1
|
Shook EN, Barlow GT, Garcia-Rosales D, Gibbons CJ, Montague TG. Dynamic skin behaviors in cephalopods. Curr Opin Neurobiol 2024; 86:102876. [PMID: 38652980 DOI: 10.1016/j.conb.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain. During camouflage, cephalopods recreate on their skin an approximation of what they see, providing a window into perceptual processes in the brain. Additionally, cephalopods communicate their internal state during social encounters using innate skin patterns, and create waves of pigmentation on their skin during periods of arousal. Thus, by leveraging the visual displays of cephalopods, we can gain insight into how the external world is represented in the brain and how this representation is transformed into a recapitulation of the world on the skin. Here, we describe the rich skin behaviors of the coleoid cephalopods, what is known about cephalopod neuroanatomy, and how advancements in gene editing, machine learning, optical imaging, and electrophysiological tools may provide an opportunity to explore the neural bases of these fascinating behaviors.
Collapse
Affiliation(s)
- Erica N Shook
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - George Thomas Barlow
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Daniella Garcia-Rosales
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Connor J Gibbons
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Winlow W, Polese G, Moghadam HF, Ahmed IA, Di Cosmo A. Sense and Insensibility - An Appraisal of the Effects of Clinical Anesthetics on Gastropod and Cephalopod Molluscs as a Step to Improved Welfare of Cephalopods. Front Physiol 2018; 9:1147. [PMID: 30197598 PMCID: PMC6117391 DOI: 10.3389/fphys.2018.01147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Recent progress in animal welfare legislation stresses the need to treat cephalopod molluscs, such as Octopus vulgaris, humanely, to have regard for their wellbeing and to reduce their pain and suffering resulting from experimental procedures. Thus, appropriate measures for their sedation and analgesia are being introduced. Clinical anesthetics are renowned for their ability to produce unconsciousness in vertebrate species, but their exact mechanisms of action still elude investigators. In vertebrates it can prove difficult to specify the differences of response of particular neuron types given the multiplicity of neurons in the CNS. However, gastropod molluscs such as Aplysia, Lymnaea, or Helix, with their large uniquely identifiable nerve cells, make studies on the cellular, subcellular, network and behavioral actions of anesthetics much more feasible, particularly as identified cells may also be studied in culture, isolated from the rest of the nervous system. To date, the sorts of study outlined above have never been performed on cephalopods in the same way as on gastropods. However, criteria previously applied to gastropods and vertebrates have proved successful in developing a method for humanely anesthetizing Octopus with clinical doses of isoflurane, i.e., changes in respiratory rate, color pattern and withdrawal responses. However, in the long term, further refinements will be needed, including recordings from the CNS of intact animals in the presence of a variety of different anesthetic agents and their adjuvants. Clues as to their likely responsiveness to other appropriate anesthetic agents and muscle relaxants can be gained from background studies on gastropods such as Lymnaea, given their evolutionary history.
Collapse
Affiliation(s)
- William Winlow
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Hadi-Fathi Moghadam
- Department of Physiology, Faculty of Medicine, Physiology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Bellier JP, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H. Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm. Brain Struct Funct 2017; 222:3043-3061. [PMID: 28247020 DOI: 10.1007/s00429-017-1385-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023]
Abstract
The octopus arm contains a tridimensional array of muscles with a massive sensory-motor system. We herein provide the first evidence for the existence of serotonin (5-HT) in the octopus arm nervous system and investigated its distribution using immunohistochemistry. 5-HT-like immunoreactive (5-HT-lir) nerve cell bodies were exclusively localized in the cellular layer of the axial nerve cord. Those cell bodies emitted 5-HT-lir nerve fibers in the direction of the sucker, the intramuscular nerves cords, the ganglion of the sucker, and the intrinsic musculature. Others 5-HT-lir nerve fibers were observed in various tissues, including the cerebrobrachial tract, the skin, and the blood vessels. 5-HT was detected by high-performance liquid chromatography in various regions of the octopus arm at levels matching the density of 5-HT-lir staining. The absence of 5-HT-lir interconnections between the cerebrobrachial tract and the other components of the axial nerve cord suggests that two types of 5-HT-lir innervation exist in the arm. One type, which originates from the brain, may innervate the periphery through the cerebrobrachial tract. Another type, which originates in the cellular layer of the axial nerve cord, may form an intrinsic network in the arm. In addition, 5-HT-lir fibers likely emitted from the neuropil of the axial nerve cord were found to project into cells showing staining for peripheral choline acetyltransferase, a marker of sensory cells of the sucker. Taken together, these observations suggest that intrinsic 5-HT-lir innervation may participate in the sensory transmission in the octopus arm.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yu Xie
- Life Science Research Center, Beihua University, Jilin, 132013, China
| | - Sameh Mohamed Farouk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
5
|
Fostering cephalopod biology research: past and current trends and topics. INVERTEBRATE NEUROSCIENCE 2014; 13:1-9. [PMID: 23690273 DOI: 10.1007/s10158-013-0156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D'Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P. Cephalopods in neuroscience: regulations, research and the 3Rs. INVERTEBRATE NEUROSCIENCE 2014; 14:13-36. [PMID: 24385049 PMCID: PMC3938841 DOI: 10.1007/s10158-013-0165-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
Collapse
|
7
|
Shomrat T, Feinstein N, Klein M, Hochner B. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 2010; 169:52-64. [PMID: 20433903 DOI: 10.1016/j.neuroscience.2010.04.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
The modern cephalopod mollusks (coleoids) are considered the most behaviorally advanced invertebrate, yet little is known about the neurophysiological basis of their behaviors. Previous work suggested that the vertical lobe (VL) of cephalopods is a crucial site for the learning and memory components of these behaviors. We are therefore studying the neurophysiology of the VL in Octopus vulgaris and have discovered a robust activity-dependent long-term potentiation (LTP) of the synaptic input to the VL. Moreover, we have shown that the VL and its LTP are involved in behavioral long-term memory acquisition. To advance our understanding of the VL as a learning neural network we explore the possible involvement of neuromodulation in VL function. Here we examine whether the well studied serotonergic modulation in simple models of learning in gastropods mollusks is conserved in the octopus VL. We demonstrate histochemically that the VL is innervated by afferent terminals containing 5-HT immunoreactivity (5-HT-IR). Physiologically, 5-HT has a robust facilitatory effect on synaptic transmission and activity-dependent LTP induction. These results suggest that serotonergic neuromodulation is a part of a reinforcing/reward signaling system conserved in both simple and complex learning systems of mollusks. However, there are notable functional differences. First, the effective concentration of 5-HT in the VL is rather high (100 microM); secondly, only neuropilar regions but not cell bodies in the VL are innervated by terminals containing 5-HT-IR. Thirdly, repetitive or long exposures to 5-HT do not lead to a clear long-term facilitation. We propose that in the octopus VL, while the basic facilitatory properties of molluscan 5-HT system are conserved, the system has adapted to convey signals from other brain areas to reinforce the activity-dependent associations at specific sites in the large connections matrix in the VL.
Collapse
Affiliation(s)
- T Shomrat
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neural Computation, Edmond J Safra Campus, Givat Ram Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
8
|
Bardou I, Leprince J, Chichery R, Vaudry H, Agin V. Vasopressin/oxytocin-related peptides influence long-term memory of a passive avoidance task in the cuttlefish, Sepia officinalis. Neurobiol Learn Mem 2010; 93:240-7. [DOI: 10.1016/j.nlm.2009.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
|
9
|
Boyer C, Maubert E, Charnay Y, Chichery R. Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 2007; 1133:53-66. [PMID: 17184745 DOI: 10.1016/j.brainres.2006.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/22/2022]
Abstract
Immunohistochemistry, using antibodies raised against mammalian neurokinin A (NKA) and serotonin (5-HT), was applied in double-staining experiments to map these molecules within the vertical lobe complex (inferior frontal, superior frontal, post-frontal, vertical, subvertical and precommissural lobes). NKA-like and 5-HT immunoreactivities were detected in all the lobes of the vertical lobe complex but were never colocalized in cell bodies or fibres. Except for the cell layers of the superior frontal lobe, both types of labelled cell bodies were observed in all the lobes. Both types of immunoreactive fibres were detected in all the neuropils and interestingly revealed clear subdivisions within some lobes, e.g., 5-HT-IR fibres were more abundant in the peripheral part of the vertical lobe whereas NKA-IR ones were widely observed in both the peripheral and central parts. In cephalopods, the vertical lobe complex is involved in learning and memory; thus, our results strongly suggest that one or more NKA-like and 5-HT molecules may function as neurochemical messengers in these cognitive processes.
Collapse
Affiliation(s)
- Christophe Boyer
- Laboratoire de Psychophysiologie (EA 3211), Université de Caen, 14032 Caen cedex, France
| | | | | | | |
Collapse
|
10
|
Mäthger LM, Collins TFT, Lima PA. The role of muscarinic receptors and intracellular Ca2+ in the spectral reflectivity changes of squid iridophores. J Exp Biol 2004; 207:1759-69. [PMID: 15107431 DOI: 10.1242/jeb.00955] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn this paper we describe changes in spectral reflectivity of the light reflectors (iridophores) of the squid Alloteuthis subulata. The spectral changes that can be seen in living squid, can also be brought about by superfusing whole skin preparations with acetylcholine (ACh) (20 μmol l-1) and muscarine (30 μmol l-1) but not nicotine (up to 50 mmol l-1), suggesting that cholinergic muscarinic receptors are involved. Changing the osmolarity of the external solution had no effect on spectral reflectivity. To study the iridophores at the cellular level,iridophores were isolated enzymatically. Lucifer Yellow filled the iridophores uniformly, showing cellular individuality. Isolated iridophore cells were loaded with Fura-2 AM and cytoplasmic Ca2+ was recorded ratiometrically. Intracellular Ca2+ (resting concentration at 66.16 nmol l-1) increased transiently after addition of ACh (50 μmol l-1), muscarine (25 μmol l-1), but not nicotine (up to 5 mmol l-1). Ca2+ also increased when superfused with potassium chloride (10 mmol l-1) and caffeine (2.5 mmol l-1). Hypo- and hyperosmotic solutions had no effects on the cytoplasmic Ca2+. By presenting direct evidence that iridophores are polarised cellular structures containing Ca2+ stores and that they are activated via cholinergic muscarinic receptors, we demonstrate that Ca2+ is involved in the reflectivity changes of the iridophores of A. subulata. Specimens were prepared for transmission electron microscopy. It was found that the orientations of the plates with respect to the skin surface are in good agreement with the expected orientations based on the prediction that the iridophores act as multilayer reflectors.
Collapse
Affiliation(s)
- Lydia M Mäthger
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| | | | | |
Collapse
|
11
|
Michel S, Schoch K, Stevenson PA. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 2000; 425:244-56. [PMID: 10954843 DOI: 10.1002/1096-9861(20000918)425:2<244::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We identified putative transmitters of the photoreceptors and circadian pacemaker neurons and found candidates for efferent control in the eye of the marine mollusc Bulla gouldiana. Established antisera against octopamine, dopamine, serotonin, histamine, glutamate, gamma-aminobutyric acid (GABA), and taurine were used, and central ganglia were processed in parallel to evaluate general staining quality. Photoreceptors and circadian pacemaker cells both expressed immunoreactivity for glutamate and taurine. The eye and its sheath were devoid of GABA-like immunoreactive material, and none of the antisera directed against biogenic amines labelled cells or processes in the nervous tissue of the eye. However, dopamine and octopamine antisera stained large spherical granules (diameter 2-3 microm) contained in granular cells that are located in the connective tissue encapsulating the eye and the optic nerve. The serotonin antiserum revealed a sparse distribution of varicose axon fibers in the optic nerve and eye sheath. No histamine-immunoreactive processes were revealed in the eye. The functional significance of these findings for the molluscan eye and its circadian clock is discussed.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
12
|
The angular acceleration receptor system of the statocyst of
Octopus vulgaris
: morphometry, ultrastructure, and neuronal and synaptic organization. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rstb.1987.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The angular acceleration receptor system (crista/cupula system) of the statocyst of
Octopus vulgaris
has been thoroughly reinvestigated, and detailed information is presented regarding its morphometry, ultrastructure, and neuronal and synaptic organization. In each of the nine crista sections, some receptor hair cells are primary sensory cells with an axon extending from their base. Also, there are large and small secondary sensory hair cells without axons, which make afferent synapses with large and small first-order afferent neurons. The afferent synapses are of two morphologically distinct types, having either a finger-like or a flat postsynaptic process; both can be seen in the same hair cell. In addition to the afferents, there is a dense plexus of efferent fibres in each crista section, and efferent synapses can be seen at the level of the hair cells and of the neurons. The morphometric analysis of the nine crista sections shows obvious differences between the odd-numbered (C1, C3, C5, C7, C9) and the even-numbered (C2, C4, C6, C8) crista sections: they differ in length, in the number of the small primary sensory cells and in the number of the small first-order afferent neurons. Centrifugal cobalt filling of the three crista nerves revealed a disproportionate innervation of the nine crista sections: the anterior crista nerve innervates section C1 and the first half of section C2, the medial crista nerve innervates the second half of section C2, sections C3, C4, C5, and the first half of section C6, and the posterior crista nerve innervates the second half of section C6, and sections C7, C8 and C9. In each of the three crista nerves, only 25% of the total number of axons are afferent fibres, the remaining 75 % are efferent. To each of the nine crista sections a cupula is attached. In the form and size of the cupulae there is again a conspicuous difference between the odd and the even crista sections: a small widebased cupula is attached to each of the odd crista sections, whereas the even crista sections each have a large narrow-based cupula with a small area of attachment. The results are discussed with reference to their functional consequences.
Collapse
|
13
|
|
14
|
Cephalopod myocardial receptors: Pharmacological studies on the isolated heart ofSepia officinalis (L.). ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02143580] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
The blood vessels of cephalopods. A comparative morphological and functional survey. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02143581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Kling G. Histochemical localization of cholinesterases and monoamines in the central heart of Sepia officinalis L. (Cephalopoda). HISTOCHEMISTRY 1986; 85:241-50. [PMID: 3744906 DOI: 10.1007/bf00494810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The central heart of the coleoid cephalopod, Sepia officinalis, was studied using acetylcholinesterase and fluorescence histochemistry. Using histo- and cytochemical reactions, acetylcholinesterase was localized in the axolemma and axoplasm of specific cardiac nerve fibres, as well as in the sarcolemma and within the sarcotubular system of the muscle cells. Butyrylcholinesterase exhibited a different distribution, being found only in the luminal trabecular muscle layer. Glyoxylic-acid-induced fluorescence indicated the presence of catecholamines (emission maximum, 470 nm) in cardiac nerve axons. These histochemical findings support the hypothesis that noradrenaline and/or dopamine and acetylcholine act antagonistically as natural transmitters. Fluorophores indicating the presence of serotonin were not observed. The present results are discussed in the light of previous pharmacological findings.
Collapse
|