1
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Abstract
The evolution of lipids in nanoscience exemplifies the powerful coupling of advances in science and technology. Here, we describe two waves of discovery and innovation in lipid materials: one historical and one still building. The first wave leveraged the relatively simple capability for lipids to orient at interfaces, building layers of functional groups. This simple form of building with atoms yielded a stunning range of technologies: lubricant additives that dramatically extended machine lifetimes, molecules that enabled selective ore extraction in mining, and soaps that improved human health. It also set the stage for many areas of modern nanoscience. The second wave of lipid materials, still growing, uses the more complex toolkits lipids offer for building with atoms, including controlling atomic environment to control function (e.g., pKa tuning) and the generation of more arbitrary two-dimensional and three-dimensional structures, including lipid nanoparticles for COVID-19 mRNA vaccines.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shelley A Claridge
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Bacle A, Buslaev P, Garcia-Fandino R, Favela-Rosales F, Mendes Ferreira T, Fuchs PFJ, Gushchin I, Javanainen M, Kiirikki AM, Madsen JJ, Melcr J, Milán Rodríguez P, Miettinen MS, Ollila OHS, Papadopoulos CG, Peón A, Piggot TJ, Piñeiro Á, Virtanen SI. Inverse Conformational Selection in Lipid-Protein Binding. J Am Chem Soc 2021; 143:13701-13709. [PMID: 34465095 DOI: 10.1021/jacs.1c05549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions. We find that lipid headgroups sample a wide range of overlapping conformations in both neutral and charged cellular membranes, and that differences in the headgroup chemistry manifest only in probability distributions of conformations. Furthermore, the analysis of 894 protein-bound lipid structures from the Protein Data Bank suggests that lipids can bind to proteins in a wide range of conformations, which are not limited by the headgroup chemistry. We propose that lipids can select a suitable headgroup conformation from the wide range available to them to fit the various binding sites in proteins. The proposed inverse conformational selection model will extend also to lipid binding to targets other than proteins, such as drugs, RNA, and viruses.
Collapse
Affiliation(s)
- Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1 rue Georges Bonnet, Poitiers 86000, France
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain.,CIQUP, Centro de Investigao em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Fernando Favela-Rosales
- Departamento de Ciencias Básicas, Tecnológico Nacional de México - ITS Zacatecas Occidente, Sombrerete, Zacatecas 99102, México
| | - Tiago Mendes Ferreira
- NMR group - Institute for Physics, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Patrick F J Fuchs
- Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), Sorbonne Université, Paris 75005, France.,UFR Sciences du Vivant, Université de Paris, Paris 75013, France
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, Prague CZ-16610, Czech Republic
| | - Anne M Kiirikki
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Jesper J Madsen
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Materials, University of Groningen, Groningen9747 AG, The Netherlands
| | - Paula Milán Rodríguez
- Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), Sorbonne Université, Paris 75005, France
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Chris G Papadopoulos
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Antonio Peón
- CIQUP, Centro de Investigao em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto 4169-007, Portugal
| | - Thomas J Piggot
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Salla I Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
5
|
Buslaev P, Mustafin K, Gushchin I. Principal component analysis highlights the influence of temperature, curvature and cholesterol on conformational dynamics of lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183253. [PMID: 32142820 DOI: 10.1016/j.bbamem.2020.183253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
Membrane lipids are inherently highly dynamic molecules. Currently, it is difficult to probe the structures of individual lipids experimentally at the timescales corresponding to atomic motions, and consequently molecular dynamics simulations are used widely. In our previous work, we have introduced the principal component analysis (PCA) as a convenient framework for comprehensive quantitative description of lipid motions. Here, we present a newly developed open source script, PCAlipids, which automates the analysis and allows us to refine the approach and test its limitations. We use PCAlipids to determine the influence of temperature, cholesterol and curvature on individual lipids, and show that the most prominent lipid tail scissoring motion is strongly affected by these factors and allows tracking of phase transition. Addition of cholesterol affects the conformations and selectively changes the dynamics of lipid molecules, impacting the large-amplitude motions. Introduction of curvature biases the conformational ensembles towards more extended structures. We hope that the developed approach will be useful for understanding the molecular basis of different processes occurring in lipid membrane systems and will stimulate development of complementary experimental techniques probing the conformations of individual lipid molecules.
Collapse
Affiliation(s)
- P Buslaev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - K Mustafin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - I Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
6
|
Favela-Rosales F, Galván-Hernández A, Hernández-Cobos J, Kobayashi N, Carbajal-Tinoco MD, Nakabayashi S, Ortega-Blake I. A molecular dynamics study proposing the existence of statistical structural heterogeneity due to chain orientation in the POPC-cholesterol bilayer. Biophys Chem 2019; 257:106275. [PMID: 31790909 DOI: 10.1016/j.bpc.2019.106275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
We performed molecular dynamics simulations of a lipid bilayer consisting of POPC and cholesterol at temperatures from 283 to 308K and cholesterol concentrations from 0 to 50% mol/mol. The purpose of this study was to look for the existence of structural differences in the region delimited by these parameters and, in particular, in a region where coexistence of liquid disordered and liquid ordered phases has been proposed. Our interest in this range of concentration and temperature responds to the fact that polyene ionophore activity varies considerably along it. Two force fields, CHARMM36 and Slipids, were compared in order to determine the most suitable. Both force fields predict non-monotonic behaviors consistent with the existence of phase transitions. We found the presence of lateral structural heterogeneity, statistical in nature, in some of the bilayers occurring in this range of temperatures and sterol concentrations. This heterogeneity was produced by correlated ordering of the POPC tails and not due to cholesterol enrichment, and lasts for tens of nanoseconds. We relate these observations to the action of polyenes in these membranes.
Collapse
Affiliation(s)
- Fernando Favela-Rosales
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Av. IPN No. 2508, México, DF, 07360, Mexico; Tecnológico Nacional de México, Campus Zacatecas Occidente, Ave. Tecnológico No. 2000, Col. Loma la Perla, Sombrerete, Zacatecas, 99102, Mexico
| | - Arturo Galván-Hernández
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Av. IPN No. 2508, México, DF, 07360, Mexico
| | - Jorge Hernández-Cobos
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México Av. Universidad s/n Cuernavaca, Morelos, 62251, Mexico
| | - Naritaka Kobayashi
- Department of Chemistry, Faculty of Science, Saitama University, Shimo-Ohkubo 255, Sakura-Ku, Saitama City, 338-8570, Japan
| | - Mauricio D Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Av. IPN No. 2508, México, DF, 07360, Mexico
| | - Seiichiro Nakabayashi
- Department of Chemistry, Faculty of Science, Saitama University, Shimo-Ohkubo 255, Sakura-Ku, Saitama City, 338-8570, Japan
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México Av. Universidad s/n Cuernavaca, Morelos, 62251, Mexico.
| |
Collapse
|
7
|
Hanashima S, Murakami K, Yura M, Yano Y, Umegawa Y, Tsuchikawa H, Matsumori N, Seo S, Shinoda W, Murata M. Cholesterol-Induced Conformational Change in the Sphingomyelin Headgroup. Biophys J 2019; 117:307-318. [PMID: 31303249 DOI: 10.1016/j.bpj.2019.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Sphingomyelin (SM) and cholesterol (Cho) are the important lipids for the formation of biologically functional membrane domains, lipid rafts. However, the interaction between Cho and the headgroup of SM remains unclear. In this study, we performed solid-state NMR experiments to reveal the Cho effects on the headgroup conformation using 2H-labeled stearoyl-SM (SSM). Deuterated SSMs at the Cα, Cβ, and Cγ positions of a choline moiety were separately prepared and subjected to NMR measurements to determine the quadrupolar splitting of 2H signals in hydrated SSM unitary and SSM/Cho (1:1) bilayers. Using 2H NMR and 13C-31P REDOR data, the conformation and orientation of the choline moiety were deduced and compared with those derived from molecular dynamics simulations. In SSM unitary bilayers, three torsional angles in the phosphocholine moiety, P-O-Cα-Cβ, were found to be consecutive +gauche(g)/+g/+g or -g/-g/-g. The orientation and conformation of the SSM headgroup were consistent with the results of our molecular dynamics simulations and the previous results on phosphatidylcholines. The quadrupolar coupling at the α methylene group slightly increased in the presence of Cho, and those at the Cβ and Cγ decreased more significantly, thus suggesting that Cho reduced the gauche conformation at the Cα-Cβ torsion. The conformational ensemble in the presence of Cho may enhance the so-called umbrella effect of the SSM headgroup, resulting in the stabilization of Cho near the SM molecules by concealing the hydrophobic Cho core from interfacial water. We also examined the effect of the chiral centers at the sphingosine chain to the headgroup conformation by determining the enantiomeric excess between the diastereomeric +g/+g/+g and -g/-g/-g conformers using (S)-Cα-deuterated and (R)-Cα-deuterated SSMs. Their 2H NMR measurements showed that the chiral centers induced the slight diastereomeric excess in the SM headgroup conformation.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan.
| | - Kazuhiro Murakami
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Michihiro Yura
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yo Yano
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Prathapa SJ, Slabbert C, Fernandes MA, Lemmerer A. Structure determination of fatty acid ester biofuels via in situ cryocrystallisation and single crystal X-ray diffraction. CrystEngComm 2019. [DOI: 10.1039/c8ce01673a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ cryocrystallisation enabled the crystal structure determination of a homologous series of low-melting n-alkyl methyl esters Cn−1H2n+1CO2CH3.
Collapse
Affiliation(s)
| | - Cara Slabbert
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg 2050
- South Africa
| | - Manuel A. Fernandes
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg 2050
- South Africa
| | - Andreas Lemmerer
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg 2050
- South Africa
| |
Collapse
|
9
|
Heme Oxygenase-1 May Affect Cell Signalling via Modulation of Ganglioside Composition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3845027. [PMID: 30327713 PMCID: PMC6169227 DOI: 10.1155/2018/3845027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 11/17/2022]
Abstract
Heme oxygenase 1 (Hmox1), a ubiquitous enzyme degrading heme to carbon monoxide, iron, and biliverdin, is one of the cytoprotective enzymes induced in response to a variety of stimuli, including cellular oxidative stress. Gangliosides, sialic acid-containing glycosphingolipids expressed in all cells, are involved in cell recognition, signalling, and membrane stabilization. Their expression is often altered under many pathological and physiological conditions including cell death, proliferation, and differentiation. The aim of this study was to assess the possible role of Hmox1 in ganglioside metabolism in relation to oxidative stress. The content of liver and brain gangliosides, their cellular distribution, and mRNA as well as protein expression of key glycosyltransferases were determined in Hmox1 knockout mice as well as their wild-type littermates. To elucidate the possible underlying mechanisms between Hmox1 and ganglioside metabolism, hepatoblastoma HepG2 and neuroblastoma SH-SY5Y cell lines were used for in vitro experiments. Mice lacking Hmox1 exhibited a significant increase in concentrations of liver and brain gangliosides and in mRNA expression of the key enzymes of ganglioside metabolism. A marked shift of GM1 ganglioside from the subsinusoidal part of the intracellular compartment into sinusoidal membranes of hepatocytes was shown in Hmox1 knockout mice. Induction of oxidative stress by chenodeoxycholic acid in vitro resulted in a significant increase in GM3, GM2, and GD1a gangliosides in SH-SY5Y cells and GM3 and GM2 in the HepG2 cell line. These changes were abolished with administration of bilirubin, a potent antioxidant agent. These observations were closely related to oxidative stress-mediated changes in sialyltransferase expression regulated at least partially through the protein kinase C pathway. We conclude that oxidative stress is an important factor modulating synthesis and distribution of gangliosides in vivo and in vitro which might affect ganglioside signalling in higher organisms.
Collapse
|
10
|
Li WW, Yang Y, Dai QG, Lin LL, Xie T, He LL, Tao JL, Shan JJ, Wang SC. Non-invasive urinary metabolomic profiles discriminate biliary atresia from infantile hepatitis syndrome. Metabolomics 2018; 14:90. [PMID: 30830373 DOI: 10.1007/s11306-018-1387-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Neonatal cholestatic disorders are a group of hepatobiliary diseases occurring in the first 3 months of life. The most common causes of neonatal cholestasis are infantile hepatitis syndrome (IHS) and biliary atresia (BA). The clinical manifestations of the two diseases are too similar to distinguish them. However, early detection is very important in improving the clinical outcome of BA. Currently, a liver biopsy is the only proven and effective method used to differentially diagnose these two similar diseases in the clinic. However, this method is invasive. Therefore, sensitive and non-invasive biomarkers are needed to effectively differentiate between BA and IHS. We hypothesized that urinary metabolomics can produce unique metabolite profiles for BA and IHS. OBJECTIVES The aim of this study was to characterize urinary metabolomic profiles in infants with BA and IHS, and to identify differences among infants with BA, IHS, and normal controls (NC). METHODS Urine samples along with patient characteristics were obtained from 25 BA, 38 IHS, and 38 NC infants. A non-targeted gas chromatography-mass spectrometry (GC-MS) metabolomics method was used in conjunction with orthogonal partial least squares discriminant analysis (OPLS-DA) to explore the metabolomic profiles of BA, IHS, and NC infants. RESULTS In total, 41 differentially expressed metabolites between BA vs. NC, IHS vs. NC, and BA vs. IHS were identified. N-acetyl-D-mannosamine and alpha-aminoadipic acid were found to be highly accurate at distinguishing between BA and IHS. CONCLUSIONS BA and IHS infants have specific urinary metabolomic profiles. The results of our study underscore the clinical potential of metabolomic profiling to uncover metabolic changes that could be used to discriminate BA from IHS.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Yang
- TCM Department, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qi-Gang Dai
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li Lin
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Xie
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Lei Tao
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Jun Shan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Shou-Chuan Wang
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Pezeshkian W, Khandelia H, Marsh D. Lipid Configurations from Molecular Dynamics Simulations. Biophys J 2018; 114:1895-1907. [PMID: 29694867 PMCID: PMC5937052 DOI: 10.1016/j.bpj.2018.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.
Collapse
Affiliation(s)
- Weria Pezeshkian
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Himanshu Khandelia
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark
| | - Derek Marsh
- MEMPHYS-Centre for Biomembrane Physics, University of Southern Denmark, Odense M, Denmark; Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| |
Collapse
|
12
|
|
13
|
Rademeyer M, van der Westhuizen B. Salts of 4-aminobutyric acid and 6-aminohexanoic acid behaving as molecular Velcro. CrystEngComm 2017. [DOI: 10.1039/c7ce01597f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural diversity observed in a family of carboxyalkylammonium halide- and oxo-salts is investigated employing crystal engineering principles.
Collapse
Affiliation(s)
- M. Rademeyer
- Department of Chemistry
- University of Pretoria
- Pretoria 0002
- South Africa
| | | |
Collapse
|
14
|
Kerek EM, Prenner EJ. Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3169-3181. [DOI: 10.1016/j.bbamem.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
15
|
McKiernan KA, Wang LP, Pande VS. Training and Validation of a Liquid-Crystalline Phospholipid Bilayer Force Field. J Chem Theory Comput 2016; 12:5960-5967. [DOI: 10.1021/acs.jctc.6b00801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Lee-Ping Wang
- Department
of Chemistry, University of California—Davis, Davis, California 95618, United States
| | | |
Collapse
|
16
|
Abstract
Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.
Collapse
Affiliation(s)
- Neda Dadashvand
- Department of Physics, Wesleyan University, Middletown, CT 06457, USA
| | | |
Collapse
|
17
|
Marra S, Ferru-Clément R, Breuil V, Delaunay A, Christin M, Friend V, Sebille S, Cognard C, Ferreira T, Roux C, Euller-Ziegler L, Noel J, Lingueglia E, Deval E. Non-acidic activation of pain-related Acid-Sensing Ion Channel 3 by lipids. EMBO J 2016; 35:414-28. [PMID: 26772186 DOI: 10.15252/embj.201592335] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022] Open
Abstract
Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow constitutive activation of human ASIC3 channels. This effect is largely driven by lipids, and we identify lysophosphatidylcholine (LPC) and arachidonic acid (AA) as endogenous activators of ASIC3 in the absence of any extracellular acidification. The combination of LPC and AA evokes robust depolarizing current in DRG neurons at physiological pH 7.4, increases nociceptive C-fiber firing, and induces pain behavior in rats, effects that are all prevented by ASIC3 blockers. Lipid-induced pain is also significantly reduced in ASIC3 knockout mice. These findings open new perspectives on the roles of ASIC3 in the absence of tissue pH variation, as well as on the contribution of those channels to lipid-mediated signaling.
Collapse
Affiliation(s)
- Sébastien Marra
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Romain Ferru-Clément
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | | | - Anne Delaunay
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Marine Christin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Valérie Friend
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Stéphane Sebille
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | - Christian Cognard
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | - Thierry Ferreira
- CNRS, Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM), ERL 7368, Poitiers Cedex 9, France Université de Poitiers, ERL 7368, Poitiers Cedex 9, France
| | | | | | - Jacques Noel
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| | - Emmanuel Deval
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 7275, Valbonne, France Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France LabEx Ion Channel Science and Therapeutics, Valbonne, France
| |
Collapse
|
18
|
Šmíd V, Petr T, Váňová K, Jašprová J, Šuk J, Vítek L, Šmíd F, Muchová L. Changes in Liver Ganglioside Metabolism in Obstructive Cholestasis - the Role of Oxidative Stress. Folia Biol (Praha) 2016; 62:148-59. [PMID: 27643580 DOI: 10.14712/fb2016062040148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Bile acids have been implicated in cholestatic liver damage, primarily due to their detergent effect on membranes and induction of oxidative stress. Gangliosides can counteract these harmful effects by increasing the rigidity of the cytoplasmic membrane. Induction of haem oxygenase (HMOX) has been shown to protect the liver from increased oxidative stress. The aim of this study was to determine the changes in the synthesis and distribution of liver gangliosides following bile duct ligation (BDL), and to assess the effects of HMOX both on cholestatic liver injury and ganglioside metabolism. Compared to controls, BDL resulted in a significant increase in total as well as complex gangliosides and mRNA expression of corresponding glycosyltransferases ST3GalV, ST8SiaI and B3GalTIV. A marked shift of GM1 ganglioside from the intracellular compartment to the cytoplasmic membrane was observed following BDL. Induction of oxidative stress by HMOX inhibition resulted in a further increase of these changes, while HMOX induction prevented this effect. Compared to BDL alone, HMOX inhibition in combination with BDL significantly increased the amount of bile infarcts, while HMOX activation decreased ductular proliferation. We have demonstrated that cholestasis is accompanied by significant changes in the distribution and synthesis of liver gangliosides. HMOX induction results in attenuation of the cholestatic pattern of liver gangliosides, while HMOX inhibition leads to the opposite effect.
Collapse
Affiliation(s)
- V Šmíd
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - T Petr
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - K Váňová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - J Jašprová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - J Šuk
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - L Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - F Šmíd
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - L Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| |
Collapse
|
19
|
Botan A, Favela-Rosales F, Fuchs PFJ, Javanainen M, Kanduč M, Kulig W, Lamberg A, Loison C, Lyubartsev A, Miettinen MS, Monticelli L, Määttä J, Ollila OHS, Retegan M, Róg T, Santuz H, Tynkkynen J. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions. J Phys Chem B 2015; 119:15075-88. [PMID: 26509669 PMCID: PMC4677354 DOI: 10.1021/acs.jpcb.5b04878] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/19/2015] [Indexed: 11/28/2022]
Abstract
Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files ( https://zenodo.org/collection/user-nmrlipids ) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
Collapse
Affiliation(s)
- Alexandru Botan
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Fernando Favela-Rosales
- Departamento
de Física, Centro de Investigación
y de Estudios Avanzados del IPN, Apartado, Postal 14-740, Mexico City, 07000 México
D.F., México
| | - Patrick F. J. Fuchs
- Institut
Jacques Monod, UMR 7592 CNRS, Université Paris
Diderot, Sorbonne, Paris Cité, F-75205 Paris, France
| | - Matti Javanainen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Matej Kanduč
- Fachbereich
Physik, Freie Universität Berlin, Berlin, 14195 Germany
| | - Waldemar Kulig
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Antti Lamberg
- Department
of Chemical Engineering, Kyoto University, 615-8510 Kyoto, Japan
| | - Claire Loison
- Institut
Lumière Matière, UMR5306 Université
Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France
| | - Alexander Lyubartsev
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | - Luca Monticelli
- Institut
de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5086, Lyon 69 367, France
| | - Jukka Määttä
- Department of Chemistry, Aalto University, 00076 Aalto, Finland
| | - O. H. Samuli Ollila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Aalto, Finland
| | - Marius Retegan
- Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Tomasz Róg
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| | - Hubert Santuz
- INSERM, UMR_S 1134, DSIMB, Paris 75739, France
- Université
Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, Paris, France
- Institut
National de la Transfusion Sanguine (INTS), Paris 75739, France
- Laboratoire d’Excellence GR-Ex, Paris 75015, France
| | - Joona Tynkkynen
- Department
of Physics, Tampere University of Technology, Tampere, 33101 Finland
| |
Collapse
|
20
|
Sun W, Kewalramani S, Hujsak K, Zhang H, Bedzyk MJ, Dravid VP, Thaxton CS. Mesophase in a thiolate-containing diacyl phospholipid self-assembled monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3232-3241. [PMID: 25695627 DOI: 10.1021/la504822q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Maintaining the intrinsic features of mesophases is critically important when employing phospholipid self-assemblies to mimic biomembranes. Inorganic solid surfaces provide platforms to support, guide, and analyze organic self-assemblies but impose upon them a tendency to form well-ordered phases not often found in biomembranes. To address this, we measured mesophase formation in a thiolate self-assembled monolayer (SAM) of diacyl phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) on Au(111), and provide thermodynamic analysis on the mixing behavior of inequivalent DPPTE acyl chains. Our work has uncovered three fundamental issues that enable mesophase formation: (1) Elimination of templating effects of the solid surface, (2) Weakening intermolecular and molecule-substrate interactions in adsorbates, and (3) Equilibrium through entropy-driven self-assembly. Thus, our work provides a more holistic understanding of phase behavior, from liquid phases to mesophases to highly crystalline phases, in organic self-assemblies on solid surfaces, which may extend their applications in nanodevices and to the wider fields of biology and medicine.
Collapse
Affiliation(s)
- Wangqiang Sun
- †Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- §Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States
- #Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Sumit Kewalramani
- ∥Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Karl Hujsak
- ∥Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Heng Zhang
- †Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- §Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States
| | - Michael J Bedzyk
- ∥Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- ⊥Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- ∥Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - C Shad Thaxton
- †Department of Urology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- §Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior, Chicago, Illinois 60611, United States
| |
Collapse
|
21
|
Laner M, Horta BAC, Hünenberger PH. Long-timescale motions in glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulation. J Mol Graph Model 2014; 55:48-64. [PMID: 25437095 DOI: 10.1016/j.jmgm.2014.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events.
Collapse
Affiliation(s)
- Monika Laner
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.
| | - Bruno A C Horta
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland; Dpto. de Engenharia Elétrica, PUC-Rio, Rio de Janeiro, Brazil; Dpto. de Ciências Biológicas, UEZO, Rio de Janeiro, Brazil.
| | | |
Collapse
|
22
|
Zhai X, Boldyrev IA, Mizuno N, Momsen MM, Molotkovsky JG, Brockman H, Brown RE. Nanoscale packing differences in sphingomyelin and phosphatidylcholine revealed by BODIPY fluorescence in monolayers: physiological implications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3154-3164. [PMID: 24564829 PMCID: PMC3983355 DOI: 10.1021/la4047098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Indexed: 06/03/2023]
Abstract
Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force-area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force-area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match.
Collapse
Affiliation(s)
- Xiuhong Zhai
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Ivan A. Boldyrev
- Shemyakin-Ovichinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, Moscow, Russian Federation
| | - Nancy
K. Mizuno
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Maureen M. Momsen
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Julian G. Molotkovsky
- Shemyakin-Ovichinnikov
Institute of Bioorganic Chemistry, Russian
Academy of Sciences, Moscow, Russian Federation
| | - Howard
L. Brockman
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| | - Rhoderick E. Brown
- Hormel
Institute, University of Minnesota, 801 16th Ave NE, Austin, Minnesota 55912, United States
| |
Collapse
|
23
|
Petr T, Smíd V, Kučerová V, Váňová K, Leníček M, Vítek L, Smíd F, Muchová L. The effect of heme oxygenase on ganglioside redistribution within hepatocytes in experimental estrogen-induced cholestasis. Physiol Res 2014; 63:359-67. [PMID: 24564601 DOI: 10.33549/physiolres.932665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cholestasis is characterized by the elevation of serum total bile acids (TBA), which leads to the production of both free radicals and oxidative stress. Although they do not share the same mechanisms, membrane glycosphingolipids (GSL) and the antioxidant enzyme heme oxygenase-1 (HMOX1) both act against the pro-oxidative effect of TBA. The aim of the study was to assess the role of HMOX on GSL redistribution and composition within hepatocytes in the rat model of estrogen-induced cholestasis. Compared to the controls, an increase of total gangliosides in the liver homogenates of the cholestatic group (P=0.001) was detected; further, it paralleled along with the activation of their biosynthetic b-branch pathway (P<0.01). These effects were partially prevented by HMOX activation. Cholestasis was accompanied by a redistribution of GM1 ganglioside from the cytoplasm to the sinusoids; while HMOX activation led to the retention of GM1 in the cytoplasm (P=0.014). Our study shows that estrogen-induced cholestasis is followed by changes in the synthesis and/or distribution of GSL. These changes are not only triggered by the detergent power of accumulated TBA, but also by their pro-oxidant action. Increases in the antioxidant defenses might represent an important supportive therapeutic measure for patients with cholestatic liver disease.
Collapse
Affiliation(s)
- T Petr
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mishra D, Das S, Krishnamurthy S, Pal S. Understanding the orientation of water molecules around the phosphate and attached functional groups in a phospholipid molecule: a DFT-based study. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.783701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Tarafdar PK, Reddy ST, Swamy MJ. Effect of Hofmeister Series Anions on the Thermotropic Phase Behavior of Bioactive O-Acylcholines. J Phys Chem B 2013; 117:9900-9. [DOI: 10.1021/jp403964k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
26
|
Craven RJ, Lencki RW. Polymorphism of Acylglycerols: A Stereochemical Perspective. Chem Rev 2013; 113:7402-20. [DOI: 10.1021/cr400212r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. John Craven
- Department of Food
Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Robert W. Lencki
- Department of Food
Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
27
|
Fujisawa I, Kitamura Y, Okamoto R, Murayama K, Kato R, Aoki K. Crystal structure of pyrogallol[4]arene complex with phosphocholine: A molecular recognition model for phosphocholine through cation–π interaction. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Kulkarni CV. Lipid crystallization: from self-assembly to hierarchical and biological ordering. NANOSCALE 2012; 4:5779-91. [PMID: 22899223 DOI: 10.1039/c2nr31465g] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Lipid crystallization is ubiquitous in nature, observed in biological structures as well as in commercial products and applications. In a dehydrated state most of the lipids form well ordered crystals, whereas in an aqueous environment they self-assemble into various crystalline, liquid crystalline or sometimes macroscopically disordered phases. Lipid self-organization extends further to hierarchical levels including structured emulsions and nanostructured particles. Many consumer products including cosmetics, foods and medicines account for such lipid architectures. Cell membranes primarily consist of planar lipid bilayers; however sub-cellular biomembranes are more of a convoluted type. Some of the biological entities have lipids in truly crystalline form; yet liquid crystalline lipid phases are prevalent, in general. Crystallization of fats - triglyceride lipids - has been relatively well documented and reviewed more often, but this review features other areas where lipid organization is crucial and diverse. Some recent advances along with a few explicit examples of model lipid phases and biological evidences are also reported.
Collapse
Affiliation(s)
- Chandrashekhar V Kulkarni
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
29
|
Marsh D, Páli T. Orientation and conformation of lipids in crystals of transmembrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:119-46. [PMID: 22644500 DOI: 10.1007/s00249-012-0816-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/04/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
Abstract
Orientational order parameters and individual dihedral torsion angles are evaluated for phospholipid and glycolipid molecules that are resolved in X-ray structures of integral transmembrane proteins in crystals. The order parameters of the lipid chains and glycerol backbones in protein crystals are characterised by a much wider distribution of orientational order than is found in fluid lipid bilayers and reconstituted lipid-protein membranes. This indicates that the lipids that are resolved in crystals of membrane proteins are mostly not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from C-C bonds in energetically disallowed skew conformations. This suggests configurational heterogeneity of the lipids at a single binding site: eclipsed conformations occur also in the glycerol backbone torsion angles and the C-C torsion angles of the lipid head groups. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid head-group conformations in the protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phosphodiester, that is characteristic of phospholipid bilayer membranes. Stereochemical violations in the protein-bound lipids are evidenced by ester carboxyl groups in non-planar configurations, and even in the cis configuration. Some lipids have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in the phytanyl chains associated with bacteriorhodopsin have the incorrect S configuration.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070, Göttingen, Germany.
| | | |
Collapse
|
30
|
Larsson K, Quinn P, Sato K, Tiberg F. Solid-state behaviour of polymorphic fats and fatty acids. Lipids 2012. [DOI: 10.1533/9780857097910.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Popova AV, Hincha DK. Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state. BMC BIOPHYSICS 2011; 4:11. [PMID: 21595868 PMCID: PMC3116483 DOI: 10.1186/2046-1682-4-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (HII) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions. RESULTS Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to HII transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group. CONCLUSIONS This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
32
|
Thompson TE, Sankaram MB, Huang C. Organization and Dynamics of the Lipid Components of Biological Membranes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 2010; 36:1636-44. [PMID: 21181265 DOI: 10.1007/s11064-010-0360-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/16/2022]
Abstract
The sphingolipid plasma membrane content and pattern is the result of several processes, among which the main, in term of quantity, are: neo-biosynthesis in endoplasmic reticulum and Golgi apparatus, membrane turnover with final catabolism in lysosomes and membrane shedding. In addition to this, past and recent data suggest that the head group of sphingolipids can be opportunely modified at the plasma membrane level, probably inside specific membrane lipid domains, by the action of enzymes involved in the sphingolipids metabolism, working directly at the cell surface. The number of membrane enzymes, hydrolases and transferases, acting on membrane sphingolipids is growing very rapidly. In this report we describe some properties of these enzymes.
Collapse
|
34
|
Tarafdar PK, Reddy ST, Swamy MJ. A Base-Triggerable Catanionic Mixed Lipid System: Isothermal Titration Calorimetric and Single-Crystal X-ray Diffraction Studies. J Phys Chem B 2010; 114:13710-7. [DOI: 10.1021/jp104841k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
| |
Collapse
|
35
|
Marsh D. Molecular volumes of phospholipids and glycolipids in membranes. Chem Phys Lipids 2010; 163:667-77. [DOI: 10.1016/j.chemphyslip.2010.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/17/2022]
|
36
|
Soares CS, da Silva CO. Conformational study of methylphosphocholine: a prototype for phospholipid headgroups in membranes. J Mol Graph Model 2010; 29:82-92. [PMID: 20627784 DOI: 10.1016/j.jmgm.2010.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Phospholipid bilayers constitute the largest structural component of cell membranes, in which choline phospholipids are abundant. In this study, through a theoretical sampling on a methylphosphocholine (MePC) potential energy surface, a set of conformers was selected as a prototype for the membrane phospholipid head. We performed a detailed conformational study of such a prototype, both as an isolated moiety and in a solvated system. We used the polarizable continuum model (PCM) to account for solvation effects. We used a quantum-mechanical methodology based on density functional theory (DFT) and the 6-31G(d,p) basis set for the calculations. Through this methodology we were able to obtain a set of conformations that presented a mirror-image pattern, in good agreement with the experimental geometric values for the different phosphocholine derivatives. Potential curves for the main parameters of the dihedral space of MePC were obtained and are provided to guide future force-field parameterizations.
Collapse
Affiliation(s)
- Cinthia S Soares
- Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR 465, Seropédica, Rio de Janeiro, Brazil
| | | |
Collapse
|
37
|
Horta BAC, de Vries AH, Hünenberger PH. Simulating the Transition between Gel and Liquid-Crystal Phases of Lipid Bilayers: Dependence of the Transition Temperature on the Hydration Level. J Chem Theory Comput 2010; 6:2488-500. [DOI: 10.1021/ct100200w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bruno A. C. Horta
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland, and University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Alex H. de Vries
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland, and University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Philippe H. Hünenberger
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland, and University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
38
|
|
39
|
Tarafdar PK, Swamy MJ. Structure and phase behavior of O-stearoylethanolamine: A combined calorimetric, spectroscopic and X-ray diffraction study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:872-81. [DOI: 10.1016/j.bbamem.2010.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/10/2010] [Accepted: 01/19/2010] [Indexed: 11/26/2022]
|
40
|
Swamy MJ, Tarafdar PK, Kamlekar RK. Structure, phase behaviour and membrane interactions of N-acylethanolamines and N-acylphosphatidylethanolamines. Chem Phys Lipids 2010; 163:266-79. [DOI: 10.1016/j.chemphyslip.2010.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 12/31/2009] [Accepted: 01/05/2010] [Indexed: 11/25/2022]
|
41
|
Marsh D. Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:40-51. [DOI: 10.1016/j.bbamem.2009.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/07/2009] [Accepted: 10/14/2009] [Indexed: 11/25/2022]
|
42
|
Tarafdar PK, Swamy MJ. Polymorphism in ‘L’ shaped lipids: structure of N-, O-diacylethanolamines with mixed acyl chains. Chem Phys Lipids 2009; 162:25-33. [DOI: 10.1016/j.chemphyslip.2009.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 08/15/2009] [Accepted: 08/18/2009] [Indexed: 11/25/2022]
|
43
|
Pimthon J, Willumeit R, Lendlein A, Hofmann D. All-atom molecular dynamics simulation studies of fully hydrated gel phase DPPG and DPPE bilayers. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Hybrid QM/MM simulation of the hydration phenomena of dipalmitoylphosphatidylcholine headgroup. J Colloid Interface Sci 2009; 329:410-5. [DOI: 10.1016/j.jcis.2008.09.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 11/19/2022]
|
45
|
Corkery RW. Metal organic framework (MOF) liquid crystals. 1D, 2D and 3D ionic coordination polymer structures in the thermotropic mesophases of metal soaps, including alkaline earth, transition metal and lanthanide soaps. Curr Opin Colloid Interface Sci 2008. [DOI: 10.1016/j.cocis.2008.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Marsh D. Protein modulation of lipids, and vice-versa, in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1545-75. [DOI: 10.1016/j.bbamem.2008.01.015] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 11/29/2022]
|
47
|
Klauda JB, Venable RM, MacKerell AD, Pastor RW. Chapter 1 Considerations for Lipid Force Field Development. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00001-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Tjong SC, Wu PL, Wang CM, Huang WN, Ho NL, Wu WG. Role of Glycosphingolipid Conformational Change in Membrane Pore Forming Activity of Cobra Cardiotoxin. Biochemistry 2007; 46:12111-23. [DOI: 10.1021/bi700871x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siu-Cin Tjong
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Po-Long Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Chang-Mao Wang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Wei-Ning Huang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Nan-Lu Ho
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| | - Wen-guey Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, National Synchrotron Radiation Research Center, and Yuan Pei University, Hsinchu, Taiwan
| |
Collapse
|
49
|
Marsh D. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J 2007; 93:3884-99. [PMID: 17704167 PMCID: PMC2084255 DOI: 10.1529/biophysj.107.107938] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lipid-protein interactions are an important determinant of the stability and function of integral and transmembrane proteins. In addition to local interactions at the lipid-protein interface, global interactions such as the distribution of internal lateral pressure may also influence protein conformation. It is shown here that the effects of the membrane lateral pressure profile on the conformation or insertion of proteins in membranes are equivalent to the elastic response to the frustrated spontaneous curvature, c(o), of the component lipid monolayer leaflets. The chemical potential of the protein in the membrane is predicted to depend linearly on the spontaneous curvature of the lipid leaflets, just as does the contribution of the protein to the elastic bending energy of the lipid, and to be independent of the hydrophobic tension, gamma(phob), at the lipid-water interface. Analysis of the dependence of protein partitioning or conformational transitions on spontaneous curvature of the constituent lipids gives an experimental estimate for the cross-sectional intramembrane shape of the protein or its difference between conformations. Values in the region of 50-110 A(2) are estimated for the effective cross-sectional shape changes on the insertion and conductance transitions of alamethicin, and on the activation of CTP:phosphocholine cytidylyltransferase or rhodopsin in lipid membranes. Much larger values are estimated for the mechanosensitive channel, MscL. Values for the change in intramembrane shape may also be used, together with determinations of lipid relative association constants, to estimate contributions of direct lipid-protein interactions to the lateral pressure experienced by the protein. Changes in chemical potential approximately 12 kJ mol(-1) can be estimated for radial changes of 1 A in a protein of diameter 40 A.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, Göttingen, Germany.
| |
Collapse
|
50
|
Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. The thermotropic phase behaviour and phase structure of a homologous series of racemic β-d-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Chem Phys Lipids 2007; 148:26-50. [PMID: 17524381 DOI: 10.1016/j.chemphyslip.2007.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|