1
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Su D, Zhang R, Zhang C, Huang F, Xiao J, Deng Y, Wei Z, Zhang Y, Chi J, Zhang M. Phenolic-rich lychee (Litchi chinensis Sonn.) pulp extracts offer hepatoprotection against restraint stress-induced liver injury in mice by modulating mitochondrial dysfunction. Food Funct 2016; 7:508-15. [PMID: 26569420 DOI: 10.1039/c5fo00975h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pulp from lychee, a tropical to subtropical fruit, contains large quantities of phenolic compounds and exhibits antioxidant activities both in vitro and in vivo. In the present study, we investigated the mechanisms underlying the hepatoprotective effects of lychee pulp phenolics (LPPs) against restraint stress-induced liver injury in mice. After 18 h of restraint stress, increased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were observed. High levels of thiobarbituric acid reactive substances (TBARS) were also found. Restraint stress causes liver damage, which was protected against by LPP pretreatment at a dosage of 200 mg (kg d)(-1) for 21 consecutive days. This treatment remarkably decreased the serum ALT, AST and TBARS levels, elevated the liver glutathione (GSH) content, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT). Furthermore, respiratory chain complex and Na(+)-K(+)-ATPase activities were enhanced in liver mitochondria, while mitochondrial membrane potential levels and reactive oxygen species (ROS) production decreased. Thus, treatment with LPPs ameliorated restraint stress-induced liver mitochondrial dysfunction. These results suggest that LPPs protect the liver against restraint stress-induced damage by scavenging free radicals and modulating mitochondrial dysfunction. Thus, lychee pulp may be a functional biofactor to mitigate oxidative stress.
Collapse
Affiliation(s)
- Dongxiao Su
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China. and Department of Food Science and Engineering, College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Cuilan Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Juan Xiao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Jianwei Chi
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China. and Department of Food Science and Engineering, College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China
| |
Collapse
|
3
|
Guo JR, Wang JL. Relationship between hepatic ischemia-reperfusion injury and lipid peroxidation. Shijie Huaren Xiaohua Zazhi 2016; 24:1191-1197. [DOI: 10.11569/wcjd.v24.i8.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia-reperfusion injury results in a mixture of apotosis or necrosis which are caused by various mechanisms such as mitochondrial injury, endoplasmic reticulum stress, burst of reactive oxygen species, calcium overload, and release of various cytokines that induce the change of intracellular or extracellular signal transduction pathways. Lipid peroxidation can be described generally as a process in which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs) which manily form the plasma membrane system. Lipid peroxidation occurring throughout the entire biological reaction process during HIRI, especially the mitochondrial lipid peroxidation, may be the central molecular event that is worthy of further exploration and research.
Collapse
|
4
|
Xiong JW, Zhu L, Jiao X, Liu SS. Evidence for DeltapH surface component (DeltapH(S)) of proton motive force in ATP synthesis of mitochondria. Biochim Biophys Acta Gen Subj 2009; 1800:213-22. [PMID: 19695309 DOI: 10.1016/j.bbagen.2009.07.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/20/2009] [Accepted: 07/26/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND One of the central debates in membrane bioenergetics is whether proton-dependent energy coupling mechanisms are mediated exclusively by protonic transmembrane electrochemical potentials, as delocalized pmf, DeltamicroH(+), or by more localized membrane surface proton pathways, as interfacial pmf, DeltamicroH(S). METHODS We measure pH(S) in rat liver mitoplasts energized by respiration or ATP hydrolysis by inserting pH sensitive fluorescein-phosphatidyl-ethanolamine(F-PE) into mitoplast surface. RESULTS In the presence of rotenone and Ap5A, succinate oxidation induces a bi-phasic interfacial protonation on the mitoplast membranes, a fast phase followed by a slow one, and an interfacial pH decrease of 0.5 to 0.9 pH units of mitoplast with no simultaneous pH changes in the bulk. Antimycin A, other inhibitors or uncouplers of mitochondrial respiration prevent the decrease of mitoplast pH(S), supporting that DeltamicroH(S) is dependent and controlled by energization of mitoplast membranes. A quantitative assay of ATP synthesis coupled with pH(S) of mitoplasts oxidizing succinate with malonate titration shows a parallel correlation between ATP synthesis, State 4 respiration and pH(S), but not with Psi(E). GENERAL SIGNIFICANCE Our data substantiate pH(S) as the primary energy source of pmf for mitochondrial ATP synthesis. Evidence and discussion concerning the relative importance and interplay of pH(S) and Psi(E) in mitochondrial bioenergetics are also presented.
Collapse
Affiliation(s)
- Jing-Wei Xiong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
5
|
Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 2004; 279:26546-54. [PMID: 15024007 DOI: 10.1074/jbc.m401206200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.
Collapse
Affiliation(s)
- ZhenXiong Wang
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
This paper describes a mechanism to explain low-level light emission in biology. A biological analog of the electrical circuitry, modeled on the parallel plate capacitor, traversed by a helical structure, required to generate electromagnetic radiation in the optical spectral range, is described. The charge carrier required for the emissions is determined to be an accelerating electron driven by an ATP-induced reverse electron transfer. The radial velocity component, the emission trajectory, of the moving charges traversing helical protein structures in a cyclotron-type mechanism is proposed to be imposed by the ferromagnetic field components of the iron in the iron-sulfur proteins. The redox systems NADH, riboflavin, and chlorophyll were examined with their long-wavelength absorption maxima determining the energetic parameters for the calculations. Potentials calculated from the axial velocity components for the riboflavin and NADH systems were found to equal the standard redox potentials of these systems as measured electrochemically and enzymatically. The mechanics for the three systems determined the magnetic moments, the angular momenta, and the orbital magnetic fluxes to be adiabatic invariant parameters. The De Broglie dual wave-particle equation, the fundamental equation of wave mechanics, and the key idea of quantum mechanics, establishes the wavelengths for accelerating electrons which, divided into a given radial velocity, gives its respective emission frequency. Electrons propelled through helical structures, traversed by biologically available electric and magnetic fields, make accessible to the internal environment the optical spectral frequency range that the solar spectrum provides to the external environment.
Collapse
Affiliation(s)
- Richard H Steele
- Department of Biochemistry, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112-2699, USA.
| |
Collapse
|
7
|
Evidence for a high proton translocation stoichiometry of the H+-ATPase complex in well coupled proteoliposomes reconstituted from a thermophilic cyanobacterium. FEBS Lett 2002. [DOI: 10.1016/0014-5793(86)81548-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Energy coupling to ATP synthesis and pyridine nucleotide transhydrogenase in chromatophores from photosynthetic bacteria A ‘dual-consumer’ test for localised interactions with electron transport components. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)81145-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Trchounian A. Ion Exchange in Facultative Anaerobes: Does a Proton-potassium Pump Exist in AnaerobicEscherichia Coli? Anaerobe 1997; 3:355-71. [PMID: 16887611 DOI: 10.1006/anae.1997.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1997] [Accepted: 05/27/1997] [Indexed: 11/22/2022]
Affiliation(s)
- A Trchounian
- Department of Biophysics, Biological Faculty of Yerevan State University, 375049, Yerevan, Armenia.
| |
Collapse
|
10
|
Crundwell FK. The kinetics of the chemiosmotic proton circuit of the iron-oxidizing bacterium Thiobacillus ferrooxidans. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0302-4598(96)05175-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Affiliation(s)
- R J Williams
- Inorganic Chemistry Laboratory, University of Oxford, UK
| |
Collapse
|
12
|
Repke KR, Schön R. Synthesis of a self-contained concept of the molecular mechanism of energy interconversion by H(+)-transporting ATP synthase. Biol Rev Camb Philos Soc 1994; 69:119-45. [PMID: 8054442 DOI: 10.1111/j.1469-185x.1994.tb01503.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The original aim of the review has been to probe into the validity of the paradigm on the high energy-carrier function of ATP. It seemed to be called into question on the basis of findings with H(+)-transporting ATP synthase suggesting the formation of ATP from ADP and Pi without energy input. Thus, ATP appeared as a low-energy compound. Starting from the current, rich knowledge of the molecular structure and the inviting thinking on the mechanism of H(+)-transporting ATP synthase, we have endeavoured to freshly interpret and integrate the pertinent observations in the light of the comprehensively derived model of the molecular mechanism of energy interconversion by Na+/K(+)-transporting ATPase. In this way, we have uncovered the common mechanistic elements of the two energy-interconverting enzymes. The emerging purpose of the present paper has been the 'synthesis' of a self-contained concept of the molecular mechanism of the interconversion of electrochemical and chemical Gibbs energies by H(+)-transporting ATP synthase. The outcome is reflected in the following tentative evaluations. 1. In ATP hydrolysis, the great Gibbs energy change which is observed in solution, is largely conserved by the F1 sector of ATP synthase as mechanical Gibbs energy in the enzyme's protein fabric, so that it can be utilized in the resynthesis of ATP from enzyme-bound ADP and Pi. The plainly measured low Gibbs energy change results from large compensating enthalpy and entropy changes that reflect the underlying changes in protein conformation. 2. In stoichiometric ATP synthesis by F1 sector from ADP and Pi bound to the catalytic centre, their intrinsic binding energy brings about a loss of peptide chain entropy that makes possible an entropy-driven ATP formation. 3. The driving force for ATP synthesis cannot be the high Gibbs energy change on binding of product ATP; the tight ATP-enzyme complex rather is a low Gibbs energy intermediate from which escape is difficult. 4. The catalytic centre exists either in an open state unable to firmly bind the substrate-product couple, or in a closed state protecting formed ATP from facile hydrolysis by ambient water. 5. The cleft closure, induced by binding of Pi and ADP or ATP, does not necessarily need external energy supply, because the cleft closure proceeds from rigid domain rotations which can occur rather spontaneously. In further analogy to adenylate kinase, the driving force of this domain movement presumably comes from the electrostatic interactions between phosphate moieties and arginine side chains in the catalytic centre.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K R Repke
- Energy Conversion Unit, Max Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
13
|
A direct interaction between the H+-F1F0-ATPase and the K+ transport within the membrane of anaerobically grown bacteria. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0302-4598(94)87026-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Edel CM, Hartog AF, Berden JA. Inhibition of mitochondrial F1-ATPase activity by binding of (2-azido-) ADP to a slowly exchangeable non-catalytic nucleotide binding site. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1101:329-38. [PMID: 1386529 DOI: 10.1016/0005-2728(92)90089-k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.
Collapse
Affiliation(s)
- C M Edel
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, Netherlands
| | | | | |
Collapse
|
15
|
Gupte SS, Chazotte B, Leesnitzer MA, Hackenbrock CR. Two-dimensional diffusion of F1F0-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1069:131-8. [PMID: 1718429 DOI: 10.1016/0005-2736(91)90114-n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report here the first experimentally determined lateral diffusion coefficients of the F1F0-ATP synthase and the ADP/ATP translocator in isolated inner membranes of rat liver mitochondria. Rabbit IgG developed against the F1F0-ATP synthase isolated from rat liver mitochondria was determined to be immunospecific for the synthase subunits, notably the alpha-beta doublet, gamma and delta subunits of F1 and subunits two, three and four of F0. This IgG, conjugated with lissamine-rhodamine, was used as a fluorescent probe to monitor the diffusion of the synthase in the membrane. IgG to cytochrome bc1 complex, prepared and labeled similarly, was used as a fluorescent probe for diffusion of this redox component. Eosin maleimide was determined to specifically label the ADP/ATP translocator in the isolated inner membrane and was used as a specific probe for the diffusion of the translocator. Using fluorescence recovery after photobleaching, the experimental average lateral diffusion coefficient of the F1F0-ATP synthase was determined to be 8.4 x 10(-10) cm2/s or twice that of cytochrome bc1 complex while the diffusion coefficient of the ADP/ATP translocator was 1.7 x 10(-9) cm2/s or four times that of cytochrome bc1 complex suggesting that all three components are independent two-dimensional diffusants. Using these diffusion coefficients and applying a number of basic assumptions, we calculated the theoretical two-dimensional diffusion-controlled collision frequencies and derived collision efficiencies (protons transferred per collision) between each of the three proton-transferring redox complexes and both the F1F0-ATP synthase and ADP/ATP translocator by treating the redox components as proton donors and the synthase and translocator as proton acceptors. These collision efficiencies support the physical possibility of a diffusion-based, random collision process of proton transfer and ATP synthesis in the mitochondrial inner membrane.
Collapse
Affiliation(s)
- S S Gupte
- Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill 27599-7090
| | | | | | | |
Collapse
|
16
|
Reynafarje BD. The polyphasic reduction of oxygen to water by purified cytochrome c oxidase. Biochem Biophys Res Commun 1991; 176:150-6. [PMID: 1850253 DOI: 10.1016/0006-291x(91)90902-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The time course of oxygen consumption by purified cytochrome oxidase has been studied in reactions where the fully reduced enzyme was rapidly mixed with molecular oxygen. Similar to intact mitochondria (Reynafarje & Davies, Am. J. Physiol. 258, 1990), the enzyme reduces oxygen to water in a kinetically and well defined polyphasic event. The initial rates of O2 consumption depended hyperbolically on O2 concentration, with a bimolecular rate constant of near 10(7) M-1 s-1. The Vmax of O2 uptake was, however, a complex function of the concentrations of both enzyme and cytochrome c. It is concluded that the reduction of oxygen to water takes place in a cyclic process in which the oxidase undergoes redox changes at rates depending on the relative concentration of the enzyme and its 3 substrates: O2, electrons and protons. No evidence was found for impairments in the intramolecular flow of electrons per se.
Collapse
Affiliation(s)
- B D Reynafarje
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
17
|
van Dam K, Shinohara Y, Unami A, Yoshida K, Terada H. Slipping pumps or proton leaks in oxidative phosphorylation. The local anesthetic bupivacaine causes slip in cytochrome c oxidase of mitochondria. FEBS Lett 1990; 277:131-3. [PMID: 2176610 DOI: 10.1016/0014-5793(90)80826-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- K van Dam
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
18
|
Rigoulet M. Control processes in oxidative phosphorylation: kinetic constraints and stoichiometry. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1018:185-9. [PMID: 2144185 DOI: 10.1016/0005-2728(90)90245-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Control processes in oxidative phosphorylation have been studied in three experimental models. (1) In isolated yeast mitochondria, external ATP is a regulatory effector of cytochrome-c oxidase activity. In phosphorylating or uncoupling states, the relationships between respiratory rate and delta mu H+, and the respiratory rate and cytochrome-c oxidase reduction level are dependent on this kinetic regulation. (2) In rat liver mitochondria, the response of the respiratory rate to uncoupler addition is age-dependent: liver mitochondria isolated from young rats maintain a greater delta mu H+ than liver mitochondria isolated from adults, with the same respiratory rate obtained with the same concentration of uncoupler. This behaviour is linked to redox proton pump properties, i.e., to the degree of intrinsic uncoupling induced by uncoupler addition. (3) The effect of almitrine, a new kind of ATPase/ATPsynthase inhibitor, was studied in mammalian mitochondria. (i) Almitrine inhibits oligomycin-sensitive ATPase - it decreases the ATPase/O value without any change in delta mu H+; (ii) almitrine increased the mechanistic H+/ATP stoichiometry of ATPase/ATPsynthase; (iii) almitrine-induced changes in H+/ATPase stoichiometry depend on the flux magnitude through ATPase. These results are discussed in terms of the following interdependent parameters; flux value, force, pump efficiency and control coefficient.
Collapse
Affiliation(s)
- M Rigoulet
- Institut de Biochimie Cellulaire et Neurochimie du CNRS, Université de Bordeaux, France
| |
Collapse
|
19
|
Rottenberg H. Decoupling of oxidative phosphorylation and photophosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1018:1-17. [PMID: 1695856 DOI: 10.1016/0005-2728(90)90103-b] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rottenberg
- Pathology Department, Hahnemann University School of Medicine, Philadelphia, PA
| |
Collapse
|
20
|
Bammel BP, Hamilton DD, Haugland RP, Hopkins HP, Schuette J, Szalecki W, Smith JC. NMR, calorimetric, spin-label, and optical studies on a trifluoromethyl-substituted styryl molecular probe in dimyristoylphosphatidylcholine vesicles and multilamellar suspensions: a model for location of optical probes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1024:61-81. [PMID: 2159805 DOI: 10.1016/0005-2736(90)90209-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
NMR, calorimetric, and optical spectroscopic studies have been performed on a trifluoromethyl-substituted styryl molecular probe bound to vesicles and multilamellar suspensions formed from dimyristoylphosphatidylcholine (DMPC). In the fluorine NMR spectrum at 35 degrees C there are two partially resolved resonances, but these collapse to an apparently single resonance at temperatures above 60 degrees C. However, a line-shape analysis is not consistent with exchange between two sites on an NMR time scale, and the two resonances are assumed to be due to probe sites in the inner and outer leaflets of the vesicles. Two fluorescence lifetimes, each associated with one of these sites, characterize the decay curves for the molecular probe bound to DMPC vesicles. The shift reagent Eu(FOD)3 and several nitroxide spin labels covalently bound to lipophilic structures strongly attenuate the lower frequency component of the fluorine NMR spectrum and also shift the other resonance to higher frequencies. The effect of two spin labels on the probe fluorine T2 relaxation time has been used to estimate the distance between the spin label unpaired electron and the trifluoromethyl group. The location of the spin label site in the membrane was determined from the effect of the unpaired electron on the lipid 13C linewidths. A model for the location of the probe in the bilayer was developed from the above information and refined using molecular mechanics calculations on a probe-DMPC lipid complex. The long axis of the probe parallels the bilayer normal; the styryl-group portion of the optical chromophore is located slightly below the glycerol backbone, and the remainder of the chromophore extends well into the hydrophobic region of the bilayer. Therefore, the optical properties of the probe should not be significantly influenced by alterations of the membrane surface charge density. Parameters derived from DSC studies in the gel-to-lipid crystal phase transition of DMPC are extremely sensitive to the probe. Even at 0.0001 mol fraction of probe, the transition is substantially broadened, and the delta H for the transition has increased, just as one predicts for the formation of a tight complex described above.
Collapse
Affiliation(s)
- B P Bammel
- Department of Chemistry, Georgia State University, Atlanta 30303-3053
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Smith JC. Potential-sensitive molecular probes in membranes of bioenergetic relevance. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1016:1-28. [PMID: 2178682 DOI: 10.1016/0005-2728(90)90002-l] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J C Smith
- Department of Chemistry, Georgia State University, Atlanta 30303-3083
| |
Collapse
|
23
|
Reynafarje BD, Davies PW. The polyphasic nature of the respiratory process at the mitochondrial level. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C504-11. [PMID: 2316637 DOI: 10.1152/ajpcell.1990.258.3.c504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The kinetics of oxygen consumption by rat liver mitochondria, respiring under a variety of metabolic conditions, have been studied. Respiration was initiated by injecting oxygen into anaerobic suspensions of mitochondria. It was found that, irrespective of the metabolic state of the mitochondria and the nature of the respiratory substrate, the rates of electron flow and oxygen consumption follow the pattern of a polyphasic reaction. The rates of oxygen uptake during the first phase are extremely fast and depend on oxygen concentration. The second phase represents a transition in which net oxidation of cytochrome-c oxidase stops and the rates of oxygen consumption suddenly decrease. The third phase is characterized by its changeability. Depending on initial conditions the rates may increase, decrease, or remain constant, although the reaction is not one of zero order. During the last phase, the rates decrease and the oxidase becomes increasingly reduced. It is postulated that the mitochondrial respiratory process is basically a cyclic event in which the redox state of the membrane and the rates of oxygen consumption oscillate with amplitudes and frequencies conditioned by the energy demand and energy-yielding capacity of the cell.
Collapse
Affiliation(s)
- B D Reynafarje
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
24
|
Abstract
During oxidative phosphorylation by mammalian mitochondria part of the free energy stored in reduced substrates is dissipated and energy is released as heat. Here I review the mechanisms and the physiological significance of this phenomenon.
Collapse
Affiliation(s)
- M P Murphy
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
25
|
Sitaramam V, Sambasivarao D, Mathai JC. Differential effects of osmotic pressure on mitochondrial respiratory chain and indices of oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 975:252-66. [PMID: 2545267 DOI: 10.1016/s0005-2728(89)80256-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative phosphorylation was critically evaluated in terms of activities which are sensitive and insensitive to variations in external osmotic pressure in mitochondria. Integrity of mitochondria was determined in terms of a variety of parameters, including the latency of the occluded enzymes, by careful titrations as a function of external osmotic pressure as well as detergent concentrations. The evidence indicated that the rate-limiting step in respiratory states 2 and 4 would be osmotically insensitive, as opposed to the osmotically sensitive respiration of states 1 and 3 and uncoupler-stimulated respiration with glutamate + malate and succinate. Cytochrome oxidase activity in mitochondria as well as in purified reconstituted systems exhibited osmotic insensitivity but marked sensitivity to ionic strength, offering an interesting model to study the osmotically insensitive respiration. Cytochrome oxidase activity led to permeation of mannitol across the mitochondrial inner membrane. Stimulation of cytochrome oxidase activity by uncouplers did not require an intact membrane.
Collapse
Affiliation(s)
- V Sitaramam
- Department of Zoology (Biotechnology), University of Poona, Pune, India
| | | | | |
Collapse
|
26
|
López-Zabalza MJ, Flores F, Santiago E, López-Moratalla N. Effect of redox potential on rat liver F1-ATPase. FEBS Lett 1989; 242:293-6. [PMID: 2521608 DOI: 10.1016/0014-5793(89)80487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Redox titration of F1-ATPase from rat liver mitochondria referred to the modification of the hydrolytic activity on Mg-ATP has resulted in a three-step pattern, with three distinct jumps of activity separated by clear plateaus. The measured potentials ranged from -400 mV to +400 mV and were obtained by the addition of dithionite and ferricyanide. Electron exchange was facilitated with a mixture of different redox mediators. At pH 7.4 the midpoint potentials were +210 mV, +40 mV and -230 mV. These three midpoint potentials were displaced towards more negative values by 2,4-dinitrophenol or by an increase of the pH of the medium. The titration curves were described by n = 2 Nernst equations.
Collapse
|
27
|
Azzone GF, Luvisetto S. Molecular events in coupling and uncoupling of oxidative phosphorylation. Ann N Y Acad Sci 1988; 550:277-88. [PMID: 2469371 DOI: 10.1111/j.1749-6632.1988.tb35343.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- G F Azzone
- CNR Unit Institute of General Pathology, University of Padova, Italy
| | | |
Collapse
|
28
|
Wille B. Thylakoid volume, proton translocation and buffering capacity as measured with spin-label techniques. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90028-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Affiliation(s)
- G Lenaz
- Department of Biology, University of Bologna, Italy
| |
Collapse
|
30
|
Di Cera E, Phillipson PE, Wyman J. Chemical oscillations in closed macromolecular systems. Proc Natl Acad Sci U S A 1988; 85:5923-6. [PMID: 3413066 PMCID: PMC281877 DOI: 10.1073/pnas.85.16.5923] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A cycle of irreversible, first-order, autocatalytic reactions among different states of a polyfunctional macromolecule, subject to the conservation of mass, can display stable chemical oscillations. This introduces a class of nonlinear dynamic models for energy transduction in closed macromolecular systems.
Collapse
Affiliation(s)
- E Di Cera
- Istituto di Fisica, Universitá Cattolica, Rome, Italy
| | | | | |
Collapse
|
31
|
Hüther FJ, Berden J, Kadenbach B. Influence of 8-azido-ATP and other anions on the activity of cytochrome c oxidase. J Bioenerg Biomembr 1988; 20:503-16. [PMID: 2851591 DOI: 10.1007/bf00762206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of ATP and other anions on the kinetics of cytochrome c oxidation by reconstituted bovine heart cytochrome c oxidase was investigated. The following results were obtained: (1) ATP and other polyvalent anions increase the Km for cytochrome c and the Vmax (if assayed by the photometric method). The magnitude of the effect is proportional to the charge of the anion as follows from the series of increasing effectiveness: Pi less than AMP less than ADP less than PPi less than ATP less than PPPi. (2) The kinetic effects are obtained in the millimolar physiological concentration range. (3) The kinetic changes are not saturated at high concentrations. (4) A specific interaction site for ATP at the cytosolic domain of the enzyme is concluded from the increase of Km for cytochrome c after photolabelling of proteoliposomes with 8-azido-[gamma-32P]-ATP, which is protected by ATP but not by ADP. (5) No specific "binding site" for ATP could be identified by photolabelling with 8-azido-[gamma-32P]-ATP. The labelling is only partly protected by ATP or ADP.
Collapse
Affiliation(s)
- F J Hüther
- Biochemie, Fachbereich Chemie der Philipps-Universität Hans-Meerwein-Strasse, Marburg, FRG
| | | | | |
Collapse
|
32
|
Sigalat C, de Kouchkovsky Y, Haraux F, de Kouchkovsky F. Shift from localized to delocalized protonic energy coupling in thylakoids by permeant amines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90095-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Kamp F, Chen YD, Westerhoff HV. Energization-induced redistribution of charge carriers near membranes. Biophys Chem 1988; 30:113-32. [PMID: 2843244 DOI: 10.1016/0301-4622(88)85009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electric field arising from proton pumping across a topologically closed biological membrane causes accumulation close to the membrane of ionic charges equivalent to the charge of the pumped protons, positive on the side towards which protons are pumped, negative on the other side. We shall call this the 'active surface charge'. We here use the Poisson-Boltzmann equation to evaluate the effects of zwitterionic buffer molecules and uncharged proteins in the aqueous phase bordering the membrane on the magnitude and ionic composition of the active surface charge. For the positive side of the membrane, the main results are: (1) If the membrane is freely accessible to bulk phase ions, pumped protons exchange with these ions, such that the active surface charge consists of salt cations. (2) If a significant fraction of the ions in bulk solution consists of buffer molecules, then some of the pumped protons will remain close to the membrane and constitute a major fraction of the active surface charge. (3) If a protein layer borders the membrane, a significant part of the transmembrane electric potential difference exists within that protein layer and protons inside this layer dominate the active surface charge. (4) On the negative side of the membrane the corresponding phenomena would occur. (5) All these effects are strictly dependent on the transmembrane electric potential difference arising from proton pumping and would come in addition to the well known effects of buffers and electrically charged proteins on the retention of scalar protons. (6) No additional proton diffusion barrier may be required to account for a deficit in number of protons observed in the aqueous bulk phase upon aeration-induced proton pumping.
Collapse
Affiliation(s)
- F Kamp
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | |
Collapse
|
34
|
Valcarce C, Navarrete RM, Encabo P, Loeches E, Satrústegui J, Cuezva JM. Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68565-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Persson B, Berden JA, Rydström J, van Dam K. ATP-driven transhydrogenase provides an example of delocalized chemiosmotic coupling in reconstituted vesicles and in submitochondrial particles. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 894:239-51. [PMID: 2960379 DOI: 10.1016/0005-2728(87)90193-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of coupling between mitochondrial ATPase (EC 3.6.1.3) and nicotinamide nucleotide transhydrogenase (EC 1.6.1.1) was studied in reconstituted liposomes containing both purified enzymes and compared with their behavior in submitochondrial particles. In order to investigate the mode of coupling between the transhydrogenase and the ATPase by the double-inhibitor and inhibitor-uncoupler methods, suitable inhibitors of transhydrogenase and ATPase were selected. Phenylarsine oxide and A3'-O-(3-(N-(4-azido-2-nitrophenyl)amino)propionyl)-NAD+ were used as transhydrogenase inhibitors, whereas of the various ATPase inhibitors tested aurovertin was found to be the most convenient. The inhibition of the ATP-driven transhydrogenase activity was proportional to the inhibition of both the ATPase and the transhydrogenase. Inhibitor-uncoupler titrations showed an increased sensitivity of the coupled reaction towards carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)--an uncoupler that preferentially uncouples localized interactions, according to Herweijer et al. (Biochim. Biophys. Acta 849 (1986) 276-287)--when the primary pump was partially inhibited. However, when the secondary pump was partially inhibited the sensitivity towards FCCP remained unchanged. Similar results were obtained with submitochondrial particles. These results are in contrast to those obtained previously with the ATP-driven reverse electron flow. In addition, the amount of uncoupler required for uncoupling of the ATP-driven transhydrogenase was found to be similar to that required for the stimulation of the ATPase activity, both in reconstituted vesicles and in submitochondrial particles. Uncoupling of reversed electron flow to NAD+ required much less uncoupler. On the basis of these results, it is proposed that, in agreement with the chemiosmotic model, the interaction between ATPase and transhydrogenase in reconstituted vesicles as well as in submitochondrial particles occurs through the delta mu H+. In contrast, the energy transfer between ATPase and NADH-ubiquinone oxidoreductase appears to occur via a more direct interaction, according to the above-mentioned results by Herweijer et al.
Collapse
Affiliation(s)
- B Persson
- Laboratory of Biochemistry, B.C.P. Jansen Institute, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Matsuno-Yagi A, Hatefi Y. Studies on the mechanism of oxidative phosphorylation. Flow-force relationships in mitochondrial energy-linked reactions. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47918-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Westerhoff HV, Plomp PJ, Groen AK, Wanders RJ, Bode JA, van Dam K. On the origin of the limited control of mitochondrial respiration by the adenine nucleotide translocator. Arch Biochem Biophys 1987; 257:154-69. [PMID: 2888431 DOI: 10.1016/0003-9861(87)90554-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A thermodynamic control theory previously developed has been applied to mitochondrial oxidative phosphorylation with emphasis on the role of delta microH and coupling and within the paradigm of delocalized chemiosmotic coupling. The basis for the observed distribution of flux control over the participating enzymes is shown to lie in the relative magnitudes of so-called delta microH elasticity coefficients, i.e., the delta microH dependencies of the different mitochondrial processes. In particular the relatively strong delta microH dependence of mitochondrial respiration is responsible for the significant role of the adenine nucleotide translocator in the control of oxidative phosphorylation. Uncoupling decreases the control exerted by this translocator on respiration but increases that exerted on phosphorylation.
Collapse
|
38
|
Slater EC. The mechanism of the conservation of energy of biological oxidations. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:489-504. [PMID: 3038543 DOI: 10.1111/j.1432-1033.1987.tb13542.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Brand MD, Murphy MP. Control of electron flux through the respiratory chain in mitochondria and cells. Biol Rev Camb Philos Soc 1987; 62:141-93. [PMID: 3300795 DOI: 10.1111/j.1469-185x.1987.tb01265.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Saks VA, Khuchua ZA, Kuznetsov AV. Specific inhibition of ATP-ADP translocase in cardiac mitoplasts by antibodies against mitochondrial creatine kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 891:138-44. [PMID: 3030419 DOI: 10.1016/0005-2728(87)90005-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondrial creatine kinase was purified from rat hearts and used to produce antibodies in chicken and rabbits. Antibodies were purified to a high degree of homogeneity by an affinity chromatography method. Chicken antibodies against mitochondrial creatine kinase inhibited this enzyme in rat-heart mitochondrial inner membrane and matrix preparation, and simultaneously blocked oxidative phosphorylation. Under these conditions respiratory chain activities remained unchanged, but adenine nucleotide translocase was inhibited. Removal of mitochondrial creatine kinase from the membrane by pretreatment with 0.15 M KCl and 20 mM ADP completely abolished the effect of antibodies against mitochondrial creatine kinase on oxidative phosphorylation. Noninhibitory antibodies from rabbit with high affinity to rat mitochondrial creatine kinase inhibited neither creatine kinase activity nor oxidative phosphorylation. These data show close and specific spatial arrangement of mitochondrial creatine kinase and adenine nucleotide translocase in mitochondria. It is supposed that there is a fixed orientation of these proteins in the cardiolipin domain in the membrane and that their interaction may occur by a frequent collision due to their lateral movement.
Collapse
|
41
|
Andersson BS, Aw TY, Jones DP. Mitochondrial transmembrane potential and pH gradient during anoxia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 252:C349-55. [PMID: 3565555 DOI: 10.1152/ajpcell.1987.252.4.c349] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of anoxia on the mitochondrial transmembrane potential and pH gradient was studied in a preparation of isolated hepatocytes. Transmembrane potential (delta psi) was calculated from the distribution of triphenylmethylphosphonium between the mitochondrial, cytosolic, and extracellular compartments, which were separated by digitonin fractionation and centrifugation. Mitochondrial and cytosolic pH values were calculated from the distribution of the weak acid, dimethadione, which was determined similarly. After 30 min anoxia, the magnitude of mitochondrial delta psi was decreased from -163 to -133 mV and the delta pH (mitochondria vs. cytoplasm) was essentially unchanged (aerobic, 0.78 +/- 0.08; anaerobic, 0.76 +/- 0.11). Thus the protonmotive force (delta p = delta psi-Z delta pH), is largely retained even in the absence of electron flow and ATP synthesis. Inhibitors of the ATP synthase (oligomycin), mitochondrial adenine nucleotide carrier (atractyloside), and glycolytic pathway (2-deoxy-D-glucose) do not affect the ability of the cell to maintain delta psi during anoxia. Therefore, the results indicate that retention of the protonmotive force is not due to utilization of ATP produced by glycolysis and suggest that mechanisms exist to preserve ion distribution during anoxia.
Collapse
|
42
|
Lundin M, Pereira da Silva L, Baltscheffsky H. Energy-dependent formation of free ATP in yeast submitochondrial particles, and its stimulation by oligomycin. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 890:279-85. [PMID: 3545293 DOI: 10.1016/0005-2728(87)90154-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yeast submitochondrial particles, in a Pi- and NADH-dependent reaction, produced low concentrations of free ATP in the absence of added ADP. This formation of free ATP, as measured by the luciferin-luciferase method, was strongly stimulated by oligomycin. For maximal stimulation, oligomycin was to be added not earlier than 5-10 min after the addition of NADH. Upon addition of antimycin or FCCP the system was completely inhibited. The amount of free ATP formed corresponded to one-third of the amount of bound ATP in submitochondrial particles. The stimulatory effect of oligomycin disappeared if the submitochondrial particles were spun down after oligomycin stimulation and then resuspended in the reaction medium, whereas submitochondrial particles with no oligomycin added initially were stimulated by oligomycin after the same procedure. A different picture emerged with addition of ADP. If the submitochondrial particles were preenergized with NADH in the presence of oligomycin before the addition of ADP the formation of free ATP upon subsequent addition of ADP was inhibited by oligomycin. In the presence of oligomycin, but lacking preenergization with NADH, a stimulation of free ATP formation was achieved with added ADP. A possible explanation for the stimulating effect of oligomycin on ATP formation in the absence of added ADP is that it enhances the release of bound ATP in an energy-requiring process. The release of only about one-third of the bound ATP could indicate that one of three nucleotide-binding subunits involved in the mechanism of ATP formation by ATP synthase is in a state suitable for such an energy-dependent release of ATP.
Collapse
|
43
|
Caplan SR, Pietrobon D. Theoretical analysis of double-titration experiments. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 895:241-58. [PMID: 3333015 DOI: 10.1016/s0304-4173(87)80004-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S R Caplan
- Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
44
|
Ghazi A, Delamourd L, Shechter E. Absence of a unique relationship between active transport of lactose and protonmotive force in E. coli. FEBS Lett 1986; 209:325-9. [PMID: 3025020 DOI: 10.1016/0014-5793(86)81136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The relationship between active transport of lactose via the lactose permease and the protonmotive force has been determined in E. coli cells using either the respiratory chain inhibitor cyanide or protonophores to decrease the protonmotive force progressively. In contradiction with the prediction of the delocalized chemiosmotic theory, two different relationships were obtained depending on the method used.
Collapse
|
45
|
Hackenbrock CR, Chazotte B, Gupte SS. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 1986; 18:331-68. [PMID: 3021714 DOI: 10.1007/bf00743010] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review focuses on our studies over the past ten years which reveal that the mitochondrial inner membrane is a fluid-state rather than a solid-state membrane and that all membrane proteins and redox components which catalyze electron transport and ATP synthesis are in constant and independent diffusional motion. The studies reviewed represent the experimental basis for the random collision model of electron transport. We present five fundamental postulates upon which the random collision model of mitochondrial electron transport is founded: All redox components are independent lateral diffusants; Cytochrome c diffuses primarily in three dimensions; Electron transport is a diffusion-coupled kinetic process; Electron transport is a multicollisional, obstructed, long-range diffusional process; The rates of diffusion of the redox components have a direct influence on the overall kinetic process of electron transport and can be rate limiting, as in diffusion control. The experimental rationales and the results obtained in testing each of the five postulates of the random collision model are presented. In addition, we offer the basic concepts, criteria and experimental strategies that we believe are essential in considering the significance of the relationship between diffusion and electron transport. Finally, we critically explore and assess other contemporary studies on the diffusion of inner membrane components related to electron transport including studies on: rotational diffusion, immobile fractions, complex formation, dynamic aggregates, and rates of diffusion. Review of all available data confirms the random collision model and no data appear to exist that contravene it. It is concluded that mitochondrial electron transport is a diffusion-based random collision process and that diffusion has an integral and controlling affect on electron transport.
Collapse
|
46
|
Kraayenhof R, De Wolf F, Van Walraven H, Krab K. The significance of interfacial charge and proton displacements for the mechanism of energy transduction in biomembranes. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0302-4598(86)85007-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
|
48
|
Zoratti M, Petronilli V, Azzone GF. ATP synthase-mediated proton fluxes and phosphorylation in rat liver mitochondria: dependence on delta mu H. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 851:123-35. [PMID: 2873837 DOI: 10.1016/0005-2728(86)90255-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dependence of the proton flux through the ATP synthases of rat liver mitochondria on a driving force composed mainly of a potassium diffusion potential was determined and compared with the relationship between rate of phosphorylation and delta mu H given by titrations with the respiratory inhibitor malonate. The two functions are in good agreement in the lower part of the delta mu H range covered. However, the maximal proton fluxes through the ATP synthases are much lower than needed to account for the rate of State 3 phosphorylation sustained by the same mitochondria oxidizing succinate. Possible reasons for this behavior are discussed.
Collapse
|
49
|
Abstract
An analysis is made of the generation of different types of field within biological systems. The fields are interactive being electrical, entropic (concentration gradients), chemical potential or mechanical in character. It is the primary disposition of proteins both in membranes and other organized systems which create the initial pattern of fields, but subsequently the distribution of proteins and the fields are mutually dependent. The value of the patterns is discussed.
Collapse
|
50
|
Westerhoff HV, Tsong TY, Chock PB, Chen YD, Astumian RD. How enzymes can capture and transmit free energy from an oscillating electric field. Proc Natl Acad Sci U S A 1986; 83:4734-8. [PMID: 2941758 PMCID: PMC323816 DOI: 10.1073/pnas.83.13.4734] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, it has been demonstrated that free energy from an alternating electric field can drive the active transport of Rb+ by way of the Na+, K+-ATPase. In the present work, it is shown why many transmembrane enzymes can be expected to absorb free energy from an oscillating electric field and transduce that to chemical or transport work. In the theoretical analysis it turned out to be sufficient that (i) the catalytic process be accompanied by either net or cyclic charge translocation across the membrane and (ii) the stability of the enzyme states involved be asymmetric. Calculations based on a four-state model reveal that free-energy transduction occurs with sinusoidal, square-wave, and positive-only oscillating electric fields and for cases that exhibit either linear or exponential field-dependent rate constants. The results suggest that in addition to oscillating electric field-driven transport, the proposed mechanism can also be used to explain, in part, the "missing" free energy term in the cases in which ATP synthesis has been observed with insufficient transmembrane proton electrochemical potential difference.
Collapse
|