1
|
Arribas RL, Romero A, Egea J, de los Ríos C. Modulation of serine/threonine phosphatases by melatonin: therapeutic approaches in neurodegenerative diseases. Br J Pharmacol 2018; 175:3220-3229. [PMID: 29781146 PMCID: PMC6057903 DOI: 10.1111/bph.14365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
Melatonin is an endogenous hormone produced by the pineal gland as well as many other tissues and organs. The natural decline in melatonin levels with ageing contributes significantly to the development of neurodegenerative disorders. Neurodegenerative diseases share common mechanisms of toxicity such as proteinopathy, mitochondrial dysfunction, metal dyshomeostasis, oxidative stress, neuroinflammation and an imbalance in the phosphorylation/dephosphorylation ratio. Several reports have proved the usefulness of melatonin in counteracting the events that lead to a neurodegenerative scenario. In this review, we have focused on the fact that melatonin could rectify the altered phosphorylation/dephosphorylation rate found in some neurodegenerative diseases by influencing the activity of phosphoprotein phosphatases. We analyse whether melatonin offers any protective activity towards these enzymes through a direct interaction. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Raquel L Arribas
- Instituto‐Fundación Teófilo Hernando, Departamento de Farmacología y TerapéuticaUniversidad Autónoma de MadridMadridSpain
| | - Alejandro Romero
- Department of Pharmacology & Toxicology, Faculty of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Javier Egea
- Instituto‐Fundación Teófilo Hernando, Departamento de Farmacología y TerapéuticaUniversidad Autónoma de MadridMadridSpain
- Molecular Neuroinflammation and Neuronal Plasticity Laboratory, Research UnitHospital Universitario Santa CristinaMadridSpain
- Instituto de Investigación SanitariaHospital Universitario de la PrincesaMadridSpain
| | - Cristóbal de los Ríos
- Instituto‐Fundación Teófilo Hernando, Departamento de Farmacología y TerapéuticaUniversidad Autónoma de MadridMadridSpain
- Instituto de Investigación SanitariaHospital Universitario de la PrincesaMadridSpain
| |
Collapse
|
2
|
Age-associated changes in sympathetic neurons containing neurofilament 200 kDa during chemical deafferentation. Bull Exp Biol Med 2014; 155:268-71. [PMID: 24131006 DOI: 10.1007/s10517-013-2129-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurofilament with a molecular weight of 200 kDa is detected in the rat sympathetic ganglia since birth. The percentage of neurons containing this neurofilament decreases during the first 20 days of life. Just solitary neurofilament-positive neurons are detected in rats at the age of 180 and 360 days. Chemical deafferentation by capsaicin, used as a model of age-associated neuron degeneration, leads to a significant reduction of the level of neurofilament-200-imminopositive neurons in comparison with the control starting from day 10 of life. Presumably, part of the sympathetic ganglionic neurons are capsaicin-positive and their function is afferent.
Collapse
|
3
|
Moe K, Kettunen P, Kvinnsland IH, Luukko K. Development of the pioneer sympathetic innervation into the dental pulp of the mouse mandibular first molar. Arch Oral Biol 2008; 53:865-73. [DOI: 10.1016/j.archoralbio.2008.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 02/18/2008] [Accepted: 03/06/2008] [Indexed: 12/29/2022]
|
4
|
Holzer P. Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol 2005; 121:49-146. [PMID: 1485073 DOI: 10.1007/bfb0033194] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Holzer
- University of Graz, Department of Experimental and Clinical Pharmacology, Austria
| |
Collapse
|
5
|
Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:115-44. [PMID: 12198808 DOI: 10.1016/s0074-7742(02)50075-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of abnormal neurofilament (NF) expression, processing, and structure as an etiological factor in diabetic neuropathy. Diabetic sensory and autonomic neuropathy in humans is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers-- the latter is probably the result of a dying-back of distal axons. NF filaments are composed of three subunit proteins, NFL, NFM, and NFH, and are major constituents of the axonal cylinder. It is clear that any abnormality in synthesis, delivery, or processing of these critical proteins could lead to severe impairments in axon structure and function. This article describes mechanisms of synthesis, phosphorylation, and delivery of NF and discusses how these processes may be abnormal in diabetics. The pathological alterations in the ganglion and preipheral nerve that occur in sensory and autonomic neuropath will be outlined and related to possible abnormal processing of NF. A major focus is the role or aberrant NF phosphorylation and its possible involvement in the imparied delivery of NF to the distal axon. Identification of stress-activated protein kinases (SAPKs) as NF kinases is discussed in detail and it is proposed that hyperglycemia-induced activation of SAPKs may be a primary etiological event in diabetic neuropathy.
Collapse
Affiliation(s)
- Paul Fernyhough
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
6
|
Brehmer A, Schrödl F, Neuhuber W. Correlated morphological and chemical phenotyping in myenteric type V neurons of porcine ileum. J Comp Neurol 2002; 453:1-9. [PMID: 12357427 DOI: 10.1002/cne.10358] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study was aimed at the immunohistochemical characterization of myenteric Stach type V neurons of the pig ileum that were not included in the widely used Dogiel classification. So far, this conspicuous population has been defined morphologically on the basis of silver-impregnated specimens only. By using neurofilament immunohistochemistry, type V neurons that occur singly or in aggregates could be identified unequivocally and could be distinguished from other smoothly contoured myenteric neurons, i.e., type II and type IV. Double-labeling immunohistochemistry revealed a number of potentially neuroactive substances or their synthesizing enzymes to be present in type V neurons. Choline acetyltransferase immunoreactivity (-ir) was found in all type V neurons, whereas neuronal nitric oxide synthase was detected in none. Leu-enkephalin-ir was found within 92.3%, somatostatin (SOM)-ir within 91.1%, calcitonin gene-related peptide (CGRP)-ir within 80.6% and met-enkephalin-ir within 74.7% of type V neurons. Triple-labeling immunohistochemistry was applied to address the question of a specific chemical coding for myenteric type V neurons. In contrast to other combinations of neuroactive substances/enzymes that were found in both type V and other, nontype V neurons, SOM/CGRP-ir was the only combination observed exclusively within type V neurons. Both substances were colocalized in 79.3% of type V neurons. This colocalization discriminates four-fifths of the type V neurons chemically from both type II neurons (CGRP positive, SOM negative) and type IV neurons (CGRP negative, SOM positive), which both share, at first glance, a similar morphology with type V neurons. These results further support the concept of a close correlation between morphologically defined neuronal type and chemical coding and, it is likely, also function in the enteric nervous system of larger mammals.
Collapse
Affiliation(s)
- Axel Brehmer
- Department of Anatomy I, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany.
| | | | | |
Collapse
|
7
|
Kirkcaldie MTK, Dickson TC, King CE, Grasby D, Riederer BM, Vickers JC. Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J Chem Neuroanat 2002; 24:163-71. [PMID: 12297262 DOI: 10.1016/s0891-0618(02)00043-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cellular localisation of neurofilament triplet subunits was investigated in the rat neocortex. A subset of mainly pyramidal neurons showed colocalisation of subunit immunolabelling throughout the neocortex, including labelling with the antibody SMI32, which has been used extensively in other studies of the primate cortex as a selective cellular marker. Neurofilament-labelled neurons were principally localised to two or three cell layers in most cortical regions, but dramatically reduced labelling was present in areas such as the perirhinal cortex, anterior cingulate and a strip of cortex extending from caudal motor regions through the medial parietal region to secondary visual areas. However, quantitative analysis demonstrated a similar proportion (10-20%) of cells with neurofilament triplet labelling in regions of high or low labelling. Combining retrograde tracing with immunolabelling showed that cellular content of the neurofilament proteins was not correlated with the length of projection. Double labelling immunohistochemistry demonstrated that neurofilament content in axons was closely associated with myelination. Analysis of SMI32 labelling in development indicated that content of this epitope within cell bodies was associated with relatively late maturation, between postnatal days 14 and 21. This study is further evidence of a cell type-specific regulation of neurofilament proteins within neocortical neurons. Neurofilament triplet content may be more closely related to the degree of myelination, rather than the absolute length, of the projecting axon.
Collapse
Affiliation(s)
- M T K Kirkcaldie
- School of Biomedical Sciences, University of Newcastle, NSW 2308, Callaghan, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Hu HZ, Gao N, Lin Z, Gao C, Liu S, Ren J, Xia Y, Wood JD. Chemical coding and electrophysiology of enteric neurons expressing neurofilament 145 in guinea pig gastrointestinal tract. J Comp Neurol 2001. [DOI: 10.1002/cne.1424] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Soussan L, Admon A, Aharoni A, Cohen Y, Michaelson DM. Isolation and characterization of the highly phosphorylated repeat domain of distinct heavy neurofilament subunit (NF-H) isoforms. Cell Mol Neurobiol 1996; 16:463-77. [PMID: 8879749 DOI: 10.1007/bf02150227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Recent examination of the hypothesis that distinctly phosphorylated NF-H isoforms exist in different types of neurons revealed that the extent of phosphorylation of the heavy neurofilament polypeptide of bovine ventral root motor neurons is markedly higher than that of dorsal root neurons. 2. In the present study we employed endoproteinase ASP-N for isolating the Lys-Ser-Pro (KSP)-rich domain of NF-H, which contains most of the NF-H phosphorylation sites. 3. Treatment of NF-H with ASP-N endoproteinase results in a cascade of products, the last of which is a polypeptide with apparent molecular weight of 120 kDa. Amino terminal sequence and amino acid composition analysis revealed that this fragment contains the KSP-rich domain of NF-H. 4. Treatment of ventral and dorsal root NF-H with ASP-N endoproteinase and analysis of the phosphoserine contents of the resulting 120 kDa fragments revealed that the 120 kDa fragment of ventral root NF-H is significantly more phosphorylated than that of dorsal root NF-H. 5. These findings show that the difference in extent of phosphorylation of ventral and dorsal root NF-H is due at least partly to the KSP-rich domain of NF-H.
Collapse
Affiliation(s)
- L Soussan
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
10
|
Eaker EY, Sallustio JE, Marchand SD, Sahu A, Kalra SP, Sninsky CA. Differential increase in neuropeptide Y-like levels and myenteric neuronal staining in diabetic rat intestine. REGULATORY PEPTIDES 1996; 61:77-84. [PMID: 8701031 DOI: 10.1016/0167-0115(95)00141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y is a regulatory peptide found in adrenergic and non-adrenergic neurons. Diabetes, which may cause autonomic neuropathy, induces an increase in hypothalamic neuropeptide Y (NPY) levels; thereby we measured the effects of chronic diabetes on neuropeptide Y in the intestine. Rats were injected with streptozotocin (65 mg/kg) and maintained for up to 20 weeks. Another group of rats was injected with 6-hydroxydopamine (50 mg/kg) x 2 to induce sympathectomy. Ileum and colon were harvested and both whole and microdissected intestine were (1) stained with antibodies to neuropeptide Y, vasoactive intestine polypeptide, and neurofilaments or (2) extracted for neuropeptide Y radioimmunoassay. Neuropeptide Y levels were similar under all conditions in the colon, but there was a trend toward an increase in the diabetic whole ileum. NPY levels were significantly increased in the dissected myenteric plexus ileal layer in diabetics. We noted an increase in the number of neuropeptide Y and vasoactive intestine polypeptide immunoreactive myenteric neurons in diabetics and after 6-hydroxydopamine-induced sympathectomy. Diabetes, and to a lesser extent sympathectomy, induced an increase in ileal neuropeptide Y levels and neuropeptide Y-staining myenteric but not submucosal neurons. Altered tissue levels of neuropeptide Y may account for certain of the gastrointestinal disturbances commonly seen in diabetes.
Collapse
Affiliation(s)
- E Y Eaker
- Department of Medicine, University of Florida, Gainesville 32608-1197, USA
| | | | | | | | | | | |
Collapse
|
11
|
Heym C, Braun B, Shuyi Y, Klimaschewski L, Colombo-Benkmann M. Immunohistochemical correlation of human adrenal nerve fibres and thoracic dorsal root neurons with special reference to substance P. Histochem Cell Biol 1995; 104:233-43. [PMID: 8542449 DOI: 10.1007/bf01835156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Applying a double-labelling immunofluorescence technique, six types of substance P-containing nerve fibres were distinguished in the human adrenal gland according to the immunohistochemical colocalization of (I) calcitonin gene-related peptide (CGRP), (II) cholecystokinin, (III) nitric oxide synthase, (IV) dynorphin, (V) somatostatin, and (VI) vasoactive intestinal polypeptide. Fibre populations I to IV in their mediator content resembled the respective subpopulations of primary sensory neurons in human thoracic dorsal root ganglia, while populations V and VI revealed no correspondence with dorsal root neurochemical coding. Nerve fibres with the combination substance P/nitric oxide synthase occurred only in the adrenal cortex, whereas all other fibre types were present in both cortex and medulla. As revealed by immuno-electron microscopy, substance P-immunolabelled axon varicosities (a) exhibited synaptic contacts with medullary chromaffin cells or with neuronal dendrites, (b) were directly apposed to cortical steroid cells and (c) were separated from fenestrated capillaries only by the interstitial space. These findings provide immunochemical support for an assumed sensory innervation of the human adrenal gland, and additionally suggest participation of substance P in efferent autonomic pathways. Furthermore, the results are indicative for a differentiated involvement of substance P in the direct and indirect regulation of neuroneuronal and neuroendocrine interactions.
Collapse
Affiliation(s)
- C Heym
- Institute for Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
12
|
Chertoff R, Soussan L, Roder H, Michaelson DM. Phosphorylation and dephosphorylation of distinct isoforms of the heavy neurofilament protein NF-H. Cell Mol Neurobiol 1995; 15:269-81. [PMID: 8590456 DOI: 10.1007/bf02073333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Previous immunohistochemical studies led to the suggestion that distinctly phosphorylated neurofilament isoforms exist in different types of neurons. We have recently examined this hypothesis by direct biochemical experiments, which revealed that the heavy neurofilament protein NF-H of bovine ventral root cholinergic neurons is more acidic and markedly more phosphorylated than that of bovine dorsal root neurons. 2. In the present study we employed this system to study the degree to which distinctly phosphorylated NF-H isoforms differ in the extents to which they can be phosphorylated and dephosphorylated in vitro. This was performed utilizing alkaline phosphatase and protein kinase PK40ERK, which is specific to serines of Lys-Ser-Pro (KSP) repeats. The results obtained reveal that: 3. The more extensively phosphorylated ventral root NF-H is dephosphorylated more rapidly than dorsal root NF-H. 4. Ventral root NF-H and dorsal root NF-H in their native form are both poor substrates of PK40ERK. 5. Following dephosphorylation, ventral root and dorsal root NF-H are phosphorylated extensively and differentially by this kinase. Under these conditions, PK40ERK catalyzes the incorporation of, respectively, 4.2 +/- 1.3 and 2.8 +/- 0.6 mol of phosphate per molecule of ventral root NF-H and dorsal root NF-H. The ratio of phosphates incorporated into ventral root NF-H to those incorporated into dorsal root NF-H is 1.46 +/- 0.17. 6. These findings support the hypothesis that different classes of neurons contain distinctly phosphorylated neurofilaments and show that ventral root and dorsal root neurons are a useful model system for studying the distinct characteristics of neurofilament phosphorylation in different types of neurons.
Collapse
Affiliation(s)
- R Chertoff
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
13
|
Heym C, Braun B, Klimaschewski L, Kummer W. Chemical codes of sensory neurons innervating the guinea-pig adrenal gland. Cell Tissue Res 1995; 279:169-81. [PMID: 7534648 DOI: 10.1007/bf00300702] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retrograde neuronal tracing in combination with double-labelling immunofluorescence was applied to distinguish the chemical coding of guinea-pig primary sensory neurons projecting to the adrenal medulla and cortex. Seven subpopulations of retrogradely traced neurons were identified in thoracic spinal ganglia T1-L1. Five subpopulations contained immunolabelling either for calcitonin gene-related peptide (CGRP) alone (I), or for CGRP, together with substance P (II), substance P/dynorphin (III), substance P/cholecystokinin (IV), and substance P/nitric oxide synthase (V), respectively. Two additional subpopulations of retrogradely traced neurons were distinct from these groups: neurofilament-immunoreactive neurons (VI), and cell bodies that were nonreactive to either of the antisera applied (VII). Nerve fibers in the adrenal medulla and cortex were equipped with the mediator combinations I, II, IV and VI. An additional meshwork of fibres solely labelled for nitric oxide synthase was visible in the medulla. Medullary as well as cortical fibres along endocrine tissue apparently lacked the chemical code V, while in the external cortex some fibre exhibited code III. Some intramedullary neuronal cell bodies revealed immunostaining for nitric oxide synthase, CGRP or substance P, providing an additional intrinsic adrenal innervation. Perikarya, immunolabelled for nitric oxide synthase, however, were too few to match with the large number of intramedullary nitric oxide synthase-immunoreactive fibres. A non-sensory participation is also supposed for the particularly dense intramedullary network of solely neurofilament-immunoreactive nerve fibres. The findings give evidence for a differential sensory innervation of the guinea-pig adrenal cortex and medulla. Specific sensory neuron subpopulations suggest that nervous control of adrenal functions is more complex than hitherto believed.
Collapse
Affiliation(s)
- C Heym
- Institute for Anatomy and Cell Biology, Ruprecht Karls University, Heidelberg, Germany
| | | | | | | |
Collapse
|
14
|
Vega JA, Humara JM, Naves FJ, Esteban I, Del Valle ME. Immunoreactivity for phosphorylated 200-kDa neurofilament subunit is heterogeneously expressed in human sympathetic and primary sensory neurons. ANATOMY AND EMBRYOLOGY 1994; 190:453-9. [PMID: 7887496 DOI: 10.1007/bf00235492] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study was undertaken to investigate whether human sensory and sympathetic neurons contain phosphorylated neurofilament proteins, and whether they may be classified on the basis of this property, as in other mammalian species. The distribution of the phosphorylated 200-kDa neurofilament protein subunit (p200-NFP) was investigated in lumbar sympathetic and dorsal root ganglia by means of the RT97 monoclonal antibody (against p200-NFP). The intensity of immunostaining, and the size of neuronal body profiles were measured in order to define different neuron subclasses. In dorsal root ganglia, most of the neuronal profiles (96%) were p200-NFP immunoreactive, and the intensity of immunostaining was not related to neuronal perikarya size. In the lumbar paravertebral sympathetic ganglia, virtually all neurons displayed p200-NFP immunoreactivity, and the intensity of immunolabelling was also independent of the size of the neuronal somata. These results demonstrate heterogeneity in the expression of p200-NFP immunoreactivity in human sympathetic and sensory neurons. In contrast to other mammalian species, RT97 immunolabelling cannot be used as a discriminative marker for the two main types of human primary sensory neurons. On the other hand, our findings provide evidence for the occurrence of phosphorylated neurofilaments within peripheral neuron cell bodies.
Collapse
Affiliation(s)
- J A Vega
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Spain
| | | | | | | | | |
Collapse
|
15
|
Eaker EY, Sallustio JE. The distribution of novel intermediate filament proteins defines subpopulations of myenteric neurons in rat intestine. Gastroenterology 1994; 107:666-74. [PMID: 8076753 DOI: 10.1016/0016-5085(94)90113-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND/AIMS Recent studies with neurofilament antibodies as neuronal markers have shown subpopulations of myenteric neurons that do not contain neurofilament proteins. Novel neuronal intermediate filament proteins alpha-internexin, peripherin, and nestin have been identified. The aim of this study was to examine the distribution of these novel intermediate filaments in comparison with neurofilaments in myenteric plexus neurons. METHODS Using indirect immunofluorescence techniques in whole-mount cryostat sections from neonate and adult rat small intestine and in primary cultures of myenteric neurons, the distribution of neurofilaments, alpha-internexin, peripherin, and nestin was studied in comparison with the neuronal marker protein gene product (PGP) 9.5 in myenteric neurons. RESULTS Sixty-five percent of neurons contained neurofilament triplet proteins. alpha-Internexin and/or peripherin were found in the neurofilament-negative neurons. PGP 9.5 was present in 80% of the myenteric neurons. Of the neurons that were PGP negative, > 95% contained peripherin or alpha-internexin. Nestin was not found in either neonate or adult myenteric neurons but was seen in glial cells in culture. CONCLUSIONS The results suggest that a subpopulation of myenteric neurons lacks neurofilament triplet proteins but contains either peripherin, alpha-internexin, or both. This selective distribution of intermediate filaments in subpopulations of enteric neurons may support differential roles in these structurally unique neurons.
Collapse
Affiliation(s)
- E Y Eaker
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | | |
Collapse
|
16
|
Gai WP, Vickers JC, Blumbergs PC, Blessing WW. Loss of non-phosphorylated neurofilament immunoreactivity, with preservation of tyrosine hydroxylase, in surviving substantia nigra neurons in Parkinson's disease. J Neurol Neurosurg Psychiatry 1994; 57:1039-46. [PMID: 7916375 PMCID: PMC1073124 DOI: 10.1136/jnnp.57.9.1039] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of neurofilament immunoreactivity in the substantia nigra was examined by immunohistochemistry in five patients dying with Parkinson's disease and six control patients dying without neurological disease. In controls, pigmented neurons in the substantia nigra were intensively labelled by SMI32, a monoclonal antibody to non-phosphorylated neurofilament protein. In the substantia nigra from patients who had Parkinson's disease, there was a pronounced reduction of SMI32 labelling intensity in surviving pigmented neurons. By contrast, tyrosine hydroxylase immunoreactivity in surviving pigmented neurons was normal. SMI32 labelling was normal in regions of the brainstem not affected by the neuropathological process of Parkinson's disease. Findings with either antibodies to phosphorylated neurofilament, or enzymatic dephosphorylation followed by SMI32 labelling, indicated that loss of SMI32 immunostaining in Parkinson's disease was not due to masking of the neurofilament epitopes by phosphorylation. Our results indicate that neurofilament proteins are particularly likely to be disrupted or destroyed by the neuropathological process of Parkinson's disease. Nevertheless, the normal appearance of tyrosine hydroxylase indicates that protein synthesising systems may be intact in surviving neurons. Loss of neurofilament immunoreactivity may prove a sensitive neuropathological marker for characterisation of degenerating neurons in Parkinson's disease.
Collapse
Affiliation(s)
- W P Gai
- Department of Physiology, Flinders University, Bedford Park, SA, Australia
| | | | | | | |
Collapse
|
17
|
Vickers JC, Riederer BM, Marugg RA, Buée-Scherrer V, Buée L, Delacourte A, Morrison JH. Alterations in neurofilament protein immunoreactivity in human hippocampal neurons related to normal aging and Alzheimer's disease. Neuroscience 1994; 62:1-13. [PMID: 7816192 DOI: 10.1016/0306-4522(94)90310-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of immunoreactivity for the neurofilament triplet class of intermediate filament proteins was examined in the hippocampus of young, adult and elderly control cases and compared to that of Alzheimer's disease cases. In a similar fashion to non-human mammalian species, pyramidal neurons in the CA1 region showed a very low degree of neurofilament triplet immunoreactivity in the three younger control cases examined. However, in the other control cases of 49 years of age and older, many CA1 pyramidal neurons showed elevated neurofilament immunoreactivity. In the Alzheimer's disease cases, most of the surviving CA1 neurons showed intense labeling for the neurofilament triplet proteins, with many of these neurons giving off abnormal "sprouting" processes. Double labeling demonstrated that many of these neurons contained tangle-like or granular material that was immunoreactive for abnormal forms of tau and stained with thioflavine S, indicating that these neurons are in a transitional degenerative stage. An antibody to phosphorylated neurofilament proteins labeled a subset of neurofibrillary tangles in the Alzheimer's disease cases. However, following formic acid pre-treatment, the number of neurofibrillary tangles showing phosphorylated neurofilament protein immunoreactivity increased, with double labeling confirming that all of the tau-immunoreactive neurofibrillary tangles were also immunoreactive for phosphorylated neurofilament proteins. Immunoblotting demonstrated that there was a proportionately greater amount of the neurofilament triplet subunit proteins in hippocampal tissue from Alzheimer's disease cases as compared to controls. These results indicate that there are changes in the cytoskeleton of CA1 neurons associated with age which are likely to involve an increase in the level of neurofilament proteins and may be a predisposing factor contributing towards their high degree of vulnerability in degenerative conditions such as Alzheimer's disease. The cellular factors affecting hippocampal neurons during aging may be potentiated in Alzheimer's disease to result in even higher levels of intracellular neurofilament proteins and the progressive alterations of neurofilaments and other cytoskeletal proteins that finally results in neurofibrillary tangle formation and cellular degeneration.
Collapse
Affiliation(s)
- J C Vickers
- Department of Neurobiology, Mount Sinai School of Medicine, New York, NY 10029-6574
| | | | | | | | | | | | | |
Collapse
|
18
|
Soussan L, Tchernakov K, Bachar-Lavi O, Yuvan T, Wertman E, Michaelson DM. Antibodies to different isoforms of the heavy neurofilament protein (NF-H) in normal aging and Alzheimer's disease. Mol Neurobiol 1994; 9:83-91. [PMID: 7888108 DOI: 10.1007/bf02816107] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sera of normal controls and of patients with neurological diseases contain antineurofilament antibodies. Recent studies suggest that biochemically and immunologically distinct subclasses of neurofilaments occur in different types of neurons. Alzheimer's disease (AD), the major cause of dementia, is associated with a marked degeneration of brain cholinergic neurons. In the present work we characterized the repertoire and age dependence of antineurofilament antibodies in normal sera and examined whether the degeneration of cholinergic neurons in AD is associated with serum antibodies directed specifically against the neurofilaments of mammalian cholinergic neurons. This was performed by immunoblot assays utilizing neurofilaments from the purely cholinergic bovine ventral root neurons and from the chemically heterogeneous bovine dorsal root neurons. Antibodies to the heavy neurofilament protein NF-H were detected in normal control sera. Their levels were significantly higher in older (aged 70-79) than in younger (aged 40-59) subjects. These antibodies bound similarly to bovine ventral root and dorsal root NF-H and their NF-H specificity was unchanged during aging. In contrast, the levels of IgG in AD sera that are directed against ventral root cholinergic NF-H were higher than those directed against the chemically heterogeneous dorsal root NF-H. Immunoblot experiments utilizing dephosphorylated ventral root and dorsal root NF-H and chymotryptic fragments of these molecules revealed that AD sera contain a repertoire of antimamalian NF-H IgG. A subpopulation of these antibodies binds to phosphorylated epitopes that are specifically enriched in ventral root cholinergic NF-H and that are located on the carboxy terminal domain of this molecule.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Soussan
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Klosen P, Van den Bosch de Aguilar P. Phosphorylated neurofilament epitopes in neuronal perikarya in the septum, mesencephalon and dorsal root ganglia of mammals and birds. JOURNAL OF NEUROCYTOLOGY 1994; 23:297-311. [PMID: 7522268 DOI: 10.1007/bf01188498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We and other researchers have previously described the presence of axon-specific phosphorylated neurofilament epitopes in the cell bodies of three neuronal types in the rat: bipolar septofimbrial neurons and the large light A-type cells in the dorsal root ganglia and the mesencephalic nucleus of the Vth nerve. This spontaneous presence of phosphorylated neurofilaments at the level of the perikaryon contrasts with the induced appearance of these epitopes in axotomized neurons. We have undertaken a study of this phenomenon in rat, mouse, gerbil, rabbit, pig and chicken to analyse its species distribution. Phosphorylated neurofilament positive perikarya could be detected in the dorsal root ganglia and mesencephalic nucleus of the Vth nerve in all analysed species. Although this labelling has been shown to be specific for A-type cells in rat, in pig small cells were preferentially labelled, whereas the largest cells were mostly completely devoid of label. In the septofimbrial nucleus, phosphorylated neurofilament positive perikarya were seen in rat, mouse, gerbil and rabbit. In the pig, only a phosphatase-insensitive neurofilament antibody labelled these neurons. In the chicken, the labelling was completely absent. These observations establish the widespread species distribution of perikaryal phosphorylated neurofilament epitopes in the dorsal root ganglia and mesencephalic nucleus of the Vth nerve. In the septofimbrial nucleus however, this phenomenon seems to be restricted to rodents and lagomorphs. We discuss possible explanations for these cytoskeletal singularities in dorsal root ganglia, the mesencephalic nucleus of the Vth nerve and septofimbrial neurons.
Collapse
Affiliation(s)
- P Klosen
- Laboratory of Cell Biology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
20
|
Dobó E, Joó F, Wolff JR. Distinct subsets of neuropeptide Y-negative principal neurons receive basket-like innervation from enkephalinergic and gabaergic axons in the superior cervical ganglion of adult rats. Neuroscience 1993; 57:833-44. [PMID: 8309539 DOI: 10.1016/0306-4522(93)90028-e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distributions of axons immunoreactive for [Leu]- or [Met]enkephalin and GABA were studied in the superior cervical ganglion of adult rats. The antigens were visualized separately and in combination with neuropeptide Y by the immunoperoxidase technique, using reaction end-products of different colors. Similarities and differences were found in the light-microscopic innervation patterns of enkephalin- and GABA-immunoreactive nerve fibers. Both fiber systems were heterogeneously distributed within the superior cervical ganglion, forming denser networks in its rostral part than elsewhere in the ganglion. The appearance of labeled nerve fibers differed in the two systems. Enkephalin-immunoreactive axons exhibited dotted profiles due to a strong immunoreaction in the axonal varicosities as compared with that in the intervaricose segments, whereas GABA-positive fibers were evenly labeled in both parts of the axons. The most marked difference between the innervation patterns from enkephalin- and GABA-immunoreactive axons was the presence of bundles of varicose axons in conjunction with the basket-like aggregation of enkephalin-immunoreactive nerve terminals. The possibility that enkephalins and GABA are co-localized in certain axons was excluded in double-labeling studies, silver intensification being used for the first antigen and the nickel-enhanced diaminobenzidine reaction for the second antigen. Different subsets of principal neurons were richly innervated in a basket-like manner by axons immunoreactive for enkephalins and GABA. Additionally, combined staining with antisera against either enkephalin and neuropeptide Y or GABA and neuropeptide Y revealed that both subsets of principal neurons richly innervated either by enkephalin-immunoreactive or by GABA-immunoreactive axons were devoid of neuropeptide Y immunoreactivity. Thus, the enkephalinergic and GABAergic axons have different subpopulations of neuropeptide Y-negative principal neurons as targets in the superior cervical ganglion. These results provide further evidence that sympathetic ganglion cells can be classified on the basis of their receiving input from different sources.
Collapse
Affiliation(s)
- E Dobó
- Central Research Laboratory, A. Szent-Györgyi Medical University, Szeged, Hungary
| | | | | |
Collapse
|
21
|
Eaker EY, Sallustio JE, Harris JM, Shaw G. Myenteric plexus neurons have developmentally acquired differences in the medium molecular weight subunit of neurofilament protein. Neuroscience 1993; 53:561-70. [PMID: 7684114 DOI: 10.1016/0306-4522(93)90221-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously shown that neurofilaments in enteric neurons are immunologically distinct from those found in the central nervous system. In particular, one monoclonal antibody to the medium molecular weight neurofilament subunit, called NN18, stained the perikarya of enteric neurons very weakly, if at all, although other medium molecular weight neurofilament subunit antibodies clearly showed the presence of significant amounts of medium molecular weight neurofilament subunit. We have since located the epitope for NN18 in a peptide sequence at the carboxy terminal tail of medium molecular weight neurofilament subunit and have now looked for further neurofilament antibodies that stain the same region. We found two monoclonal antibodies, RMO1 and RMO59, that recognize the same peptide. These antibodies also show much reduced staining in myenteric neurons compared to those in the central nervous system, suggesting that this region of the medium molecular weight neurofilament subunit is specifically modified in certain cells. In the developing enteric nervous system, we found that all the antibodies show strong staining of enteric neurons in the neonatal rat, but that with NN18, RMO1, and RMO59, the staining intensity decreases during further development, and by postnatal day 21 all three demonstrate decreased or absent staining identical to the adult. These results indicate that myenteric neurons, in contrast to the brain, have a developmentally regulated modification in a specific region of the medium molecular weight neurofilament subunit, which may reflect adaptation to structural stress by myenteric neurons.
Collapse
Affiliation(s)
- E Y Eaker
- Department of Medicine, College of Medicine, University of Florida, Gainesville 32610-0214
| | | | | | | |
Collapse
|
22
|
Quartu M, Polak JM, Del Fiacco M. Neuropeptides in the human celiac/superior mesenteric ganglionic complex: an immunohistochemical study. J Chem Neuroanat 1993; 6:79-99. [PMID: 8476542 DOI: 10.1016/0891-0618(93)90030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The occurrence of vasoactive intestinal polypeptide (VIP), peptide histidine-isoleucine (PHI), calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM), galanin (GAL) and enkephalins (ENK) is studied in the human celiac/superior mesenteric ganglionic complex of pre- and full-term newborns, and adult subjects by means of immunohistochemistry. The antisera used labelled nerve fibres and terminal-like networks for each examined peptide, as well as VIP- and SOM-positive postganglionic neurons. Differences in the relative amount and density of the structures immunoreactive to the various peptides were observed. Moreover, variations in the amount and type of labelled elements were appreciable for each peptide when specimens from subjects at perinatal and adult ages were compared. Double-labelling immunofluorescence for SP and each other peptide showed that co-localization with SP is very frequent for CGRP, moderate to scarce for GAL and SOM, and rare to absent for PHI, VIP and ENK. VIP-, ENK- and CGRP-immunolabeled perikarya bearing the morphological features of the small intensely fluorescent (SIF) cells occurred in the organ. The presence of a paraganglion in one of the specimens examined allowed the detection of VIP- and ENK-positive cell bodies and VIP-, ENK-, SP- and GAL-like immunoreactive varicose nerve fibres in it. The results obtained provide substantial morphological data in support of the involvement of the examined peptides in the chemical interneuronal signalling in the human celiac/superior mesenteric ganglia.
Collapse
Affiliation(s)
- M Quartu
- Dipartimento di Citomorfologia, University of Cagliari, Italy
| | | | | |
Collapse
|
23
|
Vickers JC, Delacourte A, Morrison JH. Progressive transformation of the cytoskeleton associated with normal aging and Alzheimer's disease. Brain Res 1992; 594:273-8. [PMID: 1450952 DOI: 10.1016/0006-8993(92)91134-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transitional and end-stage forms of neurofibrillary tangles associated with normal aging and Alzheimer's disease were identified using thioflavine staining combined with tau and neurofilament protein immunofluorescence. Normal aging was marked by transitional pathology in layer II of the entorhinal cortex but no neurofibrillary tangles in prefrontal cortex, whereas, in Alzheimer's disease cases, layer II entorhinal neurons had progressed to end-stage neurofibrillary tangles and the prefrontal cortex contained a high representation of transitional forms of the neurofibrillary tangle.
Collapse
Affiliation(s)
- J C Vickers
- Department of Neurobiology, Mount Sinai School of Medicine, New York, NY 10029-6574
| | | | | |
Collapse
|
24
|
Vickers JC, Costa M. Subpopulations of neurons in the guinea-pig inferior mesenteric ganglia distinguished by the differential distribution of neurofilament triplet epitopes. J Chem Neuroanat 1992; 5:417-26. [PMID: 1384556 DOI: 10.1016/0891-0618(92)90058-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of the neurofilament protein triplet was examined in neurochemically identified subpopulations of neurons in the guinea-pig inferior mesenteric ganglion. A majority of the catecholamine-containing nerve cell bodies also contained the neurofilament protein triplet. However, a major proportion of the noradrenergic, neuropeptide Y-immunoreactive neurons did not contain neurofilament protein triplet immunoreactivity. Furthermore, a specific subpopulation of neurons that lacked catecholamines and were associated with the hypogastric nerve could be distinguished by the unusual feature of cell body content of post-translationally modified neurofilament protein triplet epitopes. These studies indicate that neurons in the inferior mesenteric ganglia can be distinguished by the presence of specific neurofilament protein triplet epitopes, and thus this class of intermediate filament proteins may confer specific properties to the neurons in which it is contained.
Collapse
Affiliation(s)
- J C Vickers
- Department of Human Physiology, Flinders University of South Australia, Adelaide
| | | |
Collapse
|
25
|
Vickers JC, Chiu FC, Costa M. Selective distribution of the 66-kDa neuronal intermediate filament protein in the sensory and autonomic nervous system of the guinea-pig. Brain Res 1992; 585:205-11. [PMID: 1511303 DOI: 10.1016/0006-8993(92)91208-v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The immunohistochemical distribution of a recently identified 66-kDa neurofilament protein (NF-66) was investigated in peripheral and autonomic ganglia of the guinea-pig where it has been previously established that other neuronal intermediate filament proteins have a selective distribution. NF-66 immunoreactivity was observed in distinct subpopulations of neurons and did not coexist completely with either the neurofilament triplet or a 57-kDa intermediate filament protein (peripherin). NF-66 labelling was identical to that observed with an antibody to a 150-kDa intermediate filament or associated protein (CH1). These results further demonstrate that different neuronal intermediate filament proteins are present in selective subpopulations of neurons and that these proteins are, therefore, likely to have cell type-specific roles.
Collapse
Affiliation(s)
- J C Vickers
- Department of Human Physiology, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
26
|
Vickers JC, Costa M. The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig. Neuroscience 1992; 49:73-100. [PMID: 1407552 DOI: 10.1016/0306-4522(92)90077-f] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is commonly assumed that most, if not all, neurons contain the intermediate filament protein class known as the neurofilament protein-triplet. The following study investigated the distribution of neurofilament protein-triplet immunoreactivity in selected regions of the guinea-pig central nervous system using monoclonal antibodies directed against phosphorylation-independent epitopes on the three subunits under optimal tissue processing conditions. Neurofilament protein-triplet immunoreactivity was present in distinct subpopulations of neurons in the cerebellar cortex, neocortex, hippocampal formation, retina, striatum and medulla oblongata. In many of these regions, labelled neurons represented only a small proportion of the total. The selective distribution of this intermediate filament protein class was confirmed in double-labelling experiments using antibodies to the neurofilament protein-triplet in combination with antibodies to other neuronal markers. The distribution of neurofilament protein-triplet immunoreactivity also correlated with the distribution of staining observed with a silver impregnation method based on Bielschowsky. The present results in combination with previous observations have demonstrated that the neurofilament protein-triplet is found in specific subclasses of neurons in different regions of the nervous system. Content of this intermediate filament protein class does not appear to be correlated with neuronal size or length of projection. These results also suggest that the selectivity of staining between neuronal classes observed with classical silver impregnation methods may be due to the presence or absence of the neurofilament protein-triplet. The present results may also provide a new perspective on the basis of the selective vulnerability of neurons in degenerative diseases.
Collapse
Affiliation(s)
- J C Vickers
- Department of Human Physiology, Flinders University of South Australia, Adelaide
| | | |
Collapse
|
27
|
Tchernakov K, Soussan L, Hassin-Baer S, Wertman E, Michaelson DM. Alzheimer's disease and Down's syndrome antibodies bind to the heavy neurofilament protein of cholinergic neurons. RESEARCH IN IMMUNOLOGY 1992; 143:670-5. [PMID: 1455060 DOI: 10.1016/0923-2494(92)80055-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- K Tchernakov
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
28
|
Straznicky C, Vickers JC, Gábriel R, Costa M. A neurofilament protein antibody selectively labels a large ganglion cell type in the human retina. Brain Res 1992; 582:123-8. [PMID: 1498675 DOI: 10.1016/0006-8993(92)90325-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An antibody (SMI-32) raised against the non-phosphorylated form of the neurofilament protein triplet (NFP) revealed immunoreactivity in the soma and dendritic arborization of a group of large ganglion cells in the human retina. In addition, a population of smaller somas was also faintly labeled with this antibody in the ganglion cell layer. The completely stained cells amounted to 44,000 and were non-uniformly distributed across the retina with a peak density of 100 cells/mm2 in the retinal periphery. The soma sizes increased about two-fold and dendritic field sizes about 3-fold with retinal eccentricity. The immunoreactive dendrites branched in the vitread sublamina of the inner plexiform layer. The dendritic branching pattern of these cells indicated that they correspond to the previously described shrub cells. Antibodies against NFP and neuropeptide Y showed colocalization of these markers in all of the completely stained cells.
Collapse
Affiliation(s)
- C Straznicky
- Department of Anatomy and Histology, School of Medicine, Flinders University of South Australia, Adelaide
| | | | | | | |
Collapse
|
29
|
Kummer W, Habeck JO. Chemoreceptor A-fibres in the human carotid body contain tyrosine hydroxylase and neurofilament immunoreactivity. Neuroscience 1992; 47:713-25. [PMID: 1350071 DOI: 10.1016/0306-4522(92)90179-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous retrograde tracing studies on rat and guinea-pig showed a projection of sensory tyrosine hydroxylase-immunoreactive neurons to the region of the carotid bifurcation via the carotid sinus nerve. In the present study, focussing on the sensory innervation of the human carotid body, antisera to tyrosine hydroxylase and other catecholamine synthesizing enzymes were applied for an immunohistochemical investigation of carotid bodies obtained at autopsy. In addition, an array of antisera directed to non-enzyme antigens known to be present in viscero-afferent neurons were incorporated in the study. The glomic lobules consisting of glomus cells and sustentacular cells contained a variable number of enzyme-immunoreactive glomus cells. Arteries were supplied by nerve fibres displaying the full phenotype of sympathetic noradrenergic axons, i.e. immunoreactivity to tyrosine hydroxylase, aromatic-L-amino-acid-decarboxylase and dopamine-beta-hydroxylase. The glomic lobules, however, were densely innervated by tyrosine hydroxylase-immunoreactive axons lacking immunoreactivity to aromatic-L-amino-acid-decarboxylase and dopamine-beta-hydroxylase. These fibres reacted with neurofilament 160kD-antibody but were devoid of immunoreactivity to all neuropeptides tested (calcitonin gene-related peptide, somatostatin, substance P). Ultrastructurally, tyrosine hydroxylase/neurofilament 160kD-immunoreactive axons gave rise to large axonal swellings filled with mitochondria and vesicles, and established extensive contacts to glomus cells. Nerve bundles surrounded by a perineural sheath contained both myelinated (2.0-2.8 microns in diameter) and unmyelinated (0.14-3.0 microns) tyrosine hydroxylase-immunoreactive axons. Most of the unmyelinated immunoreactive axons were running singularly within a Schwann cell-sheath. Judged from the pattern of immunoreactivities as well as their preterminal and terminal ultrastructure, tyrosine hydroxylase-immunoreactive axons innervating glomus cells are of sensory origin. Although final proof by retrograde tracing cannot be presented in man, this conclusion is supported by experimental evidence in laboratory animals. The myelinated immunoreactive axons correspond to chemoreceptor A-fibres whereas the classification of the large unmyelinated immunoreactive axons has yet to be established. The lack of immunoreactivity to the dopamine-synthesizing enzyme, aromatic-L-amino-acid-decarboxylase, in this fibre type does not support the view of dopamine being the primary transmitter of chemoreceptor afferents.
Collapse
Affiliation(s)
- W Kummer
- Institute for Anatomy and Cell Biology, University of Heidelberg, F.R.G
| | | |
Collapse
|
30
|
Vickers JC, Vitadello M, Parysek LM, Costa M. Complementary immunohistochemical distribution of the neurofilament triplet and novel intermediate filament proteins in the autonomic and sensory nervous system of the guinea-pig. J Chem Neuroanat 1991; 4:259-70. [PMID: 1930747 DOI: 10.1016/0891-0618(91)90017-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously established that immunoreactivity for the triplet of polypeptides that comprise the class IV intermediate filament proteins (NFP-triplet) is localized in specific subpopulations of neurons in guinea-pig sensory and autonomic ganglia. Antibodies to novel neurofilament proteins, including a polyclonal antibody to a 57 kDa neuronal intermediate filament polypeptide (NIF57kD) and a monoclonal antibody (CH1) to a 150 kDa intermediate filament, or associated, protein were used in combination with antibodies to the NFP-triplet for double-labelling immunohistochemistry. The results show that different subpopulations of neurons in the guinea-pig dorsal root ganglia, coeliac ganglion and enteric ganglia can be distinguished by their complementary immunoreactivity for these proteins. In dorsal root ganglia, larger neurons are intensely immunoreactive for the NFP-triplet while immunoreactivity with CH1 and NIF57kD antibodies is restricted to the small to medium-sized neurons. In the coeliac ganglion, two regionally defined subpopulations of neurons can be distinguished by their immunoreactivity for either the NFP-triplet or NIF57kD, whereas CH1 labels all neurons with equal intensity. Three classes of morphologically distinct myenteric neuron subpopulations are also distinguished by their immunoreactivity for either the NFP-triplet, NIF57kD or CH1 antibodies. Two classes of submucous neurons are labelled both with CH1 and NIF57kD antibodies but show faint or no immunoreactivity for the NFP-triplet. It is concluded that intermediate filament protein immunoreactivity marks different subpopulations of neurons, which suggests that these proteins may have specific roles in neuronal function.
Collapse
Affiliation(s)
- J C Vickers
- Department of Physiology, Flinder's University of South Australia, Adelaide
| | | | | | | |
Collapse
|
31
|
Vickers JC, Costa M. Neurofilament protein triplet immunoreactivity in the dorsal root ganglia of the guinea-pig. Cell Tissue Res 1991; 265:159-67. [PMID: 1717154 DOI: 10.1007/bf00318150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunoreactivity for the neurofilament protein triplet was investigated in neurons of the dorsal root ganglia of the guinea-pig by using a battery of antibodies. In unfixed tissue, nearly all neurons in these ganglia demonstrated some degree of neurofilament protein triplet immunoreactivity. Large neurons generally displayed intense immunoreactivity, whereas most small to medium-sized neurons showed faint to moderate immunoreactivity. Double-labelling immunofluorescence demonstrated that most antibodies to the individual subunits of the neurofilament protein triplet had the same distribution and intensity of labelling in sensory neurons. Increasing durations of tissue fixation in aldehyde solutions selectively diminished neurofilament protein triplet immunoreactivity in small to medium-sized neurons. Double-labelling with neurofilament protein triplet antibodies in combination with antibodies to other neuronal markers, such as neuron-specific enolase, substance P and tyrosine hydroxylase, showed that tissue processing conditions affect the degree of co-localization of immunoreactivity to the neurofilament protein triplet and to these other neuronal markers. These results indicate that, with a judicious manipulation of the duration of tissue fixation, neurofilament protein triplet immunoreactivity can be used in combination with other neuronal markers to distinguish groups of neurons according to their size and chemical coding.
Collapse
Affiliation(s)
- J C Vickers
- Department of Physiology, Flinders University of South Australia, Adelaide
| | | |
Collapse
|