1
|
Chini B, Verhage M, Grinevich V. The Action Radius of Oxytocin Release in the Mammalian CNS: From Single Vesicles to Behavior. Trends Pharmacol Sci 2017; 38:982-991. [PMID: 28899620 DOI: 10.1016/j.tips.2017.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 08/18/2017] [Indexed: 11/29/2022]
Abstract
The hypothalamic neuropeptide oxytocin (OT) has attracted the attention both of the scientific community and a general audience because of its prosocial effects in mammals, and OT is now seen as a facilitator of mammalian species propagation. Furthermore, OT is a candidate for the treatment of social deficits in several neuropsychiatric and neurodevelopmental conditions. Despite such possibilities and a long history of studies on OT behavioral effects, the mechanisms of OT actions in the brain remain poorly understood. In the present review, based on anatomical, biochemical, electrophysiological, and behavioral studies, we propose a novel model of local OT actions in the central nervous system (CNS) via focused axonal release, which initiates intracellular signaling cascades in specific OT-sensitive neuronal populations and coordinated brain region-specific behaviors.
Collapse
Affiliation(s)
- Bice Chini
- Institute of Neuroscience, National Research Council (CNR), Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milan, and Humanitas Clinical and Research Center, Rozzano, Italy; Equal contributions.
| | - Matthijs Verhage
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) and VU Medical Center (VUmc), De Boelelaan 1085, 1081HV Amsterdam, The Netherlands; Equal contributions.
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides at the German Cancer Research Center (DKFZ), CellNetworks Cluster of Excellence at the University of Heidelberg, and Central Institute of Mental Health, Heidelberg, Mannheim, Germany; Equal contributions.
| |
Collapse
|
2
|
Noble EE, Billington CJ, Kotz CM, Wang C. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure. Am J Physiol Regul Integr Comp Physiol 2014; 307:R737-45. [PMID: 24990860 DOI: 10.1152/ajpregu.00118.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central oxytocin reduces food intake and increases energy expenditure. The ventromedial hypothalamic nucleus (VMN) is associated with energy balance and contains a high density of oxytocin receptors. We hypothesized that oxytocin in the VMN is a negative regulator of energy balance acting to reduce feeding and increase energy expenditure. To test this idea, oxytocin or vehicle was injected directly into the VMN of Sprague-Dawley rats during fasted and nonfasted conditions. Energy expenditure (via indirect calorimetry) and spontaneous physical activity (SPA) were recorded simultaneously. Animals were also exposed to a conditioned taste aversion test, to determine whether oxytocin's effects on food intake were associated with malaise. When food was available during testing, oxytocin-induced elevations in energy expenditure lasted for 1 h, after which overall energy expenditure was reduced. In the absence of food during the testing period, oxytocin similarly increased energy expenditure during the first hour, but differences in 12-h energy expenditure were eliminated, implying that the differences may have been due to the thermic effects of feeding (digestion, absorption, and metabolic processing). Oxytocin acutely elevated SPA and reduced feeding at doses that did not cause a conditioned taste aversion during both the fed and fasted states. Together, these data suggest that oxytocin in the VMN promotes satiety and acutely elevates energy expenditure and SPA and implicates the VMN as a relevant site for the antiobesity effects of oxytocin.
Collapse
Affiliation(s)
- Emily E Noble
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and
| | - Charles J Billington
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Department of Medicine, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Department of Neuroscience, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - ChuanFeng Wang
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota; Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota; and Minneapolis VA Health Care System, Minneapolis, Minnesota
| |
Collapse
|
3
|
Gordon I, Vander Wyk BC, Bennett RH, Cordeaux C, Lucas MV, Eilbott JA, Zagoory-Sharon O, Leckman JF, Feldman R, Pelphrey KA. Oxytocin enhances brain function in children with autism. Proc Natl Acad Sci U S A 2013; 110:20953-8. [PMID: 24297883 PMCID: PMC3876263 DOI: 10.1073/pnas.1312857110] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.
Collapse
Affiliation(s)
- Ilanit Gordon
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
- Department of Psychology, and
| | - Brent C. Vander Wyk
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
| | - Randi H. Bennett
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
| | - Cara Cordeaux
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
| | - Molly V. Lucas
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
| | - Jeffrey A. Eilbott
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
| | - Orna Zagoory-Sharon
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel; and
| | - James F. Leckman
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT 06520
| | - Ruth Feldman
- Department of Psychology, and
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel; and
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT 06520
| | - Kevin A. Pelphrey
- Center for Translational Developmental Neuroscience, Yale Child Study Center, Yale University, New Haven, CT 06520
| |
Collapse
|
4
|
Suzuki S, Handa RJ. Estrogen receptor-beta, but not estrogen receptor-alpha, is expressed in prolactin neurons of the female rat paraventricular and supraoptic nuclei: comparison with other neuropeptides. J Comp Neurol 2005; 484:28-42. [PMID: 15717309 DOI: 10.1002/cne.20457] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Estrogen receptor-alpha (ER-alpha) and ER-beta exhibit fine differences in their distributions in the rodent forebrain, and one such difference is observed in the paraventricular (PVN) and supraoptic (SON) nuclei. To investigate the functional significance of ER in these brain areas, we examined the neuropeptide characteristics of ER-expressing neurons in the PVN and SON of female rats by using dual-label immunocytochemistry. The distributions of ER-alpha immunoreactivity (ir) and ER-beta ir were nonoverlapping in the PVN and SON. Nuclear ER-alpha ir was found in a population of thyrotropin-releasing hormone (TRH)-expressing neurons in the PVN (5.93% +/- 1.20% SEM), but not in any other identified cell phenotype of the PVN and SON. The phenotype of neurons with the highest percentage expressing ER-beta was found to be prolactin (PRL) immunoreactive in both the parvocellular (84.95% +/- 4.11%) and the magnocellular (84.76% +/- 3.40%) parts of the PVN as well as the SON (87.57% +/- 4.64%). Similarly, most vasopressin-immunoreactive neurons were also ER-beta positive in the PVN (66.14% +/- 2.47%) and SON (72.42% +/- 4.51%). In contrast, although a high percentage of oxytocin (OXY) neurons coexpressed ER-beta in the PVN (84.39% +/- 2.99%), there was very little ER-beta/OXY colocalization in the SON. Low levels of corticotropin-releasing hormone neurons also expressed ER-beta ir in the PVN (12.57% +/- 1.99%), but there was no ER-beta colocalization with TRH. In summary, these findings further support the possibility of direct effects of estrogen on neuropeptide expression and implicate estrogen involvement in the regulation of various aspects of neuroendocrine function.
Collapse
Affiliation(s)
- Shotaro Suzuki
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
5
|
Torner L, Maloumby R, Nava G, Aranda J, Clapp C, Neumann ID. In vivo release and gene upregulation of brain prolactin in response to physiological stimuli. Eur J Neurosci 2004; 19:1601-8. [PMID: 15066156 DOI: 10.1111/j.1460-9568.2004.03264.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although prolactin (PRL) actions and expression in the brain have been shown, dynamic changes in its intracerebral release and gene expression have still not been demonstrated. Using push-pull perfusion, the in vivo release of PRL was monitored within the paraventricular nucleus (PVN) and medial preoptic area (MPOA) of virgin female, lactating and male rats in response to various stimuli. Perfusion with a depolarizing medium (56 mm K(+)) increased local release of PRL within both the PVN (P < 0.05) and MPOA (P < 0.05) of urethane-anaesthetized rats, indicating release from excitable neuronal structures. The PRL in perfusates was verified by radioimmunoassay, Nb2 cell bioassays and western blot. Systemic osmotic stimulation (3 m NaCl i.p., 8 mL/kg b.w.) raised PRL concentration in plasma (P < 0.01) but not within the PVN, suggesting independent release from the pituitary and in distinct brain regions. Immobilization for 30 min increased PRL release within the PVN (P < 0.05) and the MPOA (P < 0.01) of virgin female and male (P < 0.05 each) rats and increased hypothalamic PRL mRNA expression (P = 0.008) after 30 and 90 min as revealed by real-time polymerase chain reaction. This indicates a stress-induced activation of both PRL release from and synthesis in hypothalamic neurons. Additionally, PRL was significantly released within, but not outside, the PVN (P < 0.01) and the MPOA (P < 0.05) of lactating rats during suckling and this was accompanied by a significant increase of PRL mRNA (P < 0.05) in the hypothalamus 60 min after suckling. This is the first demonstration of stimulus-induced, locally restricted release and gene upregulation of PRL within the brain, emphasizing the involvement of this 'novel' neuropeptide in various brain functions.
Collapse
Affiliation(s)
- Luz Torner
- University of Regensburg, Institute of Zoology, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Li DP, Pan YZ, Pan HL. Acetylcholine attenuates synaptic GABA release to supraoptic neurons through presynaptic nicotinic receptors. Brain Res 2001; 920:151-8. [PMID: 11716821 DOI: 10.1016/s0006-8993(01)03055-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both inhibitory GABAergic and excitatory glutamatergic inputs to supraoptic nucleus (SON) neurons can influence the release of vasopressin and oxytocin. Acetylcholine is known to excite SON neurons and to increase vasopressin release. The functional significance of cholinergic receptors, located at the presynaptic nerve terminals, in the regulation of the excitability of SON neurons is not fully known. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the inhibitory GABAergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slice were identified microscopically, and the spontaneous miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the whole-cell voltage-clamp technique. The mIPSCs were abolished by the GABA(A) receptor antagonist, bicuculline (10 microM). Acetylcholine (100 microM) significantly reduced the frequency of mIPSCs of SON neurons from 3.59+/-0.36 to 1.62+/-0.20 Hz (n=37), but did not alter the amplitude and the decay time constant of mIPSCs. Furthermore, the nicotinic receptor antagonist, mecamylamine (10 microM, n=13), eliminated the inhibitory effect of acetylcholine on mIPSCs of SON neurons. The muscarinic receptor antagonist, atropine (100 microM), did not alter significantly the effect of acetylcholine on mIPSCs in most of the 17 SON neurons studied. These results suggest that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by inhibition of presynaptic GABA release. Activation of presynaptic nicotinic receptors located in the GABAergic terminals plays a major role in the cholinergic regulation of the inhibitory GABAergic input to SON neurons.
Collapse
Affiliation(s)
- D P Li
- Department of Anesthesiology, H187, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
7
|
Li DP, Pan HL. Potentiation of glutamatergic synaptic input to supraoptic neurons by presynaptic nicotinic receptors. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1105-13. [PMID: 11557616 DOI: 10.1152/ajpregu.2001.281.4.r1105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.
Collapse
Affiliation(s)
- D P Li
- Department of Anesthesiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | |
Collapse
|
8
|
Abstract
The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via G(q) proteins to phospholipase C-beta. The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the OT system is strongly steroid dependent. However, this is, unexpectedly, only partially reflected by the promoter sequences in the OT receptor gene. The classical actions of OT are stimulation of uterine smooth muscle contraction during labor and milk ejection during lactation. While the essential role of OT for the milk let-down reflex has been confirmed in OT-deficient mice, OT's role in parturition is obviously more complex. Before the onset of labor, uterine sensitivity to OT markedly increases concomitant with a strong upregulation of OT receptors in the myometrium and, to a lesser extent, in the decidua where OT stimulates the release of PGF(2 alpha). Experiments with transgenic mice suggest that OT acts as a luteotrophic hormone opposing the luteolytic action of PGF(2 alpha). Thus, to initiate labor, it might be essential to generate sufficient PGF(2 alpha) to overcome the luteotrophic action of OT in late gestation. OT also plays an important role in many other reproduction-related functions, such as control of the estrous cycle length, follicle luteinization in the ovary, and ovarian steroidogenesis. In the male, OT is a potent stimulator of spontaneous erections in rats and is involved in ejaculation. OT receptors have also been identified in other tissues, including the kidney, heart, thymus, pancreas, and adipocytes. For example, in the rat, OT is a cardiovascular hormone acting in concert with atrial natriuretic peptide to induce natriuresis and kaliuresis. The central actions of OT range from the modulation of the neuroendocrine reflexes to the establishment of complex social and bonding behaviors related to the reproduction and care of the offspring. OT exerts potent antistress effects that may facilitate pair bonds. Overall, the regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood. One has to conclude that the physiological regulation of the OT system will remain puzzling as long as the molecular mechanisms of genomic and nongenomic actions of steroids have not been clarified.
Collapse
Affiliation(s)
- G Gimpl
- Institut für Biochemie, Johannes Gutenberg Universität, Mainz, Germany.
| | | |
Collapse
|
9
|
Shioda S, Nakajo S, Hirabayashi T, Nakayama H, Nakaya K, Matsuda K, Nakai Y. Neuronal nicotinic acetylcholine receptor in the hypothalamus: morphological diversity and neuroendocrine regulations. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:45-54. [PMID: 9387862 DOI: 10.1016/s0169-328x(97)00122-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The subcellular localization and functional significance of neuronal nicotinic acetylcholine receptor alpha4-subunits were investigated in the rat hypothalamic supraoptic nucleus. A high level of alpha4 mRNA expression was found in the magnocellular neurons in the supraoptic nucleus. Strong immunoreactitivy for alpha4 in neurons of the supraoptic nucleus was detected in the rough endoplasmic reticulum and cytoplasmic matrix, although it was very weak in the Golgi apparatus, except for the transport vesicles. Immunoreactivity for alpha4 was detected in both the pre-synaptic axon terminals and post-synaptic axon terminals. A high level of signals for vasopressin mRNA was detected in the supraoptic nucleus after the animals were injected s.c. with nicotine. These findings suggest that alpha4-containing subtypes are synthesized in the rough endoplasmic reticulum and transported to the plasma membrane and serve as pre- and post-synaptic nicotinic acetylcholine receptors. Nicotine may up-regulate vasopressin gene expression in the supraoptic nucleus, acting through nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- S Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bisset GW, Fairhall KM, Tsuji K. The effect of neosurugatoxin on the release of neurohypophysial hormones by nicotine, hypotension and an osmotic stimulus in the rat. Br J Pharmacol 1992; 106:685-92. [PMID: 1504751 PMCID: PMC1907556 DOI: 10.1111/j.1476-5381.1992.tb14395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Experiments were carried out to test whether neosurugatoxin (NSTX) which blocks autonomic ganglia also acts centrally, like hexamethonium, on nicotinic cholinoceptors involved in the neural control of release of vasopressin and oxytocin from the neurohypophysis. 2. In the water-loaded rat under ethanol anaesthesia, nicotine 100 micrograms i.v. produced a pressor and an antidiuretic response accompanied by an increase in the urinary excretion of vasopressin and of oxytocin-like radioimmunoreactivity (OLRI). This indicates release of both vasopressin and oxytocin. 3. Under conditions in which tachyphylaxis was avoided, NSTX, 80 ng i.c.v., caused a prolonged inhibition of the release of both hormones by nicotine. 4. NSTX i.c.v. caused some reduction in the pressor response to nicotine. It is suggested that this response involves both central and peripheral stimulation of the sympathetic nervous system and that the central component is blocked by neosurugatoxin. 5. Muscarine, 40 ng i.c.v., produced a pressor and an antidiuretic response with increased urinary excretion of vasopressin and OLRI. All these effects were blocked by atropine but were not inhibited by NSTX. 6. Sodium nitroprusside (SN), 200 micrograms i.v., and hypertonic saline (HS; 1.54 M NaCl solution) 4 microliters i.c.v., both produced antidiuretic responses accompanied by increased urinary excretion of vasopressin and OLRI. The ratio of the excretion of vasopressin to that of OLRI was 5.1 +/- 1.3 (mean +/- s.e.: n = 8) for SN and 1.2 +/- 0.24 (mean +/- s.e.: n = 6) for HS.NSTX 80 ng i.c.v., caused a significant reduction in the antidiuretic response to the hypotension induced with SN: the increased urinary excretion of vasopressin was also significantly reduced but not that of OLRI. NSTX had no effect on the response to HS.7. We conclude that NSTX acts centrally on nicotinic cholinoceptors to block the release of vasopressin and oxytocin by nicotine and the release of vasopressin, but not that of oxytocin, by hypotension. It does not inhibit the release of either hormone by a central osmotic stimulus.
Collapse
Affiliation(s)
- G W Bisset
- Division of Neurophysiology & Neuropharmacology, National Institute for Medical Research, Mill Hill, London
| | | | | |
Collapse
|
11
|
Levine JD, Weiss ML, Rosenwasser AM, Miselis RR. Retinohypothalamic tract in the female albino rat: a study using horseradish peroxidase conjugated to cholera toxin. J Comp Neurol 1991; 306:344-60. [PMID: 1711060 DOI: 10.1002/cne.903060210] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There are several anatomically and functionally distinct retinofugal pathways, one of which is the retinohypothalamic tract (RHT). In this study, horseradish peroxidase conjugated to cholera toxin (CT-HRP), a sensitive neural tracer, was employed to describe the RHT in the female albino rat. Following uniocular injection of CT-HRP, both medial and lateral components of the RHT were evident. The medial component swept caudally into and through the suprachiasmatic nucleus (SCN) and dorsally to the subparaventricular zone. Terminal label was seen in the medial preoptic region, peri-SCN area, retrochiasmatic area, periventricular nucleus, anterior and central parts of the anterior hypothalamic area, and the subparaventricular zone. In contrast to the more focused and symmetrical medial component, the lateral component was diffuse with light terminal label in the lateral preoptic region, olfactory tubercle, lateral hypothalamus, supraoptic nucleus, and medial and posteroventral medial amygdaloid nuclei. The striking exception to this diffuse pattern of the lateral component was an extremely dense columnar terminal field over the dorsal border of the supraoptic nucleus. Whereas the intensity of label in terminal fields of the medial component was often similar on the sides ipsilateral and contralateral to the injection, the lateral component was consistently asymmetrical with greater labeling on the side contralateral to the injection. In addition, a light projection arrived at several thalamic nuclei by returning toward the thalamus from the tectal or pretectal areas via stria medullaris, and thus was not a part of the RHT. Implications for circadian as well as noncircadian photobiologic effects are discussed.
Collapse
Affiliation(s)
- J D Levine
- Department of Anatomy, University of Pennsylvania, Philadelphia 19104-6046
| | | | | | | |
Collapse
|
12
|
Hatton GI. Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 1990; 34:437-504. [PMID: 2202017 DOI: 10.1016/0301-0082(90)90017-b] [Citation(s) in RCA: 371] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the first known of the mammalian brain's neuropeptide systems, the magnocellular hypothalamo-neurohypophysial system has become a model. A great deal is known about the stimulus conditions that activate or inactivate the elements of this system, as well as about many of the actions of its peptidergic outputs upon peripheral tissues. The well-characterized actions of two of its products, oxytocin and vasopressin, on mammary, uterine, kidney and vascular tissues have facilitated the integration of newly discovered, often initially puzzling, information into the existing body of knowledge of this important regulatory system. At the same time, new conceptions of the ways in which neuropeptidergic neurons, or groups of neurons, participate in information flow have emerged from studies of the hypothalamo-neurohypophysial system. Early views of the SON and PVN nuclei, the neurons of which make up approximately one-half of this system, did not even associate these interesting, darkly staining anterior hypothalamic cells with hormone secretion from the posterior pituitary. Secretion from this part of the pituitary, it was thought, was neurally evoked from the pituicytes that made the oxytocic and antidiuretic "principles" and then released them upon command. When these views were dispelled by the demonstration that the hormones released from the posterior pituitary were synthesized in the interesting cells of the hypothalamus, the era of mammalian central neural peptidergic systems was born. Progress in developing an ever more complete structural and functional picture of this system has been closely tied to advancements in technology, specifically in the areas of radioimmunoassay, immunocytochemistry, anatomical tracing methods at the light and electron microscopic levels, and sophisticated preparations for electrophysiological investigation. Through the judicious use of these techniques, much has been learned that has led to revision of the earlier held views of this system. In a larger context, much has been learned that is likely to be of general application in understanding the fundamental processes and principles by which the mammalian nervous system works.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G I Hatton
- Neuroscience Program, Michigan State University, East Lansing 48824-1117
| |
Collapse
|
13
|
Shoji M, Share L, Crofton JT, Brooks DP. The effect on vasopressin release of microinjection of cholinergic agonists into the paraventricular nucleus of conscious rats. J Neuroendocrinol 1989; 1:401-6. [PMID: 19210408 DOI: 10.1111/j.1365-2826.1989.tb00138.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract We have studied in conscious unrestrained rats under basal conditions the effect of activation of muscarinic and nicotinic receptors in the paraventricular nucleus on vasopressin secretion and mean arterial blood pressure. The microinjection of oxotremorine (0.2, 2 or 20 ng), a specific muscarinic agonist, produced a substantial, dose-dependent, transient increase in the plasma vasopressin concentration. There was also a rise in mean arterial blood pressure and a bradycardia that followed the same time-course as the change in plasma vasopressin levels. The microinjection of nicotine (0.1, 1 or 10 HQ) into the paraventricular nucleus had only questionable effects on vasopressin release and mean arterial blood pressure; heart rate was unaffected. These findings suggest that muscarinic receptors may be of primary importance in the paraventricular nucleus in the Cholinergic stimulation of vasopressin release.
Collapse
Affiliation(s)
- M Shoji
- Department of Physiology and Biophysics, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|