jeong SH, Park EY, Nam JH, Choi J, Lee KT. Anti-inflammatory activities of ent-16αH,17-hydroxy-kauran-19-oic acid isolated from the roots of Siegesbeckia pubescens are due to the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-κB inactivation. Eur J Pharmacol 2007; 558:185-93. [PMID: 17207792 DOI: 10.1016/j.ejphar.2006.11.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 11/12/2006] [Accepted: 11/16/2006] [Indexed: 11/20/2022]
Abstract
To isolate the anti-inflammatory components in Siegesbeckia pubescens root, we performed activity-guided fractionation using a carrageenan-induced edema rat model. Antinociceptive effects were followed using acetic acid-induced abdominal constriction and hot plate tests in mice. Chloroform extract was subjected to silica gel and octadesyl silane (ODS) column chromatography, and a diterpene was isolated which was identified as ent-16alphaH,17-hydroxy-kauran-19-oic acid (siegeskaurolic acid). Pretreatment with siegeskaurolic acid (20 or 30 mg/kg/day, p.o.) exhibited anti-inflammatory and antinociceptive effects in these animal models. To investigate the mechanisms underlying this anti-inflammatory action, we investigated the effect of siegeskaurolic acid on lipopolysaccharide (LPS)-induced responses in a murine macrophage cell line, RAW 264.7. Siegeskaurolic acid was found to significantly inhibit the productions of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor-alpha (TNF-alpha). Consistent with these findings, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, and iNOS, COX-2, and TNF-alpha mRNAs were found to be inhibited by siegeskaurolic acid. Furthermore, siegeskaurolic acid inhibited the nuclear factor-kappaB (NF-kappaB) activation induced by LPS, and this was associated with the prevention of inhibitor kappaB degradation (I kappaB), and subsequently with decreased nuclear p65 and p50 protein levels. Taken together, our data indicate that the anti-inflammatory and antinociceptive properties of siegeskaurolic acid may be due to iNOS, COX-2 and TNF-alpha inhibition via the down-regulation of NF-kappaB binding activity.
Collapse
Affiliation(s)
- Hee-Juhn Park
- Division of Applied Plant Sciences, Sang-Ji University, Wonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Svensson CI, Zattoni M, Serhan CN. Lipoxins and aspirin-triggered lipoxin inhibit inflammatory pain processing. ACTA ACUST UNITED AC 2007; 204:245-52. [PMID: 17242163 PMCID: PMC2118737 DOI: 10.1084/jem.20061826] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inflammatory conditions can lead to debilitating and persistent pain. This hyperalgesia reflects sensitization of peripheral terminals and facilitation of pain signaling at the spinal level. Studies of peripheral systems show that tissue injury triggers not only inflammation but also a well-orchestrated series of events that leads to reversal of the inflammatory state. In this regard, lipoxins represent a unique class of lipid mediators that promote resolution of inflammation. The antiinflammatory role of peripheral lipoxins raises the hypothesis that similar neuraxial systems may also down-regulate injury-induced spinal facilitation of pain processing. We report that the lipoxin A4 receptor is expressed on spinal astrocytes both in vivo and in vitro and that spinal delivery of lipoxin A4, as well as stable analogues, attenuates inflammation-induced pain. Furthermore, activation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in astrocytes, which has been indicated to play an important role in spinal pain processing, was attenuated in the presence of lipoxins. This linkage opens the possibility that lipoxins regulate spinal nociceptive processing though their actions upon astrocytic activation. Targeting mechanisms that counterregulate the spinal consequences of persistent peripheral inflammation provide a novel endogenous mechanism by which chronic pain may be controlled.
Collapse
Affiliation(s)
- Camilla I Svensson
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
28
|
Won JH, Im HT, Kim YH, Yun KJ, Park HJ, Choi JW, Lee KT. Anti-inflammatory effect of buddlejasaponin IV through the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via the NF-kappaB inactivation. Br J Pharmacol 2006; 148:216-25. [PMID: 16520738 PMCID: PMC1617058 DOI: 10.1038/sj.bjp.0706718] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Buddlejasaponin IV isolated from Pleurospermum kamtschatidum is an anti-inflammatory compound that inhibits NO, PGE(2) and TNF-alpha production. Here, we studied the mode of action of this compound. Buddlejasaponin IV (2.5-10 microM) reduced lipopolysaccaride (LPS (1 microg ml(-1)))-induced levels of iNOS and COX-2 at the protein levels, and iNOS, COX-2, TNF-alpha, interleukin (IL)-1beta and IL-6 mRNA expression in RAW 264.7 macrophages in a concentration-dependent manner, as determined by Western blotting and RT-PCR, respectively. Buddlejasaponin IV inhibited the LPS-induced activation of nuclear factor-kappaB (NF-kappaB), a transcription factor necessary for proinflammatory mediators, iNOS, COX-2, TNF-alpha, IL-1beta and IL-6 expression. This effect was accompanied by a parallel reduction in IkappaB-alpha degradation and phosphorylation, and by the nuclear translocation of the NF-kappaB p65 subunit. The effects of buddlejasaponin IV on acute phase inflammation were studied on serotonin- and carrageenan-induced paw edema. The antiedematous effect of buddlejasaponin IV was compared with 10 mg kg(-1) of indomethacin p.o. Maximum inhibitions of 26 and 41% were noted at a dose of 20 mg kg(-1) for serotonin- and carrageenan-induced paw edema, respectively. The analgesic effect of buddlejasaponin IV was evaluated using acetic acid-induced writhing and hot-plate tests. Buddlejasaponin IV (10 and 20 mg kg(-1), p.o.) was found to have a marked analgesic effect in both models. These results suggest that the inhibitions of the expressions of iNOS, COX-2, TNF-alpha, IL-1beta and IL-6 by blocking NF-kappaB activation, are responsible for the anti-inflammatory effects of buddlejasaponin IV isolated from P. kamtschatidum.
Collapse
Affiliation(s)
- Jong-Heon Won
- Department of Biochemistry, College of Pharmacy, Kyung-Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, South Korea
| | - Ho-Taek Im
- Department of Biochemistry, College of Pharmacy, Kyung-Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, South Korea
| | - Yang-Hee Kim
- Department of Biochemistry, College of Pharmacy, Kyung-Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, South Korea
| | - Kyung-Jin Yun
- Department of Biochemistry, College of Pharmacy, Kyung-Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, South Korea
| | - Hee-Juhn Park
- Department of Botanical Resources, Sangji University, Wonju 220-702, South Korea
| | - Jong-Won Choi
- College of Pharmacy, Kyungsung University, Busan 608-736, South Korea
| | - Kyung-Tae Lee
- Department of Biochemistry, College of Pharmacy, Kyung-Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, South Korea
- Author for correspondence:
| |
Collapse
|
29
|
Oh JH, Bai SJ, Cho ZH, Han HC, Min SS, Shim I, Lee HJ, Lee H, Lee BH. Pain-relieving effects of acupuncture and electroacupuncture in an animal model of arthritic pain. Int J Neurosci 2006; 116:1139-56. [PMID: 16923683 DOI: 10.1080/00207450500513948] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The effects of acupuncture and electroacupuncture on an animal model of arthritic pain were examined. Under halothane anesthesia, arthritic pain was induced by the injection of carrageenan into the knee joint cavity of male Sprague-Dawley rats. Behavioral performance was tested before and after the termination of acupuncture or electroacupuncture. Electrophysiologically, the responses of afferents to a movement cycle were recorded before and after acupuncture or electroacupuncture. After the acupuncture procedure, the weight-bearing force of the rats was significantly improved and the neural responses to noxious movement stimulation were reduced. Electroacupuncture significantly improved weight-bearing behavior and inhibited neural responses of articular afferents to noxious stimulation. These results indicate that acupuncture and electroacupuncture may provide a potent strategy in relieving arthritic pain.
Collapse
Affiliation(s)
- Jin Hwan Oh
- Medical Research Center, Brain Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang FY, Wan Y, Zhang ZK, Light AR, Fu KY. Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. THE JOURNAL OF PAIN 2006; 8:110-7. [PMID: 16949875 DOI: 10.1016/j.jpain.2006.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 11/16/2022]
Abstract
UNLABELLED Activated glia are a source of substances known to enhance pain, including centrally synthesized prostaglandins. We have previously shown that microglia are activated in the spinal cord following peripheral formalin injection. In the present study, we investigated cyclooxygenase (COX-1 and COX-2) expression in the spinal cord using immunohistochemistry and Western blots in the formalin pain model, to further understand how spinal glia modulate pain processing. We show that both COX-1 and COX-2 are constitutively expressed in the spinal cord. Hind paw formalin injection increased COX-1 expression, beginning at 1 day after injection and lasting at least 2 weeks, the duration of experiments. The COX-2 expression changed considerably less, with a significant increase of COX-2 protein level only observed at 2 h after injection. Double labeling studies showed that COX-1 was expressed in microglia and COX-2 was expressed in neurons. These data indicate that both COX-1 and COX-2 are increased in the spinal cord following formalin injection, but the time course and cellular sources are different, suggesting that both COX-1 (longer time points) and COX-2 (very short time points) may be involved in spinal modulation in the formalin pain model. Our study also suggests that spinal microglial activation may play a role in long-term hyperalgesia through the increased expression of COX-1. PERSPECTIVE This article reports that COX-1 expression by microglia is increased in the spinal cord after peripheral formalin injection into the rat hind paw. This result could potentially help clinicians understand how COX-1 may be involved in pain processing and the role microglial activation plays in pain mechanisms.
Collapse
Affiliation(s)
- Fei-Yu Zhang
- Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Grill M, Peskar BA, Schuligoi R, Amann R. Systemic inflammation induces COX-2 mediated prostaglandin D2 biosynthesis in mice spinal cord. Neuropharmacology 2006; 50:165-73. [PMID: 16182321 DOI: 10.1016/j.neuropharm.2005.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 07/01/2005] [Accepted: 08/08/2005] [Indexed: 01/03/2023]
Abstract
Although prostaglandin (PG)D2 is one of the main metabolites of the cyclooxygenase (COX) pathway of arachidonate metabolism in the brain, relatively little is known about the regulation of PGD2 biosynthesis in the spinal cord during systemic inflammation. Therefore, the present study was aimed at investigating the effect of endotoxin treatment on spinal PGD2 biosynthesis in BALB/c mice. Spinal inflammatory response to systemic endotoxin was verified by determination of spinal TNFalpha and IL-1beta mRNA. COX-1, COX-2, membrane-bound prostaglandin E synthase-1 (mPGES-1), and lipocalin-type prostaglandin D synthase (L-PGDS) mRNA and protein were determined by RT-PCR and western blot, respectively. The concentrations of immunoreactive PGD2 and PGE2 were measured in superfusion media of spinal cord samples in-vitro. Endotoxin treatment (1 mg/kg; 24 h before) enhanced the expression of COX-2, mPGES-1, and L-PGDS mRNA and protein in spinal cord, while there was no significant effect on COX-1 mRNA and protein. In superfusion media of spinal cord samples obtained from endotoxin treated mice, the concentrations of immunoreactive PGE2 and PGD2 were higher than in the control group suggesting enhanced spinal PG biosynthesis after endotoxin treatment. Addition of the selective COX-2 inhibitor lumiracoxib (100 nM) to the superfusion medium did not significantly affect PGE2 or PGD2 release in spinal cord obtained from non-treated mice. In spinal cord of endotoxin-treated mice, lumiracoxib (100 nM) attenuated PGE2 and PGD2 release to values similar to those observed in tissue obtained from non-endotoxin-treated mice. These results show enhanced expression of spinal L-PGDS and increased spinal PGD2 biosynthesis during systemic inflammation whereby enhanced biosynthesis seems to be dependent primarily on COX-2 activity.
Collapse
Affiliation(s)
- Magdalena Grill
- Medical University Graz, Institute of Experimental and Clinical Pharmacology, Universitatsplatz 4, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
33
|
Ossipov MH, Porreca F. Chapter 14 Descending excitatory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:193-210. [PMID: 18808836 DOI: 10.1016/s0072-9752(06)80018-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Kobayashi T, Musha Y, Mizutani K, Harada T, Ohshiro T. PAIN ATTENUATION WITH LOW LEVEL LASER THERAPY ON PERIARTHRITIS SCAPULOHUMERALIS. Laser Ther 2006. [DOI: 10.5978/islsm.15.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toshiyuki Kobayashi
- Departments of Second Orthopedic Surgery, School of Medicine, Toho University
| | - Yoshirou Musha
- Departments of Second Orthopedic Surgery, School of Medicine, Toho University
| | - Kazuhiro Mizutani
- Departments of Second Orthopedic Surgery, School of Medicine, Toho University
| | - Takashi Harada
- Departments of Physical Medicine and Rehabilitation, School of Medicine, Toho University
| | | |
Collapse
|
35
|
Naik AK, Tandan SK, Kumar D, Dudhgaonkar SP. Nitric oxide and its modulators in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 2005; 530:59-69. [PMID: 16364289 DOI: 10.1016/j.ejphar.2005.11.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 11/14/2005] [Indexed: 11/18/2022]
Abstract
This study was conducted to examine the role of nitric oxide (NO) in peripheral neuropathy induced by chronic constriction injury of sciatic nerve of rats by using NO precursor, NO donors and nitric oxide synthase (NOS) inhibitors. Chronic constriction injury of sciatic nerve of rats resulted in peripheral neuropathy as confirmed by nociceptive behavioural tests using mechanical, thermal and cold allodynia. NO precursor, L-arginine and NO donors sodium nitroprusside, S-nitroso-N-acetylpenicillamine potentiated the hyperalgesia and allodynia significantly suggesting proalgesic effect in neuropathic rats. Intracerebroventricular (i.c.v.) administration of rats with NOS inhibitors such as L-N(G)-nitroarginine methyl ester, N-iminoethyl lysine and 7-nitroindazole did not show any effect but i.p. administration of NOS inhibitors aminoguanidine, L-N(G)-nitroarginine methyl ester and 7-nitroindazole caused alleviation of pain. The study confirms the involvement of endogenously synthesized and exogenously administered NO in chronic constriction injury-induced neuropathy in rats. Significant increase in the levels of nitrate and nitrite in ligated sciatic nerve suggest that local up regulation of NO in the production and maintenance of neuropathic pain. In conclusion, initial attempt to manipulate L-arginine: NO pathway is indicative of therapeutic potential of these interventions in the management of neuropathic pain.
Collapse
Affiliation(s)
- Ajit K Naik
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar
| | | | | | | |
Collapse
|
36
|
Xu L, Matsumura S, Mabuchi T, Takagi K, Abe T, Ito S. In situ measurement of neuronal nitric oxide synthase activity in the spinal cord by NADPH-diaphorase histochemistry. J Neurosci Methods 2005; 150:174-84. [PMID: 16085316 DOI: 10.1016/j.jneumeth.2005.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 06/08/2005] [Accepted: 06/17/2005] [Indexed: 11/17/2022]
Abstract
NADPH-diaphorase (NADPH-d) histochemistry has provided a simple method to stain neuronal nitric oxide synthase (nNOS)-containing neurons in the central nervous system. In the spinal cord, NO formation following activation of N-methyl-D-asparate (NMDA) receptors plays a crucial role in nociceptive processing. To investigate the molecular mechanisms, we attempted to evaluate nNOS activity in situ using isolated intact spinal cord preparation and NADPH-d histochemistry. NADPH-d activity in the superficial layer of the spinal cord increased gradually with ages from P10 to P30 and NMDA enhanced the NADPH-d staining in a time- and concentration-dependent manner. The NMDA-stimulated NADPH-d staining was inhibited by NMDA receptor antagonists, but not by non-NMDA and metabotropic glutamate receptor antagonists. The NADPH-d staining showed a pronounced stereospecificity for beta-NADPH and completely suppressed by dichlorophenolindophenol, an artificial electron acceptor. NMDA-evoked NO formation in the spinal cord was confirmed by the fluorescent NO indicator diaminofluorescein-FM (DAF-FM). These results demonstrate that NADPH-d activity in the superficial spinal cord is ascribed to nNOS activity and is dependent on NMDA. A combination of isolated intact spinal cord preparations and NADPH-d histochemistry may provide a unique system to elucidate biochemical and molecular mechanisms for nNOS activation in the spinal cord.
Collapse
Affiliation(s)
- Li Xu
- Department of Medical Chemistry, Kansai Medical University, Moriguchi, 570-8506 Osaka, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Kim IT, Park YM, Won JH, Jung HJ, Park HJ, Choi JW, Lee KT. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities. Biol Pharm Bull 2005; 28:94-100. [PMID: 15635170 DOI: 10.1248/bpb.28.94] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the effects of the methanol extract of the semen of Xanthium strumarium L. (MEXS) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) production in RAW 264.7 cells. Our data indicate that MEXS is a potent inhibitor of NO, PGE2 and TNF-alpha production. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2 and TNF-alpha mRNA were down-regulated in a concentration-dependent manner. Furthermore, MEXS inhibited nuclear factor kappa B (NF-kappaB) DNA binding activity and the translocation of NF-kappaB to the nucleus by blocking the degradation of inhibitor of kappa B-alpha (IkappaB-alpha). We further evaluated the anti-inflammatory and anti-nociceptive activities of MEXS in vivo. MEXS (100, 200 mg/kg/d, p.o.) reduced acute paw edema induced by carrageenin in rats, and showed analgesic activities in an acetic acid-induced abdominal constriction test and a hot plate test in mice. Thus, our study suggests that the inhibitions of iNOS, COX-2 expression, and TNF-alpha release by the methanol extract of the semen of Xanthium strumarium L. are achieved by blocking NF-kappaB activation, and that this is also responsible for its anti-inflammatory effects.
Collapse
Affiliation(s)
- In-Tae Kim
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Ohtori S, Takahashi K, Aoki Y, Doya H, Ozawa T, Saito T, Moriya H. Spinal neural cyclooxygenase-2 mediates pain caused in a rat model of lumbar disk herniation. THE JOURNAL OF PAIN 2004; 5:385-91. [PMID: 15501196 DOI: 10.1016/j.jpain.2004.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/01/2004] [Accepted: 06/23/2004] [Indexed: 11/21/2022]
Abstract
UNLABELLED Application of nucleus pulposus to nerve root generates radicular pain. We demonstrated that these animals showed allodynia for 2 weeks, and cyclooxygenase-2 (COX-2) immunoreactivities were up-regulated in the spinal dorsal horn. COX-2 immunoreactivities were shown in neurons; however, they were not in astrocytes. Intrathecal administration of an antibody to COX-2 decreased allodynia. Our results suggest that COX-2 in spinal cord might be a target for treatment of patients with nerve root pain caused by lumbar disk herniation. PERSPECTIVE Neural COX-2 might mediate nerve root pain in the spinal cord caused by lumbar disk herniation in rats.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Hsueh SF, Lu CY, Chao CS, Tan PH, Huang YW, Hsieh SW, Hsiao HT, Chung NC, Lin SH, Huang PL, Lyu PC, Yang LC. Nonsteroidal anti-inflammatory drugs increase expression of inducible COX-2 isoform of cyclooxygenase in spinal cord of rats with adjuvant induced inflammation. ACTA ACUST UNITED AC 2004; 125:113-9. [PMID: 15193428 DOI: 10.1016/j.molbrainres.2004.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2004] [Indexed: 11/22/2022]
Abstract
Several lines of evidence have accumulated that release of excitatory amino acids, nitric oxide and prostaglandin E2 (PGE2) play a critical role in the development of peripheral tactile and thermal hypersensitivity in chronic inflammatory pain models. Synthesis of PGE2 is controlled by cyclooxygenase (COX), either the COX-1 or COX-2 isoform. COX-2 plays a central role in the inflammatory reactions. The relationship between central sensitization of a complete Freund's adjuvant (CFA) induced inflammation and expressions of COX-2 were assessed in a rat model of CFA injection induced inflammation. Moreover, the time course of analgesia and spinal COX-2 expression following intrathecal (IT) injection with a nonspecific COX inhibitor (ketorolac) and COX-2 inhibitor (celecoxib) were determined using Western blot and immunohistochemistry. COX-2 protein was slightly increased in the lumbosacral spinal cord at 24 h following subcutaneous injection of CFA in the plantar surface of the left hindpaw (p > 0.05). COX-1 was not detected in normal and CFA injection rats. Surprisingly, IT ketorolac or celecoxib significantly increased spinal COX-2 levels at 1 h post-IT injection (p < 0.05) both in inflamed and non-inflamed rats. Then, spinal COX-2 levels declined at 3 and 6 h post-IT injection. These results provide strong in vivo evidence that COX-2 activity but not level may play a central role in the Freund's adjuvant-induced inflammation. However, spinal COX-2 level was upregulated following IT ketorolac and celecoxib injection. These data implies that suppression of PGE2 activity may induce the expression of spinal COX-2 in Freund's adjuvant-induced pain model. Our study concludes that IT administration of COX-2 inhibitor or nonspecific COX inhibitor is associated with significant short-term increase in spinal COX-2 expression.
Collapse
Affiliation(s)
- Sheng-Fen Hsueh
- Department of life Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mabuchi T, Kojima H, Abe T, Takagi K, Sakurai M, Ohmiya Y, Uematsu S, Akira S, Watanabe K, Ito S. Membrane-associated prostaglandin E synthase-1 is required for neuropathic pain. Neuroreport 2004; 15:1395-8. [PMID: 15194860 DOI: 10.1097/01.wnr.0000129372.89000.31] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It is widely accepted that prostaglandin (PG) E2 is the principal pro-inflammatory prostanoid and plays an important role in inflammatory pain. However whether PGE2 is involved in neuropathic pain remains unknown. PGE2 is produced from arachidonic acid via PGH2 by at least three PGE synthases (PGES), cytosolic PGES (cPGES), and membrane-associated PGES (mPGES)-1 and -2. In the present study, to clarify the involvement of PGE2 and identify PGES mediating neuropathic pain, we applied a neuropathic pain model prepared by L5 spinal nerve transection to mPGES-1 knockout (mPGES-1-/-) mice. Whereas they retained normal nociceptive responses, mPGES-1-/- mice did not exhibit mechanical allodynia and thermal hyperalgesia over a week. These results demonstrate that PGE2 produced by mPGES-1 is involved in neuropathic pain.
Collapse
Affiliation(s)
- Tamaki Mabuchi
- Department of Medical Chemistry, Kansai Medical University, 10-15 Fumizono, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Broom DC, Samad TA, Kohno T, Tegeder I, Geisslinger G, Woolf CJ. Cyclooxygenase 2 expression in the spared nerve injury model of neuropathic pain. Neuroscience 2004; 124:891-900. [PMID: 15026129 DOI: 10.1016/j.neuroscience.2004.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/29/2022]
Abstract
Cyclooxygenase-2 (COX-2) after induction peripherally, and within the CNS, plays an important role in producing inflammatory pain. However, its role in neuropathic pain models is controversial. Recently a robust and persistent model of partial nerve injury pain, the spared nerve injury (SNI) model, has been developed. The aim of the present study was to examine the regulation of COX-2 in the rat SNI model and to evaluate the effectiveness of the selective COX-2 inhibitor rofecoxib in preventing neuropathic allodynia and hyperalgesia. RNase protection assays revealed only a very small and transient increase in COX-2 mRNA in the dorsal horn of the spinal cord in the SNI model with a maximum change at 24 h. Immunohistochemical analysis showed a small increase in COX-2 protein in the deep layers of the dorsal horn 10 h following SNI surgery. Rofecoxib (100 microM) did not affect spontaneous excitatory postsynaptic currents or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propanoic acid (AMPA) and N-methyl-d-aspartate (NMDA) responses in lamina II neurons from spinal cords of animals with SNI indicating no detectable action on transmitter release or postsynaptic activity. Furthermore, rofecoxib treatment (1 and 3.2 mg/kg for 5 and 3 days respectively starting on the day of surgery) failed to modify the development of allodynia and hyperalgesia in the SNI model. However, rofecoxib significantly reduced inflammatory hypersensitivity evoked by injection of complete Freund's adjuvant into one hindpaw, indicating that the doses used were pharmacologically active. The pain hypersensitivity produced by the SNI model is not COX-2-dependent.
Collapse
Affiliation(s)
- D C Broom
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bär KJ, Natura G, Telleria-Diaz A, Teschner P, Vogel R, Vasquez E, Schaible HG, Ebersberger A. Changes in the effect of spinal prostaglandin E2 during inflammation: prostaglandin E (EP1-EP4) receptors in spinal nociceptive processing of input from the normal or inflamed knee joint. J Neurosci 2004; 24:642-51. [PMID: 14736850 PMCID: PMC6729260 DOI: 10.1523/jneurosci.0882-03.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Inflammatory pain is caused by sensitization of peripheral and central nociceptive neurons. Prostaglandins substantially contribute to neuronal sensitization at both sites. Prostaglandin E2 (PGE2) applied to the spinal cord causes neuronal hyperexcitability similar to peripheral inflammation. Because PGE2 can act through EP1-EP4 receptors, we addressed the role of these receptors in the spinal cord on the development of spinal hyperexcitability. Recordings were made from nociceptive dorsal horn neurons with main input from the knee joint, and responses of the neurons to noxious and innocuous stimulation of the knee, ankle, and paw were studied after spinal application of recently developed specific EP1-EP4 receptor agonists. Under normal conditions, spinal application of agonists at EP1, EP2, and EP4 receptors induced spinal hyperexcitability similar to PGE2. Interestingly, the effect of spinal EP receptor activation changed during joint inflammation. When the knee joint had been inflamed 7-11 hr before the recordings, only activation of the EP1 receptor caused additional facilitation, whereas spinal application of EP2 and EP4 receptor agonists had no effect. Additionally, an EP3alpha receptor agonist reduced responses to mechanical stimulation. The latter also attenuated spinal hyperexcitability induced by spinal PGE2. In isolated DRG neurons, the EP3alpha agonist reduced the facilitatory effect of PGE2 on TTX-resistant sodium currents. Thus pronociceptive effects of spinal PGE2 can be limited, particularly under inflammatory conditions, through activation of an inhibitory splice variant of the EP3 receptor. The latter might be an interesting target for controlling spinal hyperexcitability in inflammatory pain states.
Collapse
Affiliation(s)
- Karl-Jürgen Bär
- Department of Physiology I, University of Jena, D-07740 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Hoeger bement MK, Skyba DA, Radhakrishnan R, Sluka KA. Review: central sensitization and musculoskeletal pain. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1537-5897(03)00045-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev 2003; 55:1065-79. [PMID: 12935945 DOI: 10.1016/s0169-409x(03)00104-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In vivo microdialysis has been used in preclinical pain research for more than a decade. This valuable tool allows correlations between nociceptive behavior and neurotransmitter release in pain-related CNS sites. However, several methodological issues must be considered to adequately interpret microdialysis data. Thus, the aim of this review is to describe key considerations, potential pitfalls, and important control experiments. We focus on animal experiments which evaluate the effects of noxious stimulation on CNS neurotransmitter release, particularly those that address clinically relevant problems in patients with long-lasting painful conditions.
Collapse
Affiliation(s)
- Carl-Olav Stiller
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Hospital, SE-17177, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Radhakrishnan R, Moore SA, Sluka KA. Unilateral carrageenan injection into muscle or joint induces chronic bilateral hyperalgesia in rats. Pain 2003; 104:567-577. [PMID: 12927629 PMCID: PMC2732018 DOI: 10.1016/s0304-3959(03)00114-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic musculoskeletal pain is a major clinical problem and there is a general lack of animal models to study this condition. Carrageenan is commonly used to produce short-lasting acute inflammation and hyperalgesia in animal models. However, the potential of carrageenan to produce chronic, long-lasting hyperalgesia has not been evaluated. In the present study, we investigated the long-term effects of carrageenan injected into joint or muscle in rats. Rats were injected with 0.3, 1 or 3% carrageenan in one knee joint or gastrocnemius muscle and hyperalgesia to mechanical (measured as decreased withdrawal threshold) and heat (measured as decreased withdrawal latency) stimuli of both paws assessed before and at varying times after injection, through 8 weeks. Histological changes were examined only after injection of 3% carrageenan. Three percent carrageenan injected in the muscle or knee produced hyperalgesia to mechanical and heat stimuli ipsilaterally, which lasted 7-8 weeks and spread to the contralateral side 1-2 weeks after injection. One percent carrageenan injected to the knee joint or gastrocnemius muscle, produced hyperalgesia that was shorter-lasting and remained ipsilateral; 0.3% carrageenan injected into the knee joint or gastrocnemius muscle had no effect. Three percent carrageenan injected into the skin surrounding the knee joint did not produce hyperalgesia. A similar pattern of inflammatory changes was observed histologically for both the joint and muscle tissues. Acute inflammation was observed for the first 24 h with edema and neutrophilic infiltration evident as early as 4 h. At 1 week, the inflammation converted to primarily a macrophage response with scattered mast cells. The data suggest that animals injected with 1 or 3% carrageenan in the knee joint or gastrocnemius muscle could be used as models of acute inflammation through 24 h and chronic inflammation after 1 week. Furthermore, 3% carrageenan injected into deep tissues produces hyperalgesia that spreads to the contralateral side, at the same time period as the inflammation transforms from acute to chronic.
Collapse
Affiliation(s)
- Rajan Radhakrishnan
- Graduate Program in Physical Therapy and Rehabilitation Science, University of Iowa, 100 Medical Education Building #1-252, Iowa, IA 52242-1190, USA
- Pain Research Program, University of Iowa, Iowa, IA 52242-1190, USA
| | - Steven A. Moore
- Neuroscience Graduate Program, 1178ML, College of Medicine, Iowa, IA 52242-1190, USA
- Department of Pathology, College of Medicine, 200 Hawkins Drive, 5239B Roy Carver Pavilion, Iowa, IA 52242-1190, USA
| | - Kathleen A. Sluka
- Graduate Program in Physical Therapy and Rehabilitation Science, University of Iowa, 100 Medical Education Building #1-252, Iowa, IA 52242-1190, USA
- Pain Research Program, University of Iowa, Iowa, IA 52242-1190, USA
- Neuroscience Graduate Program, 1178ML, College of Medicine, Iowa, IA 52242-1190, USA
- Corresponding author. Tel.: +1-319-335-9791; fax: +1-319-335-9707. E-mail address: (K.A. Sluka)
| |
Collapse
|
47
|
Zhu X, Conklin D, Eisenach JC. Cyclooxygenase-1 in the spinal cord plays an important role in postoperative pain. Pain 2003; 104:15-23. [PMID: 12855310 DOI: 10.1016/s0304-3959(02)00465-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) activity in the spinal cord plays a key role in sensitization to sensory stimuli during acute inflammation. In contrast, intrathecal administration of COX-2 specific inhibitors has minimal analgesic effects in an incisional model of postoperative pain. We investigated the role of COX isoforms in this model by examining the expression of COX-1 and the effect of intrathecal COX inhibitors. A 1cm longitudinal incision was made through skin, fascia and muscles of the plantar aspect of the left paw in male rats, and withdrawal threshold to von Frey filaments measured. Rats were perfused at 1, 2, 3, 5, and 7 days after incision, and COX-1 immunohistochemistry was performed on L3 to S2 spinal cord and gracile nucleus sections. Other rats received intrathecally the COX-1 preferring inhibitor, ketorolac, the specific COX-1 inhibitor, SC-560, the COX-2 inhibitor, NS-398 or vehicle 1 day after surgery. Withdrawal threshold was measured at intervals up to 5 days later. COX-1 immunoreactivity increased in glia in the ipsilateral L4-L6 spinal dorsal horn and ipsilateral gracile nucleus after incision. Mechanical allodynia peaked on postoperative day 1, and COX-1 immunoreactivity increased on day 1, peaked on day 2, and declined thereafter. Ketorolac and SC-560 dose-dependently increased withdrawal threshold in this model, but NS-398 had no effect. These results suggest that COX-1 plays an important role in spinal cord pain processing and sensitization after surgery. Increased COX-1 activity could precede the up-regulation of COX-1 protein, and spinally administered specific COX-1 inhibitors may be useful to treat postoperative pain.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Program of Neuroscience, Department of Anesthesiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
48
|
Sambajon VV, Cillo JE, Gassner RJ, Buckley MJ. The effects of mechanical strain on synovial fibroblasts. J Oral Maxillofac Surg 2003; 61:707-12. [PMID: 12796883 DOI: 10.1053/joms.2003.50141] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Arthritic diseases of the temporomandibular joint, such as rheumatoid arthritis and osteoarthritis, suggest that inflammatory mediators and metalloproteinases may play a role in their pathogenesis. Recent clinical evidence from physical therapy and other modalities has shown a significant decrease in temporomandibular joint symptoms in patients with early disease. This project examines the effect of mechanical strain on synovial fibroblasts' production of inflammatory mediators including prostaglandin E(2) (PGE(2)) and proteinases. MATERIALS AND METHODS An established synovial fibroblast cell line (HIG-82) was grown to confluency in modified Eagle's medium supplemented with 10% fetal calf serum. The monolayer of fibroblasts was then subjected to mechanical strain using the Flexercell Strain Unit (Flexcell International Corporation, McKeesport, PA) at 3 cycles per minute, with 10 seconds' elongation of up to 24% and 10 seconds of relaxation. Levels of PGE(2) were determined by radioimmunoassay using commercially available product and measured in nanograms per milliliter of supernatant. Proteinases collagenase, gelatinase, and stromelysin were measured by H(3) radioactive labeling of acidic anhydride to the specific substrate. Enzymatic proteolysis of the radiolabeled substrate was then measured in supernate as units per milliliter. Statistical analysis of all results was performed using Student's t test in triplicate. RESULTS PGE(2) levels of mechanically activated cells was 18.1 +/- 13.4 ng/mL, with control levels being 58.0 +/- 9.2 ng/mL. This is a statistically significant decrease, between strained and unstrained cells with P <.05. In control cells, proteinase activity that degrades collagen, gelatin, or casein was 4.27 +/- 1.5, 4.62 +/- 0.11, or 0.11 +/- 0.01 U/mL, respectively. Levels for mechanically strained cells were 3.99 +/- 1.90, 4.02 +/- 0.90, and 0.12 +/- 0.01 U/mL, respectively. These results show that there is a significant decrease in PGE(2) levels of synovial fibroblasts undergoing mechanical strain. Proteinases examined show no difference in levels between mechanically activated fibroblasts and their controls. CONCLUSION This decrease in PGE(2) production in synovial fibroblasts could help elucidate the mechanism by which physical therapy, and in particular continuous passive motion, may decrease inflammatory mediators of the temporomandibular joint.
Collapse
Affiliation(s)
- Voltaire V Sambajon
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | | | | | | |
Collapse
|
49
|
Sato E, Takano Y, Kuno Y, Takano M, Sato I. Involvement of spinal tyrosine kinase in inflammatory and N-methyl-D-aspartate-induced hyperalgesia in rats. Eur J Pharmacol 2003; 468:191-8. [PMID: 12754057 DOI: 10.1016/s0014-2999(03)01718-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphorylation of a subunit of N-methyl-D-aspartate (NMDA) receptor by protein tyrosine kinase (PTK) Src or Trk is known to enhance its channel activity. We examined whether a spinally administered selective PTK inhibitor, lavendustin A, which has high affinity for Src and Trk tyrosine kinases, could influence the development and maintenance of inflammatory hyperalgesia or NMDA-induced hyperalgesia. Inflammation was induced by injection of a mixture of carrageenan and kaolin into the tail base of rats. In another group of rats, hyperalgesia was induced by intrathecal administration of NMDA. Intrathecal administration of lavendustin A (1.0 microg) or NMDA receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cycloheptane-5,10-iminemaleate, MK-801 (3.0 microg) before injection of a mixture of carrageenan and kaolin or after the development of inflammation inhibited carrageenan-kaolin-induced mechanical hyperalgesia. Intrathecal injection of 1.0 microg NMDA produced thermal and mechanical hyperalgesia. Co-administration of 1.0 microg lavendustin A with NMDA significantly reduced the duration of spontaneous pain behaviour and inhibited NMDA-induced hyperalgesia. Lavendustin A itself did not cause any sedation, motor impairment or analgesia. Our results suggest that inhibition of PTK could be therapeutically effective as an analgesic in some NMDA receptor-mediated hyperalgesic states.
Collapse
Affiliation(s)
- Eiru Sato
- Department of Anesthesiology, Koshigaya Hospital, Dokkyo University, School of Medicine, 2-1-50 Minami-Koshigaya, Saitama 343-8555, Koshigaya City, Japan.
| | | | | | | | | |
Collapse
|
50
|
Wen ZH, Yang LC, Wang JJ, Chang YC, Hsing CH, Chen JY, Wong CS. Intrathecal pertussis toxin induces thermal hyperalgesia: involvement of excitatory and inhibitory amino acids. Neuroscience 2003; 116:871-8. [PMID: 12573726 DOI: 10.1016/s0306-4522(02)00758-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrathecal pertussis toxin injection has been used as a neuropathic pain model. In the present study, its effects on cerebrospinal fluid biochemistry and nociceptive behavioral expression were examined in rats. Cerebrospinal fluid dialysate samples were collected and pertussis toxin was injected using an intrathecally implanted dialysis loop catheter; samples were collected and hyperalgesia behavior was noted every 2 days for 8 days after pertussis toxin injection. Pertussis toxin injection induced thermal hyperalgesia which peaked between day 2 and 4; no cold allodynia was observed. Pertussis toxin at all doses tested (0.5, 1, or 2 microg) also induced a significant increase in cerebrospinal fluid concentrations of aspartate and glutamate between days 2 and 8, while level of the inhibitory amino acid glycine were significantly decreased by the two higher doses of pertussis toxin. Intrathecal administration of the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosponovaleric acid (10 microg) or glycine (200 microg), inhibited pertussis toxin-induced thermal hyperalgesia. Pertussis toxin injection had no effect on serine, glutamine, and taurine concentrations. These results show that intrathecal pertussis toxin injection induces thermal hyperalgesia and it is associated with an increasing of excitatory and a decreasing of inhibitory amino acids release in the spinal cord.
Collapse
Affiliation(s)
- Z-H Wen
- Graduate Institutes of Life Science, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|