1
|
Graham JA, Dumont JR, Winter SS, Brown JE, LaChance PA, Amon CC, Farnes KB, Morris AJ, Streltzov NA, Taube JS. Angular Head Velocity Cells within Brainstem Nuclei Projecting to the Head Direction Circuit. J Neurosci 2023; 43:8403-8424. [PMID: 37871964 PMCID: PMC10711713 DOI: 10.1523/jneurosci.0581-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei. Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To determine the types of information these brain areas convey to the HD network, we recorded neurons from these regions while female rats actively foraged in a cylindrical enclosure or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with the angular head velocity (AHV) of the rat. Two fundamental types of AHV cells were observed; (1) symmetrical AHV cells increased or decreased their firing with increases in AHV regardless of the direction of rotation, and (2) asymmetrical AHV cells responded differentially to clockwise and counterclockwise head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV, whereas firing was attenuated in other cells. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed from the vestibular nuclei that are responsible for generating the HD signal.SIGNIFICANCE STATEMENT Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of AHV cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated, some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the head of the rat in the azimuthal plane.
Collapse
Affiliation(s)
- Jalina A Graham
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Julie R Dumont
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Shawn S Winter
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Joel E Brown
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Patrick A LaChance
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Carly C Amon
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Kara B Farnes
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Ashlyn J Morris
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Nicholas A Streltzov
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| | - Jeffrey S Taube
- Department of Psychological Brain Sciences, Dartmouth College, Dartmouth, New Hampshire 03755
| |
Collapse
|
2
|
Graham JA, Dumont JR, Winter SS, Brown JE, LaChance PA, Amon CC, Farnes KB, Morris AJ, Streltzov NA, Taube JS. Angular head velocity cells within brainstem nuclei projecting to the head direction circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534808. [PMID: 37034640 PMCID: PMC10081164 DOI: 10.1101/2023.03.29.534808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An animal's perceived sense of orientation depends upon the head direction (HD) system found in several limbic structures and depends upon an intact peripheral vestibular labyrinth. However, how the vestibular system influences the generation, maintenance, and updating of the HD signal remains poorly understood. Anatomical and lesion studies point towards three key brainstem nuclei as being potential critical components in generating the HD signal: nucleus prepositus hypoglossi (NPH), supragenual nucleus (SGN), and dorsal paragigantocellularis reticular nuclei (PGRNd). Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To test this hypothesis, extracellular recordings were made in these areas while rats either freely foraged in a cylindrical environment or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with changes in the rat's angular head velocity (AHV). Two fundamental types of AHV cells were observed: 1) symmetrical AHV cells increased or decreased their neural firing with increases in AHV regardless of the direction of rotation; 2) asymmetrical AHV cells responded differentially to clockwise (CW) and counter-clockwise (CCW) head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV whereas others had attenuated firing. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed in the ascending vestibular pathways that are responsible for generating the HD signal. Significance Statement Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of angular head velocity (AHV) cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the rat's head in the azimuthal plane.
Collapse
|
3
|
Mehlman ML, Marcroft JL, Taube JS. Anatomical projections to the dorsal tegmental nucleus and abducens nucleus arise from separate cell populations in the nucleus prepositus hypoglossi, but overlapping cell populations in the medial vestibular nucleus. J Comp Neurol 2021; 529:2706-2726. [PMID: 33511641 PMCID: PMC8113086 DOI: 10.1002/cne.25119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/06/2022]
Abstract
Specialized circuitry in the brain processes spatial information to provide a sense of direction used for navigation. The dorsal tegmental nucleus (DTN) is a core component of this circuitry and utilizes vestibular inputs to generate neural activity encoding the animal's directional heading. Projections arising from the nucleus prepositus hypoglossi (NPH) and the medial vestibular nucleus (MVe) are thought to transmit critical vestibular signals to the DTN and other brain areas, including the abducens nucleus (ABN), a component of eye movement circuitry. Here, we utilized a dual retrograde tracer approach in rats to investigate whether overlapping or distinct populations of neurons project from the NPH or MVe to the DTN and ABN. We report that individual MVe neurons project to both the DTN and ABN. In contrast, we observed individual NPH neurons that project to either the DTN or ABN, but rarely to both structures simultaneously. We also examined labeling patterns in other structures located in the brainstem and posterior cortex and observed (1) complex patterns of interhemispheric connectivity between the left and right DTN, (2) projections from the supragenual nucleus, interpeduncular nucleus, and retrosplenial cortex to the DTN, (3) projections from the lateral superior olive to the ABN, and (4) a unique population of cerebrospinal fluid-contacting neurons in the dorsal raphe nucleus. Collectively, our experiments provide valuable new information that extends our understanding of the anatomical organization of the brain's spatial processing circuitry.
Collapse
Affiliation(s)
- Max L. Mehlman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jennifer L. Marcroft
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jeffrey S. Taube
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Brysch C, Leyden C, Arrenberg AB. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 2019; 17:110. [PMID: 31884959 PMCID: PMC6936144 DOI: 10.1186/s12915-019-0720-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. RESULTS Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. CONCLUSIONS We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.
Collapse
Affiliation(s)
- Christian Brysch
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Claire Leyden
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Aristides B Arrenberg
- Werner Reichardt Centre for Integrative Neuroscience and Institute for Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Comparisons of Neuronal and Excitatory Network Properties between the Rat Brainstem Nuclei that Participate in Vertical and Horizontal Gaze Holding. eNeuro 2017; 4:eN-NWR-0180-17. [PMID: 28966973 PMCID: PMC5616193 DOI: 10.1523/eneuro.0180-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Gaze holding is primarily controlled by neural structures including the prepositus hypoglossi nucleus (PHN) for horizontal gaze and the interstitial nucleus of Cajal (INC) for vertical and torsional gaze. In contrast to the accumulating findings of the PHN, there is no report regarding the membrane properties of INC neurons or the local networks in the INC. In this study, to verify whether the neural structure of the INC is similar to that of the PHN, we investigated the neuronal and network properties of the INC using whole-cell recordings in rat brainstem slices. Three types of afterhyperpolarization (AHP) profiles and five firing patterns observed in PHN neurons were also observed in INC neurons. However, the overall distributions based on the AHP profile and the firing patterns of INC neurons were different from those of PHN neurons. The application of burst stimulation to a nearby site of a recorded INC neuron induced an increase in the frequency of spontaneous EPSCs. The duration of the increased EPSC frequency of INC neurons was not significantly different from that of PHN neurons. The percent of duration reduction induced by a Ca2+-permeable AMPA (CP-AMPA) receptor antagonist was significantly smaller in the INC than in the PHN. These findings suggest that local excitatory networks that activate sustained EPSC responses also exist in the INC, but their activation mechanisms including the contribution of CP-AMPA receptors differ between the INC and the PHN.
Collapse
|
6
|
Walton MMG, Pallus A, Fleuriet J, Mustari MJ, Tarczy-Hornoch K. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome. J Neurophysiol 2017; 118:280-299. [PMID: 28404829 DOI: 10.1152/jn.00934.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington;
| | - Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington; and
| | - Kristina Tarczy-Hornoch
- Department of Ophthalmology, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
7
|
Haji-Abolhassani I, Guitton D, Galiana HL. Modeling eye-head gaze shifts in multiple contexts without motor planning. J Neurophysiol 2016; 116:1956-1985. [PMID: 27440248 DOI: 10.1152/jn.00605.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/14/2016] [Indexed: 11/22/2022] Open
Abstract
During gaze shifts, the eyes and head collaborate to rapidly capture a target (saccade) and fixate it. Accordingly, models of gaze shift control should embed both saccadic and fixation modes and a mechanism for switching between them. We demonstrate a model in which the eye and head platforms are driven by a shared gaze error signal. To limit the number of free parameters, we implement a model reduction approach in which steady-state cerebellar effects at each of their projection sites are lumped with the parameter of that site. The model topology is consistent with anatomy and neurophysiology, and can replicate eye-head responses observed in multiple experimental contexts: 1) observed gaze characteristics across species and subjects can emerge from this structure with minor parametric changes; 2) gaze can move to a goal while in the fixation mode; 3) ocular compensation for head perturbations during saccades could rely on vestibular-only cells in the vestibular nuclei with postulated projections to burst neurons; 4) two nonlinearities suffice, i.e., the experimentally-determined mapping of tectoreticular cells onto brain stem targets and the increased recruitment of the head for larger target eccentricities; 5) the effects of initial conditions on eye/head trajectories are due to neural circuit dynamics, not planning; and 6) "compensatory" ocular slow phases exist even after semicircular canal plugging, because of interconnections linking eye-head circuits. Our model structure also simulates classical vestibulo-ocular reflex and pursuit nystagmus, and provides novel neural circuit and behavioral predictions, notably that both eye-head coordination and segmental limb coordination are possible without trajectory planning.
Collapse
Affiliation(s)
- Iman Haji-Abolhassani
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; and
| | - Daniel Guitton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Henrietta L Galiana
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; and
| |
Collapse
|
8
|
Zeeh C, Mustari MJ, Hess BJM, Horn AKE. Transmitter inputs to different motoneuron subgroups in the oculomotor and trochlear nucleus in monkey. Front Neuroanat 2015; 9:95. [PMID: 26257611 PMCID: PMC4513436 DOI: 10.3389/fnana.2015.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
In all vertebrates the eyes are moved by six pairs of extraocular muscles enabling horizontal, vertical and rotatory movements. Recent work showed that each extraocular muscle is controlled by two motoneuronal groups: (1) Motoneurons of singly-innervated muscle fibers (SIF) that lie within the boundaries of motonuclei mediating a fast muscle contraction; and (2) motoneurons of multiply-innervated muscle fibers (MIF) in the periphery of motonuclei mediating a tonic muscle contraction. Currently only limited data about the transmitter inputs to the SIF and MIF motoneurons are available. Here we performed a quantitative study on the transmitter inputs to SIF and MIF motoneurons of individual muscles in the oculomotor and trochlear nucleus in monkey. Pre-labeled motoneurons were immunostained for GABA, glutamate decarboxylase, GABA-A receptor, glycine transporter 2, glycine receptor 1, and vesicular glutamate transporters 1 and 2. The main findings were: (1) the inhibitory control of SIF motoneurons for horizontal and vertical eye movements differs. Unlike in previous primate studies a considerable GABAergic input was found to all SIF motoneuronal groups, whereas a glycinergic input was confined to motoneurons of the medial rectus (MR) muscle mediating horizontal eye movements and to those of the levator palpebrae (LP) muscle elevating the upper eyelid. Whereas SIF and MIF motoneurons of individual eye muscles do not differ numerically in their GABAergic, glycinergic and vGlut2 input, vGlut1 containing terminals densely covered the supraoculomotor area (SOA) targeting MR MIF motoneurons. It is reasonable to assume that the vGlut1 input affects the near response system in the SOA, which houses the preganglionic neurons mediating pupillary constriction and accommodation and the MR MIF motoneurones involved in vergence.
Collapse
Affiliation(s)
- Christina Zeeh
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians UniversityMunich, Germany
| | - Michael J. Mustari
- Washington National Primate Research Center and Department of Ophthalmology, University of WashingtonSeattle, WA, USA
| | - Bernhard J. M. Hess
- Vestibulo-Oculomotor Laboratory Zürich, Department of Neurology, University HospitalZürich, Switzerland
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians UniversityMunich, Germany
| |
Collapse
|
9
|
Abstract
Encoding horizontal eye position in the oculomotor system occurs through temporal integration of eye velocity inputs to produce tonic outputs. The nucleus prepositus is commonly believed to be the "neural integrator" that accomplishes this function through the activity of its ensemble of predominantly burst-tonic neurons. Single-unit characterizations and labeling studies of these neurons have suggested that their collective output is achieved through local feedback loops produced by direct connections between them. If this is the case, then the ensemble of burst-tonic neurons should exhibit correlated activity. To obtain electrophysiological evidence of local interactions between neurons, we simultaneously recorded pairs (n = 29) of burst-tonic neurons in the nucleus prepositus of rhesus macaque monkeys using eight-channel linear microelectrode arrays. We computed the magnitude of synchrony between their spike trains as a function of eye position during ocular fixations and as a function of distance between neurons. Importantly, we found that neurons exhibit unexpected levels of positive synchrony, which is maximal during contralateral fixations and weakest when neurons are located far apart from one another (>300 μm). Together, our results support a role for shared inputs to ipsilateral pairs of burst-tonic neurons in the encoding of eye position in the primate nucleus prepositus.
Collapse
|
10
|
Butler WN, Taube JS. The nucleus prepositus hypoglossi contributes to head direction cell stability in rats. J Neurosci 2015; 35:2547-58. [PMID: 25673848 PMCID: PMC4323533 DOI: 10.1523/jneurosci.3254-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/03/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022] Open
Abstract
Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus (SGN) and nucleus prepositus hypoglossi (NPH), are known to project to the HD network and are thought to be possible relays of vestibular information. Previous work has shown that lesioning the SGN leads to a loss of spatial tuning in downstream HD cells, but the NPH has historically been defined as an oculomotor nuclei and therefore its role in contributing to the HD signal is less clear. Here, we investigated this role by recording HD cells in the anterior thalamus after either neurotoxic or electrolytic lesions of the NPH. There was a total loss of direction-specific firing in anterodorsal thalamus cells in animals with complete NPH lesions. However, many cells were identified that fired in bursts unrelated to the animals' directional heading and were similar to cells seen in previous studies that damaged vestibular-associated areas. Some animals with significant but incomplete lesions of the NPH had HD cells that were stable under normal conditions, but were unstable under conditions designed to minimize the use of external cues. These results support the hypothesis that the NPH, beyond its traditional oculomotor function, plays a critical role in conveying vestibular-related information to the HD circuit.
Collapse
|
11
|
Joshua M, Lisberger SG. A tale of two species: Neural integration in zebrafish and monkeys. Neuroscience 2014; 296:80-91. [PMID: 24797331 DOI: 10.1016/j.neuroscience.2014.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/30/2022]
Abstract
Selection of a model organism creates tension between competing constraints. The recent explosion of modern molecular techniques has revolutionized the analysis of neural systems in organisms that are amenable to genetic techniques. Yet, the non-human primate remains the gold-standard for the analysis of the neural basis of behavior, and as a bridge to the operation of the human brain. The challenge is to generalize across species in a way that exposes the operation of circuits as well as the relationship of circuits to behavior. Eye movements provide an opportunity to cross the bridge from mechanism to behavior through research on diverse species. Here, we review experiments and computational studies on a circuit function called "neural integration" that occurs in the brainstems of larval zebrafish, primates, and species "in between". We show that analysis of circuit structure using modern molecular and imaging approaches in zebrafish has remarkable explanatory power for details of the responses of integrator neurons in the monkey. The combination of research from the two species has led to a much stronger hypothesis for the implementation of the neural integrator than could have been achieved using either species alone.
Collapse
Affiliation(s)
- M Joshua
- Department of Neurobiology and Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| | - S G Lisberger
- Department of Neurobiology and Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Abstract
In addition to the well-known signals of retinal image slip, floccular complex spikes (CSs) also convey nonvisual signals. We recorded eye movement and CS activity from Purkinje cells in awake rabbits sinusoidally oscillated in the dark on a vestibular turntable. The stimulus frequency ranged from 0.2 to 1.2 Hz, and the velocity amplitude ranged from 6.3 to 50°/s. The average CS modulation was evaluated at each combination of stimulus frequency and amplitude. More than 75% of the Purkinje cells carried nonvisual CS signals. The amplitude of this modulation remained relatively constant over the entire stimulus range. The phase response of the CS modulation in the dark was opposite to that during the vestibulo-ocular reflex (VOR) in the light. With increased frequency, the phase response systematically shifted from being aligned with contraversive head velocity toward peak contralateral head position. At fixed frequency, the phase response was dependent on peak head velocity, indicating a system nonlinearity. The nonvisual CS modulation apparently reflects a competition between eye movement and vestibular signals, resulting in an eye movement error signal inferred from nonvisual sources. The combination of this error signal with the retinal slip signal in the inferior olive results in a net error signal reporting the discrepancy between the actual visually measured eye movement error and the inferred eye movement error derived from measures of the internal state. The presence of two error signals requires that the role of CSs in models of the floccular control of VOR adaption be expanded beyond retinal slip.
Collapse
|
13
|
Periodic alternating nystagmus caused by a medullary lesion in acute disseminated encephalomyelitis. Otol Neurotol 2014; 35:861-5. [PMID: 24608378 DOI: 10.1097/mao.0000000000000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To document a patient with periodic alternating nystagmus (PAN) caused by acute disseminated encephalomyelitis (ADEM) and suggest a mechanism to explain her PAN. PATIENT A 34-year-old woman with PAN caused by ADEM. INTERVENTION Diagnostic. RESULTS The patient complained of severe disequilibrium from the disease onset. Four years after onset, when she visited us, the patient exhibited prominent PAN consisting of alternating rightward and leftward components, which cycled about every 90 seconds and were accompanied by a 5-second translating phase with downbeating nystagmus. Eye movement analysis that separated the horizontal and vertical components revealed the presence of downbeating movements throughout all phases of the PAN. ENG recordings revealed slightly saccadic pursuit, slightly impaired optokinetic eye movement and an absence of visual suppression of the caloric response. MRI recorded at the onset of the disease revealed lesions in the medulla, the spinal cord at the C2 level, and the frontal horn of the left lateral ventricle, but not the cerebellum. CONCLUSION We attribute this patient's PAN to impairment of the nucleus prepositus hypoglossi in the medulla, which plays a role in the velocity storage system. In addition, cerebellar dysfunction is indicated by the occurrence of PAN while fixating.
Collapse
|
14
|
Gonçalves PJ, Arrenberg AB, Hablitzel B, Baier H, Machens CK. Optogenetic perturbations reveal the dynamics of an oculomotor integrator. Front Neural Circuits 2014; 8:10. [PMID: 24616666 PMCID: PMC3937552 DOI: 10.3389/fncir.2014.00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 01/30/2014] [Indexed: 11/29/2022] Open
Abstract
Many neural systems can store short-term information in persistently firing neurons. Such persistent activity is believed to be maintained by recurrent feedback among neurons. This hypothesis has been fleshed out in detail for the oculomotor integrator (OI) for which the so-called “line attractor” network model can explain a large set of observations. Here we show that there is a plethora of such models, distinguished by the relative strength of recurrent excitation and inhibition. In each model, the firing rates of the neurons relax toward the persistent activity states. The dynamics of relaxation can be quite different, however, and depend on the levels of recurrent excitation and inhibition. To identify the correct model, we directly measure these relaxation dynamics by performing optogenetic perturbations in the OI of zebrafish expressing halorhodopsin or channelrhodopsin. We show that instantaneous, inhibitory stimulations of the OI lead to persistent, centripetal eye position changes ipsilateral to the stimulation. Excitatory stimulations similarly cause centripetal eye position changes, yet only contralateral to the stimulation. These results show that the dynamics of the OI are organized around a central attractor state—the null position of the eyes—which stabilizes the system against random perturbations. Our results pose new constraints on the circuit connectivity of the system and provide new insights into the mechanisms underlying persistent activity.
Collapse
Affiliation(s)
- Pedro J Gonçalves
- Group for Neural Theory, Departement d'Etudes Cognitives, INSERM U960, École Normale Supérieure Paris, France ; Champalimaud Neuroscience Program, Centro Champalimaud - Champalimaud Centre for the Unknown Lisbon, Portugal ; Gatsby Computational Neuroscience Unit, University College London London, UK
| | - Aristides B Arrenberg
- Neuroscience Program, Department of Physiology, University of California San Francisco San Francisco, CA, USA ; Faculty of Biology, Center for Biological Signaling Studies, University of Freiburg Freiburg, Germany
| | - Bastian Hablitzel
- Faculty of Biology, Center for Biological Signaling Studies, University of Freiburg Freiburg, Germany
| | - Herwig Baier
- Neuroscience Program, Department of Physiology, University of California San Francisco San Francisco, CA, USA ; Max Planck Institute of Neurobiology Martinsried, Germany
| | - Christian K Machens
- Group for Neural Theory, Departement d'Etudes Cognitives, INSERM U960, École Normale Supérieure Paris, France ; Champalimaud Neuroscience Program, Centro Champalimaud - Champalimaud Centre for the Unknown Lisbon, Portugal
| |
Collapse
|
15
|
Wilkinson NM, Metta G. Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements. Front Syst Neurosci 2014; 8:29. [PMID: 24616670 PMCID: PMC3935396 DOI: 10.3389/fnsys.2014.00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/09/2014] [Indexed: 11/13/2022] Open
Abstract
Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modeled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of oculomotor postural control. We identify signatures reminiscent of a certain flavor of transient neurodynamics; toric traveling waves which rotate around a central phase singularity. Spiral waves play an organizational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales.
Collapse
Affiliation(s)
| | - Giorgio Metta
- iCub Facility, Fondazione Istituto Italiano di TecnologiaGenova, Italy
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of PlymouthPlymouth, UK
| |
Collapse
|
16
|
Diversity of neural responses in the brainstem during smooth pursuit eye movements constrains the circuit mechanisms of neural integration. J Neurosci 2013; 33:6633-47. [PMID: 23575860 DOI: 10.1523/jneurosci.3732-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neural integration converts transient events into sustained neural activity. In the smooth pursuit eye movement system, neural integration is required to convert cerebellar output into the sustained discharge of extraocular motoneurons. We recorded the expression of integration in the time-varying firing rates of cerebellar and brainstem neurons in the monkey during pursuit of step-ramp target motion. Electrical stimulation with single shocks in the cerebellum identified brainstem neurons that are monosynaptic targets of inhibition from the cerebellar floccular complex. They discharge in relation to eye acceleration, eye velocity, and eye position, with a stronger acceleration signal than found in most other brainstem neurons. The acceleration and velocity signals can be accounted for by opponent contributions from the two sides of the cerebellum, without integration; the position signal implies participation in the integrator. Other neurons in the vestibular nucleus show a wide range of blends of signals related to eye velocity and eye position, reflecting different stages of integration. Neurons in the abducens nucleus discharge homogeneously in relation mainly to eye position, and reflect almost perfect integration of the cerebellar outputs. Average responses of neural populations and the diverse individual responses of large samples of individual neurons are reproduced by a hierarchical neural circuit based on a model suggested the anatomy and physiology of the larval zebrafish brainstem. The model uses a combination of feedforward and feedback connections to support a neural circuit basis for integration in monkeys and other species.
Collapse
|
17
|
Dale A, Cullen KE. The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion. J Neurophysiol 2013; 109:1900-11. [PMID: 23324318 DOI: 10.1152/jn.00788.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Maintaining a constant representation of our heading as we move through the world requires the accurate estimate of spatial orientation. As one turns (or is turned) toward a new heading, signals from the semicircular canals are relayed through the vestibular system to higher-order centers that encode head direction. To date, there is no direct electrophysiological evidence confirming the first relay point of head-motion signals from the vestibular nuclei, but previous anatomical and lesion studies have identified the nucleus prepositus as a likely candidate. Whereas burst-tonic neurons encode only eye-movement signals during head-fixed eye motion and passive vestibular stimulation, these neurons have not been studied during self-generated movements. Here, we specifically address whether burst-tonic neurons encode head motion during active behaviors. Single-unit responses were recorded from the nucleus prepositus of rhesus monkeys and compared for head-restrained and active conditions with comparable eye velocities. We found that neurons consistently encoded eye position and velocity across conditions but did not exhibit significant sensitivity to head position or velocity. Additionally, response sensitivities varied as a function of eye velocity, similar to abducens motoneurons and consistent with their role in gaze control and stabilization. Thus our results demonstrate that the primate nucleus prepositus chiefly encodes eye movement even during active head-movement behaviors, a finding inconsistent with the proposal that this nucleus makes a direct contribution to head-direction cell tuning. Given its ascending projections, however, we speculate that this eye-movement information is integrated with other inputs in establishing higher-order spatial representations.
Collapse
Affiliation(s)
- Alexis Dale
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
18
|
Clark BJ, Brown JE, Taube JS. Head direction cell activity in the anterodorsal thalamus requires intact supragenual nuclei. J Neurophysiol 2012; 108:2767-84. [PMID: 22875899 PMCID: PMC3545120 DOI: 10.1152/jn.00295.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural activity in several limbic areas varies as a function of the animal's head direction (HD) in the horizontal plane. Lesions of the vestibular periphery abolish this HD cell signal, suggesting an essential role for vestibular afference in HD signal generation. The organization of brain stem pathways conveying vestibular information to the HD circuit is poorly understood; however, recent anatomical work has identified the supragenual nucleus (SGN) as a putative relay. To test this hypothesis, we made lesions of the SGN in rats and screened for HD cells in the anterodorsal thalamus. In animals with complete bilateral lesions, the overall number of HD cells was significantly reduced relative to control animals. In animals with unilateral lesions of the SGN, directional activity was present, but the preferred firing directions of these cells were unstable and less influenced by the rotation of an environmental landmark. In addition, we found that preferred directions displayed large directional shifts when animals foraged for food in a darkened environment and when they were navigating from a familiar environment to a novel one, suggesting that the SGN plays a critical role in projecting essential self-motion (idiothetic) information to the HD cell circuit.
Collapse
Affiliation(s)
- Benjamin J Clark
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
19
|
Miri A, Daie K, Burdine RD, Aksay E, Tank DW. Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution. J Neurophysiol 2011; 105:964-80. [PMID: 21084686 PMCID: PMC3059183 DOI: 10.1152/jn.00702.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/13/2010] [Indexed: 11/26/2022] Open
Abstract
The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals.
Collapse
Affiliation(s)
- Andrew Miri
- Princeton Neuroscience Institute and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
20
|
Saito Y, Yanagawa Y. Synaptic mechanism for the sustained activation of oculomotor integrator circuits in the rat prepositus hypoglossi nucleus: contribution of Ca2+-permeable AMPA receptors. J Neurosci 2010; 30:15735-46. [PMID: 21106813 PMCID: PMC6633753 DOI: 10.1523/jneurosci.2814-10.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/15/2010] [Accepted: 09/21/2010] [Indexed: 11/21/2022] Open
Abstract
Sustained neural activity is involved in several brain functions. Although recurrent/feedback excitatory networks are proposed as a neural mechanism for this sustained activity, the synaptic mechanisms have not been fully clarified. To address this issue, we investigated the excitatory synaptic responses of neurons in the prepositus hypoglossi nucleus (PHN), a brainstem structure involved as an oculomotor neural integrator, using whole-cell voltage-clamp recordings in rat slice preparations. Under a blockade of inhibitory synaptic transmissions, the application of "burst stimulation" (100 Hz, 20 pulses) to a brainstem area projecting to the PHN induced an increase in the frequency of EPSCs in PHN neurons that lasted for several seconds. Sustained EPSC responses were observed even when the burst stimulation was applied in the vicinity of a recorded neuron within the PHN that was isolated from the slices. Pharmacologically, the sustained EPSC responses were reduced by 1-naphthyl acetyl spermine (50 μm), a blocker of Ca(2+)-permeable AMPA (CP-AMPA) receptors. Analysis of the current-voltage (I-V) relationship of the current responses to iontophoretic application of kainate revealed that more than one-half of PHN neurons exhibited an inwardly rectifying I-V relationship. Furthermore, PHN neurons exhibiting inwardly rectifying current responses showed higher Ca(2+) permeability. The sustained EPSC responses were also reduced by flufenamic acid (200 μm), a blocker of Ca(2+)-activated nonselective cation (CAN) channels. These results indicate that the sustained EPSC responses are attributable to the sustained activation of local excitatory networks in the PHN, which arises from the activation of CP-AMPA receptors and CAN channels in PHN neurons.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan.
| | | |
Collapse
|
21
|
Prevosto V, Graf W, Ugolini G. Posterior parietal cortex areas MIP and LIPv receive eye position and velocity inputs via ascending preposito-thalamo-cortical pathways. Eur J Neurosci 2009; 30:1151-61. [PMID: 19735295 DOI: 10.1111/j.1460-9568.2009.06885.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vincent Prevosto
- Laboratoire de Neurobiologie Cellulaire et Moléculaire (NBCM), UPR9040 CNRS, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
22
|
Goldman MS. Memory without feedback in a neural network. Neuron 2009; 61:621-34. [PMID: 19249281 DOI: 10.1016/j.neuron.2008.12.012] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 11/28/2022]
Abstract
Memory storage on short timescales is thought to be maintained by neuronal activity that persists after the remembered stimulus is removed. Although previous work suggested that positive feedback is necessary to maintain persistent activity, here it is demonstrated how neuronal responses can instead be maintained by a purely feedforward mechanism in which activity is passed sequentially through a chain of network states. This feedforward form of memory storage is shown to occur both in architecturally feedforward networks and in recurrent networks that nevertheless function in a feedforward manner. The networks can be tuned to be perfect integrators of their inputs or to reproduce the time-varying firing patterns observed during some working memory tasks but not easily reproduced by feedback-based attractor models. This work illustrates a mechanism for maintaining short-term memory in which both feedforward and feedback processes interact to govern network behavior.
Collapse
Affiliation(s)
- Mark S Goldman
- Center for Neuroscience, Section of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Visual Sciences, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
23
|
Escudero M, Márquez-Ruiz J. Tonic inhibition and ponto-geniculo-occipital-related activities shape abducens motoneuron discharge during REM sleep. J Physiol 2008; 586:3479-91. [PMID: 18499728 DOI: 10.1113/jphysiol.2008.153254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Eye movements, ponto-geniculo-occipital (PGO) waves, muscular atonia and desynchronized cortical activity are the main characteristics of rapid eye movement (REM) sleep. Although eye movements designate this phase, little is known about the activity of the oculomotor system during REM sleep. In this work, we recorded binocular eye movements by the scleral search-coil technique and the activity of identified abducens (ABD) motoneurons along the sleep-wake cycle in behaving cats. The activity of ABD motoneurons during REM sleep was characterized by a tonic decrease of their mean firing rate throughout this period, and short bursts and pauses coinciding with the occurrence of PGO waves. We demonstrate that the decrease in the mean firing discharge was due to an active inhibition of ABD motoneurons, and that the occurrence of primary and secondary PGO waves induced a pattern of simultaneous but opposed phasic activation and inhibition on each ABD nucleus. With regard to eye movements, during REM sleep ABD motoneurons failed to codify eye position as during alertness, but continued to codify eye velocity. The pattern of tonic inhibition and the phasic activations and inhibitions shown by ABD motoneurons coincide with those reported in other non-oculomotor motoneurons, indicating that the oculomotor system - contrary to what has been accepted until now - is not different from other motor systems during REM sleep, and that all motor systems are receiving similar command signals during this period.
Collapse
Affiliation(s)
- Miguel Escudero
- Neurociencia y Comportamiento, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | | |
Collapse
|
24
|
Shino M, Ozawa S, Furuya N, Saito Y. Membrane properties of excitatory and inhibitory neurons in the rat prepositus hypoglossi nucleus. Eur J Neurosci 2008; 27:2413-24. [DOI: 10.1111/j.1460-9568.2008.06204.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
To construct an appropriate motor command from signals that provide a representation of desired action, the nervous system must take into account the dynamic characteristics of the motor plant to be controlled. In the oculomotor system, signals specifying desired eye velocity are thought to be transformed into motor commands by an inverse dynamic model of the eye plant that is shared for all types of eye movements and implemented by a weighted combination of eye velocity and position signals. Neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei (PH-BT neurons) were traditionally thought to encode the "eye position" component of this inverse model. However, not only are PH-BT responses inconsistent with this theoretical role, but compensatory eye movement responses to translation do not show evidence for processing by a common inverse dynamic model. Prompted by these discrepancies between theoretical notions and experimental observations, we reevaluated these concepts using multiple-frequency rotational and translational head movements. Compatible with the notion of a common inverse model, we show that PH-BT responses are unique among all premotor cell types in bearing a consistent relationship to the motor output during eye movements driven by different sensory stimuli. However, because their responses are dynamically identical to those of motoneurons, PH-BT neurons do not simply represent an internal component of the inverse model, but rather its output. They encode and distribute an estimate of the motor command, a signal critical for accurate motor execution and learning.
Collapse
Affiliation(s)
- Andrea M Green
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3T 1J4.
| | | | | |
Collapse
|
26
|
Márquez-Ruiz J, Morcuende S, Navarro-López JDD, Escudero M. Anatomical and pharmacological relationship between acetylcholine and nitric oxide in the prepositus hypoglossi nucleus of the cat: Functional implications for eye-movement control. J Comp Neurol 2007; 503:407-20. [PMID: 17503470 DOI: 10.1002/cne.21397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The prepositus hypoglossi (PH) nucleus has been proposed as a pivotal structure for horizontal eye-position generation in the oculomotor system. Recent studies have revealed that acetylcholine (ACh) in the PH nucleus could mediate the persistent activity necessary for this process, although the origin of this ACh remains unknown. It is also known that nitric oxide (NO) in the PH nucleus plays an important role in the control of velocity balance, being involved in a negative feedback control of tonic signals arriving at the PH nucleus. As it could be expected that neurons taking part in eye-position generation must control their tonic background inputs, the existence of a relationship between nitrergic and cholinergic neurons is hypothesized. In the present study we analyzed the distribution, size, and morphology of choline acetyltransferase-positive neurons, and their relationship with neuronal nitric oxide synthase in the PH nucleus of the cat. As presumed, some 96% of cholinergic neurons were also nitrergic in the PH nucleus, suggesting that NO is regulating the level of ACh released by cholinergic PH neurons. Furthermore, we studied the alterations induced by muscarinic-receptor agonists and antagonists on spontaneous and vestibularly induced eye movements in the alert cat and compared them with those induced in previous studies by modification of NO levels in the same animal preparation. The results suggest that ACh is necessary for the generation of saccadic and vestibular eye-position signals, whereas the NO is stabilizing the eye-position generator by controlling background activity reaching cholinergic neurons in the PH nucleus.
Collapse
Affiliation(s)
- Javier Márquez-Ruiz
- Neurociencia y Comportamiento. Fac. de Biología, Universidad de Sevilla, 41012-Sevilla, Spain
| | | | | | | |
Collapse
|
27
|
Beck JC, Rothnie P, Straka H, Wearne SL, Baker R. Precerebellar Hindbrain Neurons Encoding Eye Velocity During Vestibular and Optokinetic Behavior in the Goldfish. J Neurophysiol 2006; 96:1370-82. [PMID: 16775207 DOI: 10.1152/jn.00335.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating the causal role of head and eye movement signaling during cerebellar-dependent oculomotor behavior and plasticity is contingent on knowledge of precerebellar structure and function. To address this question, single-unit extracellular recordings were made from hindbrain Area II neurons that provide a major mossy fiber projection to the goldfish vestibulolateral cerebellum. During spontaneous behavior, Area II neurons exhibited minimal eye position and saccadic sensitivity. Sinusoidal visual and vestibular stimulation over a broad frequency range (0.1–4.0 Hz) demonstrated that firing rate mirrored the amplitude and phase of eye or head velocity, respectively. Table frequencies >1.0 Hz resulted in decreased firing rate relative to eye velocity gain, while phase was unchanged. During visual steps, neuronal discharge paralleled eye velocity latency (∼90 ms) and matched both the build-up and the time course of the decay (∼19 s) in eye velocity storage. Latency of neuronal discharge to table steps (40 ms) was significantly longer than for eye movement (17 ms), but firing rate rose faster than eye velocity to steady-state levels. The velocity sensitivity of Area II neurons was shown to equal (±10%) the sum of eye- and head-velocity firing rates as has been observed in cerebellar Purkinje cells. These results demonstrate that Area II neuronal firing closely emulates oculomotor performance. Conjoint signaling of head and eye velocity together with the termination pattern of each Area II neuron in the vestibulolateral lobe presents a unique eye-velocity brain stem-cerebellar pathway, eliminating the conceptual requirement of motor error signaling.
Collapse
Affiliation(s)
- James C Beck
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
28
|
Idoux E, Serafin M, Fort P, Vidal PP, Beraneck M, Vibert N, Mühlethaler M, Moore LE. Oscillatory and Intrinsic Membrane Properties of Guinea Pig Nucleus Prepositus Hypoglossi Neurons In Vitro. J Neurophysiol 2006; 96:175-96. [PMID: 16598060 DOI: 10.1152/jn.01355.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous models of the oculomotor neuronal integrator located in the prepositus hypoglossi nucleus (PHN) involve both highly tuned recurrent networks and intrinsic neuronal properties; however, there is little experimental evidence for the relative role of these two mechanisms. The experiments reported here show that all PHN neurons (PHNn) show marked phasic behavior, which is highly oscillatory in ∼25% of the population. The behavior of this subset of PHNn, referred to as type D PHNn, is clearly different from that of the medial vestibular nucleus neurons, which transmit the bulk of head velocity-related sensory vestibular inputs without integrating them. We have investigated the firing and biophysical properties of PHNn and developed data-based realistic neuronal models to quantitatively illustrate that their active conductances can produce the oscillatory behavior. Although some individual type D PHNn are able to show some features of mathematical integration, the lack of robustness of this behavior strongly suggests that additional network interactions, likely involving all types of PHNn, are essential for the neuronal integrator. Furthermore, the relationship between the impulse activity and membrane potential of type D PHNn is highly nonlinear and frequency-dependent, even for relatively small-amplitude responses. These results suggest that some of the synaptic input to type D PHNn is likely to evoke oscillatory responses that will be nonlinearly amplified as the spike discharge rate increases. It would appear that the PHNn have specific intrinsic properties that, in conjunction with network interconnections, enhance the persistent neural activity needed for their function.
Collapse
Affiliation(s)
- Erwin Idoux
- Laboratoire de Neurobiologie des Réseaux Sensorimoteurs, Centre National de la Recherche Scientifique (CNRS)-Université René Descartes (Paris 5) Unité Mixte de Recherche (UMR) 7060, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Klop EM, Mouton LJ, Holstege G. Periparabigeminal and adjoining mesencephalic tegmental field projections to the dorsolateral periaqueductal grey in cat - a possible role for oculomotor input in the defensive system. Eur J Neurosci 2006; 23:2145-57. [PMID: 16630061 DOI: 10.1111/j.1460-9568.2006.04740.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dorsolateral column of the mesencephalic periaqueductal grey (PAGdl) differs from its adjacent columns in terms of afferent and efferent connections and the distribution pattern of different histochemical substances. Functionally, PAGdl is associated with aversive and defensive behaviours, but in an earlier study of this laboratory [E.M. Klop et al. (2005) J. Comp. Neurol., 492, 303-322], it was found that PAGdl specifically receives input from the nucleus prepositus hypoglossi, which plays a role in oculomotor control. In search for other oculomotor-related brainstem structures projecting to PAGdl we studied the projections from the parabigeminal nucleus (PBGN) and its medially adjoining periparabigeminal area (PPBGA). In three cats, injections of wheatgerm agglutinin-horseradish peroxidase involving PAGdl did not, or to only a very limited extent, result in retrogradely labelled neurons in PBGN. When the peripheral parts of PAGdl were involved in the injection site, labelled neurons were located in PPBGA, while after an injection involving only the more central parts of PAGdl they were located in the tegmentum medial to the PPBGA. An anterograde tracing study using [3H]-leucine and biotinylated dextran amine affirmed that neurons in PPBGA project to more peripheral parts of PAGdl, while neurons located in the tegmentum medial to PPBGA project mainly to its central parts. These results provide further evidence for the existence of two different subdivisions of PAGdl. We hypothesize that PAGdl is alerted by sudden changes in the visual field, and that the PAGdl defensive system is inhibited when these changes are caused by eye movements.
Collapse
Affiliation(s)
- Esther Marije Klop
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, bldg 3215, PO Box 196, 9700 AD Groningen, the Netherlands.
| | | | | |
Collapse
|
30
|
Navarro-López JDD, Delgado-García JM, Yajeya J. Cooperative glutamatergic and cholinergic mechanisms generate short-term modifications of synaptic effectiveness in prepositus hypoglossi neurons. J Neurosci 2006; 25:9902-6. [PMID: 16251437 PMCID: PMC6725563 DOI: 10.1523/jneurosci.2061-05.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To maintain horizontal eye position on a visual target after a saccade, extraocular motoneurons need a persistent (tonic) neural activity, called "eye-position signal," generated by prepositus hypoglossi (PH) neurons. We have shown previously in vitro and in vivo that this neural activity depends, among others mechanisms, on the interplay of glutamatergic transmission and cholinergic synaptically triggered depolarization. Here, we used rat sagittal brainstem slices, including PH nucleus and paramedian pontine reticular formation (PPRF). We made intracellular recordings of PH neurons and studied their synaptic activation from PPRF neurons. Train stimulation of the PPRF area evoked a cholinergic-sustained depolarization of PH neurons that outlasted the stimulus. EPSPs evoked in PH neurons by single pulses applied to the PPRF presented a short-term potentiation (STP) after train stimulation. APV (an NMDA-receptor blocker) or chelerythrine (a protein kinase-C inhibitor) had no effect on the sustained depolarization, but they did block the evoked STP, whereas pirenzepine (an M1 muscarinic antagonist) blocked both the sustained depolarization and the STP of PH neurons. Thus, electrical stimulation of the PPRF area activates both glutamatergic and cholinergic axons terminating in the PH nucleus, the latter producing a sustained depolarization probably involved in the genesis of the persistent neural activity required for eye fixation. M1-receptor activation seems to evoke a STP of PH neurons via NMDA receptors. Such STP could be needed for the stabilization of the neural network involved in the generation of position signals necessary for eye fixation after a saccade.
Collapse
|
31
|
Abstract
The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Box 8115, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
32
|
Abstract
The cytoarchitecture and the histochemistry of nucleus prepositus hypoglossi and its afferent and efferent connections to oculomotor structures are described. The functional significance of the afferent connections of the nucleus is discussed in terms of current knowledge of the firing behavior of prepositus neurons in alert animals. The efferent connections of the nucleus and the results of lesion experiments suggest that it plays a role in a variety of functions related to the control of gaze.
Collapse
Affiliation(s)
- Robert A McCrea
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA.
| | | |
Collapse
|
33
|
Delgado-García JM, Yajeya J, Navarro-López JDD. A cholinergic mechanism underlies persistent neural activity necessary for eye fixation. VISUAL PERCEPTION - FUNDAMENTALS OF VISION: LOW AND MID-LEVEL PROCESSES IN PERCEPTION 2006; 154:211-24. [PMID: 17010712 DOI: 10.1016/s0079-6123(06)54011-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
It is generally accepted that the prepositus hypoglossi (PH) nucleus is the site where horizontal eye-velocity signals are integrated into eye-position ones. However, how does this neural structure produce the sustained activity necessary for eye fixation? The generation of the neural activity responsible for eye-position signals has been studied here using both in vivo and in vitro preparations. Rat sagittal brainstem slices including the PH nucleus and the paramedian pontine reticular formation (PPRF) rostral to the abducens nucleus were used for recording intracellularly the synaptic activation of PH neurons from the PPRF. Single electrical pulses applied to the PPRF showed a monosynaptic projection on PH neurons. This synapse was found to be glutamatergic in nature, acting on alpha-amino-3-hydroxy-5-methylisoxazole propionate (AMPA)/kainate receptors. Train stimulation (100 ms, 50-200 Hz) of the PPRF evoked a depolarization of PH neurons, exceeding (by hundreds of ms) the duration of the stimulus. Both duration and amplitude of this long-lasting depolarization were linearly related to train frequency. The train-evoked sustained depolarization was demonstrated to be the result of the additional activation of cholinergic fibers projecting onto PH neurons, because it was prevented by slice superfusion with atropine sulfate and pirenzepine (two cholinergic antagonists), and mimicked by carbachol and McN-A-343 (two cholinergic agonists). These results were confirmed in alert behaving cats. Microinjections of atropine and pirenzepine evoked an ipsilateral gaze-holding deficit consisting of an exponential-like, centripetal eye movement following saccades directed toward the injected site. These findings suggest that the sustained activity present in PH neurons carrying eye-position signals is the result of the combined action of PPRF neurons and the facilitative role of cholinergic terminals, both impinging on PH neurons. The present results are discussed in relation to other proposals regarding integrative properties of PH neurons and/or related neural circuits.
Collapse
|
34
|
Klop EM, Mouton LJ, Ehling T, Holstege G. Two parts of the nucleus prepositus hypoglossi project to two different subdivisions of the dorsolateral periaqueductal gray in cat. J Comp Neurol 2005; 492:303-22. [PMID: 16217796 DOI: 10.1002/cne.20728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The dorsolateral column of the mesencephalic periaqueductal gray (PAG) is a separate part of the PAG. Its afferent sources, efferent targets, and neurochemical properties differ from the adjacent PAG columns. The dorsolateral PAG is thought to be associated with aversive behaviors, but it is not yet understood how these behaviors are brought about. To elucidate the function of the PAG further, in the present study we investigated which brainstem regions project to the dorsolateral PAG. Wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections involving the dorsolateral PAG, but extending into the lateral part, resulted in many retrogradely labeled cells in the pontine and medullary tegmentum bilaterally. However, it was concluded that these neurons were labeled from the lateral PAG, because no anterograde labeling was found in the dorsolateral PAG after a large injection into the tegmentum. Retrogradely labeled cells were also found in the nucleus prepositus hypoglossi (PPH), mainly contralaterally. Injections of [3H]leucine or WGA-HRP in the PPH resulted in anterogradely labeled fibers in the dorsolateral PAG. Two separate distribution patterns were found. The caudal and intermediate PPH projected to a small region on the dorsolateral edge of the dorsolateral column, whereas the supragenual PPH distributed labeled fibers to all other parts of the dorsolateral PAG, except the area on the dorsolateral edge. These separate PPH projections suggest that two subdivisions exist within the dorsolateral PAG. The present findings suggest a role for the dorsolateral PAG in the oculomotor system.
Collapse
Affiliation(s)
- Esther Marije Klop
- Department of Anatomy and Embryology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Navarro-López JDD, Alvarado JC, Márquez-Ruiz J, Escudero M, Delgado-García JM, Yajeya J. A cholinergic synaptically triggered event participates in the generation of persistent activity necessary for eye fixation. J Neurosci 2004; 24:5109-18. [PMID: 15175380 PMCID: PMC6729203 DOI: 10.1523/jneurosci.0235-04.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals.
Collapse
|
36
|
Major G, Baker R, Aksay E, Seung HS, Tank DW. Plasticity and tuning of the time course of analog persistent firing in a neural integrator. Proc Natl Acad Sci U S A 2004; 101:7745-50. [PMID: 15136747 PMCID: PMC419677 DOI: 10.1073/pnas.0401992101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a companion paper, we reported that the goldfish oculomotor neural integrator could be trained to instability or leak by rotating the visual surround with a velocity proportional to +/- horizontal eye position, respectively. Here we analyze changes in the firing rate behavior of neurons in area I in the caudal brainstem, a central component of the oculomotor neural integrator. Persistent firing could be detuned to instability and leak, respectively, along with fixation behavior. Prolonged training could reduce the time constant of persistent firing of some cells by more than an order of magnitude, to <1 s. Normal visual feedback gradually retuned persistent firing of integrator neurons toward stability, along with fixation behavior. In animals with unstable fixations, approximately half of the eye position-related cells had upward or unstable firing rate drift. In animals with leaky fixations, two-thirds of the eye position-related cells showed leaky firing drift. The remaining eye position-related cells, generally those with lower eye position thresholds, showed a more complex pattern of history-dependent/predictive firing rate drift in relation to eye drift. These complex drift cells often showed a drop in maximum persistent firing rate after training to leak. Despite this diversity, firing drift and the degree of instability or leak in firing rates were broadly correlated with fixation performance. The presence, strength, and reversibility of this plasticity demonstrate that, in this system, visual feedback plays a vital role in gradually tuning the time course of persistent neural firing.
Collapse
Affiliation(s)
- Guy Major
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
37
|
De Zeeuw CI, Koekkoek SKE, van Alphen AM, Luo C, Hoebeek F, van der Steen J, Frens MA, Sun J, Goossens HHLM, Jaarsma D, Coesmans MPH, Schmolesky MT, De Jeu MTG, Galjart N. Gain and Phase Control of Compensatory Eye Movements by the Flocculus of the Vestibulocerebellum. THE VESTIBULAR SYSTEM 2004. [DOI: 10.1007/0-387-21567-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Abstract
In the oculomotor system, temporal integration of velocity commands into position signals may depend on synaptic feedback among neurons of a bilateral brainstem cell assembly known as the "neural integrator." Both ipsilateral excitatory and contralateral inhibitory projections between eye position-related integrator cells are hypothesized as a substrate for positive feedback supporting integration. Presence of feedback interactions should be evident in cross-correlation functions of neuron pairs. Here, unilateral and bilateral paired recordings were obtained during fixation behavior from neurons in goldfish brainstem area I, a key element of the integrator. During fixations, discharge of most unilateral pairs, composed of cells with eye position sensitivities of the same sign, was positively correlated with lag of 0-10 msec (n = 11 of 14 significant). Typically, a very narrow peak (mean half-width <4 msec) near zero lag was observed. Discharge of bilateral pairs, composed of cells with position sensitivities of the opposite sign, was either negatively correlated with lag of 0-10 msec (n = 5 of 13 significant) or not correlated. Troughs in negative correlations always had minima between 3 and 5 msec lag. These results are consistent with the feedback hypothesis of temporal integration, highlighting excitation unilaterally and inhibition bilaterally. Absence of visual input did not weaken correlations, but other sources of correlated input extrinsic to area I were not ruled out. Triplet recordings revealed that unilateral pairwise correlations were primarily independent. Correlation between unilateral pairs systematically decreased with increasing eye position, demonstrating that synchrony is not necessary for persistent activity at high firing rates.
Collapse
|
39
|
NAVARRO-LOPEZ JUAND, ALVARADO JUANCARLOS, ESCUDERO MIGUEL, DELGADO-GARCÍA JOSÉM, YAJEYA JAVIER. A Synaptic Mechanism on Prepositus Hypoglossi Neurons Underlying Eye Fixation. Ann N Y Acad Sci 2003. [DOI: 10.1111/j.1749-6632.2003.tb00253.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Sylvestre PA, Choi JTL, Cullen KE. Discharge dynamics of oculomotor neural integrator neurons during conjugate and disjunctive saccades and fixation. J Neurophysiol 2003; 90:739-54. [PMID: 12672779 DOI: 10.1152/jn.00123.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, "slide" and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.
Collapse
Affiliation(s)
- Pierre A Sylvestre
- Aerospace Medical Research Unit, Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
41
|
Brown JE, Yates BJ, Taube JS. Does the vestibular system contribute to head direction cell activity in the rat? Physiol Behav 2002; 77:743-8. [PMID: 12527029 DOI: 10.1016/s0031-9384(02)00928-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Head direction cells (HDC) located in several regions of the brain, including the anterior dorsal nucleus of the thalamus (ADN), postsubiculum (PoS), and lateral mammillary nuclei (LMN), provide the neural substrate for the determination of head direction. Although activity of HDC is influenced by various sensory signals and internally generated cues, lesion studies and some anatomical and physiological evidence suggest that vestibular inputs are critical for the maintenance of directional sensitivity of these cells. However, vestibular inputs must be transformed considerably in order to signal head direction, and the neuronal circuitry that accomplishes this signal processing has not been fully established. Furthermore, it is unclear why the removal of vestibular inputs abolishes the directional sensitivity of HDC, as visual and other sensory inputs and motor feedback signals strongly affect the firing of these neurons and would be expected to maintain their directional-related activity. Further physiological studies will be required to establish the role of vestibular system in producing HDC responses, and anatomical studies are needed to determine the neural circuitry that mediates vestibular influences on determination of head direction.
Collapse
Affiliation(s)
- J E Brown
- Department of Neuroscience, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | | |
Collapse
|
42
|
Moreno-López B, Escudero M, Estrada C. Nitric oxide facilitates GABAergic neurotransmission in the cat oculomotor system: a physiological mechanism in eye movement control. J Physiol 2002; 540:295-306. [PMID: 11927688 PMCID: PMC2290225 DOI: 10.1113/jphysiol.2001.013308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) synthesis by prepositus hypoglossi (PH) neurons is necessary for the normal performance of horizontal eye movements. We have previously shown that unilateral injections of NO synthase (NOS) inhibitors into the PH nucleus of alert cats produce velocity imbalance without alteration of the eye position control, both during spontaneous eye movements and the vestibulo-ocular reflex (VOR). This NO effect is exerted on the dorsal PH neuropil, whose fibres increase their cGMP content when stimulated by NO. In an attempt to determine whether NO acts by modulation of a specific neurotransmission system, we have now compared the oculomotor effects of NOS inhibition with those produced by local blockade of glutamatergic, GABAergic or glycinergic receptors in the PH nucleus of alert cats. Both glutamatergic antagonists used, 2-amino-5-phosphonovaleric acid (APV) and 2,3-dihydro-6-nitro-7-sulphamoyl-benzo quinoxaline (NBQX), induced a nystagmus contralateral to that observed upon NOS inhibition, and caused exponential eye position drift. In contrast, bicuculline and strychnine induced eye velocity alterations similar to those produced by NOS inhibitors, suggesting that NO oculomotor effects were due to facilitation of some inhibitory input to the PH nucleus. To investigate the anatomical location of the putative NO target neurons, the retrograde tracer Fast Blue was injected in one PH nucleus, and the brainstem sections containing Fast Blue-positive neurons were stained with double immunohistochemistry for NO-sensitive cGMP and glutamic acid decarboxylase. GABAergic neurons projecting to the PH nucleus and containing NO-sensitive cGMP were found almost exclusively in the ipsilateral medial vestibular nucleus and marginal zone. The results suggest that the nitrergic PH neurons control their own firing rate by a NO-mediated facilitation of GABAergic afferents from the ipsilateral medial vestibular nucleus. This self-control mechanism could play an important role in the maintenance of the vestibular balance necessary to generate a stable and adequate eye position signal.
Collapse
|
43
|
Abstract
To see while moving is a very basic and integrative sensorimotor function in vertebrates. To maintain visual acuity, the oculomotor system provides efficient compensatory eye movements for head and visual field displacements. Other types of eye movement allow the selection of new visual targets and binocular vision and stereopsis. Motor and premotor neuronal circuits involved in the genesis and control of eye movements are briefly described. The peculiar properties and robust biomechanics of the oculomotor system have allowed it to survive almost unchanged through vertebrate evolution.
Collapse
Affiliation(s)
- J M Delgado-García
- División de Neurociencias, Laboratorio Andaluz de Biología, Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
44
|
Aksay E, Baker R, Seung HS, Tank DW. Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. J Neurophysiol 2000; 84:1035-49. [PMID: 10938326 DOI: 10.1152/jn.2000.84.2.1035] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work in goldfish has suggested that the oculomotor velocity-to-position neural integrator for horizontal eye movements may be confined bilaterally to a distinct group of medullary neurons that show an eye-position signal. To establish this localization, the anatomy and discharge properties of these position neurons were characterized with single-cell Neurobiotin labeling and extracellular recording in awake goldfish while monitoring eye movements with the scleral search-coil method. All labeled somata (n = 9) were identified within a region of a medially located column of the inferior reticular formation that was approximately 350 microm in length, approximately 250 microm in depth, and approximately 125 microm in width. The dendrites of position neurons arborized over a wide extent of the ventral half of the medulla with especially heavy ramification in the initial 500 microm rostral of cell somata (n = 9). The axons either followed a well-defined ventral pathway toward the ipsilateral abducens (n = 4) or crossed the midline (n = 2) and projected toward the contralateral group of position neurons and the contralateral abducens. A mapping of the somatic region using extracellular single unit recording revealed that position neurons (n > 120) were the dominant eye-movement-related cell type in this area. Position neurons did not discharge below a threshold value of horizontal fixation position of the ipsilateral eye. Above this threshold, firing rates increased linearly with increasing temporal position [mean position sensitivity = 2.8 (spikes/s)/ degrees, n = 44]. For a given fixation position, average rates of firing were higher after a temporal saccade than a nasal one (n = 19/19); the magnitude of this hysteresis increased with increasing position sensitivity. Transitions in firing rate accompanying temporal saccades were overshooting (n = 43/44), beginning, on average, 17.2 ms before saccade onset (n = 17). Peak firing rate change accompanying temporal saccades was correlated with eye velocity (n = 36/41). The anatomical findings demonstrate that goldfish medullary position neurons have somata that are isolated from other parts of the oculomotor system, have dendritic fields overlapping with axonal terminations of neurons with velocity signals, and have axons that are capable of relaying commands to the abducens. The physiological findings demonstrate that the signals carried by position neurons could be used by motoneurons to set the fixation position of the eye. These results are consistent with a role for position neurons as elements of the velocity-to-position neural integrator for horizontal eye movements.
Collapse
Affiliation(s)
- E Aksay
- Biological Computation Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
| | | | | | | |
Collapse
|
45
|
Nguyen LT, Baker R, Spencer RF. Abducens internuclear and ascending tract of Deiters inputs to medial rectus motoneurons in the cat oculomotor nucleus: Synaptic organization. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<141::aid-cne1>3.0.co;2-#] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lynette T. Nguyen
- Departments of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Robert Baker
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York 10016
| | - Robert F. Spencer
- Departments of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
- Department of Otolaryngology‐Head and Neck Surgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
46
|
Abstract
Nitric oxide (NO) production by neurons in the prepositus hypoglossi (PH) nucleus is necessary for the normal performance of eye movements in alert animals. In this study, the mechanism(s) of action of NO in the oculomotor system has been investigated. Spontaneous and vestibularly induced eye movements were recorded in alert cats before and after microinjections in the PH nucleus of drugs affecting the NO-cGMP pathway. The cellular sources and targets of NO were also studied by immunohistochemical detection of neuronal NO synthase (NOS) and NO-sensitive guanylyl cyclase, respectively. Injections of NOS inhibitors produced alterations of eye velocity, but not of eye position, for both spontaneous and vestibularly induced eye movements, suggesting that NO produced by PH neurons is involved in the processing of velocity signals but not in the eye position generation. The effect of neuronal NO is probably exerted on a rich cGMP-producing neuropil dorsal to the nitrergic somas in the PH nucleus. On the other hand, local injections of NO donors or 8-Br-cGMP produced alterations of eye velocity during both spontaneous eye movements and vestibulo-ocular reflex (VOR), as well as changes in eye position generation exclusively during spontaneous eye movements. The target of this additional effect of exogenous NO is probably a well defined group of NO-sensitive cGMP-producing neurons located between the PH and the medial vestibular nuclei. These cells could be involved in the generation of eye position signals during spontaneous eye movements but not during the VOR.
Collapse
|
47
|
Abducens internuclear and ascending tract of Deiters inputs to medial rectus motoneurons in the cat oculomotor nucleus: Synaptic organization. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<141::aid-cne1>3.0.co;2-%23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Green AM, Galiana HL. Hypothesis for shared central processing of canal and otolith signals. J Neurophysiol 1998; 80:2222-8. [PMID: 9772275 DOI: 10.1152/jn.1998.80.4.2222] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A common goal of the translational vestibuloocular reflex (TVOR) and the rotational vestibuloocular reflex (RVOR) is to stabilize visual targets on the retinae during head movement. However, these reflexes differ significantly in their dynamic characteristics at both sensory and motor levels, implying a requirement for different central processing of canal and otolith signals. Semicircular canal afferents carry a signal proportional to angular head velocity, whereas primary otolith afferents modulate approximately in phase with linear head acceleration. Behaviorally, the RVOR exhibits a robust response down to approximately 0.01 Hz, yet the TVOR is only significant above approximately 0.5 Hz. Several hypotheses were proposed to address central processing in the TVOR pathways. All rely on a central filtering process that precedes a "neural integrator" shared with the RVOR. We propose an alternative hypothesis for the convergence of canal and otolith signals that does not impose the requirement for additional low-pass filters for the TVOR. The approach is demonstrated using an anatomically based, simple model structure that reproduces the general dynamic characteristics of the RVOR and TVOR at both ocular and central levels. Differential dynamic processing of otolith and canal signals is achieved by virtue of the location at which sensory information enters a shared but distributed neural integrator. As a result, only the RVOR is provided with compensation for the eye plant. Hence canal and otolith signals share a common central integrator, as in previous hypotheses. However, we propose that the required additional filtering of otolith signals is provided by the eye plant.
Collapse
Affiliation(s)
- A M Green
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
49
|
Quinn KJ, Didier AJ, Baker JF, Peterson BW. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity. Brain Res Bull 1998; 46:333-46. [PMID: 9671263 DOI: 10.1016/s0361-9230(98)00022-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.
Collapse
Affiliation(s)
- K J Quinn
- Department of Physiology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
50
|
Quinn KJ, Rude SA, Brettler SC, Baker JF. Chronic recording of the vestibulo-ocular reflex in the restrained rat using a permanently implanted scleral search coil. J Neurosci Methods 1998; 80:201-8. [PMID: 9667393 DOI: 10.1016/s0165-0270(98)00005-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A technique is described which allows accurate long-term monitoring of eye movements in the rat using permanently implanted scleral search coils. Search coils permanently sutured around the sclera yield vestibulo-ocular reflex (VOR) gain and phase values which are comparable to those reported previously in the literature using acutely implanted coils or electrooculographic electrodes. Considerations related to strain, sex and surgical procedures which permit measurement of responses in the chronically restrained rat are described. VOR gain and phase show a time course to their recovery following the implant surgery, with asymptotic performance typically attained approximately 10 days post-surgically. This technique, with the ability to monitor eye movements over weeks to months, appears ideal for development of rodent models of reflex adaptation which require observation of reflex behavior over extended periods of time. Development of a chronic procedure for monitoring eye movement in rodents is especially important given their initial response to restraint (extensive struggling). Finally, adaptation of this technique to smaller species (e.g., mouse) appears technically feasible which should permit the application of transgenic and knockout techniques to the determination of various vestibular reflex functions requiring long-term monitoring.
Collapse
Affiliation(s)
- K J Quinn
- Department of Physiology M211, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|