1
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
2
|
Cytokine profiling in the prefrontal cortex of Parkinson's Disease and Multiple System Atrophy patients. Neurobiol Dis 2017; 106:269-278. [DOI: 10.1016/j.nbd.2017.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/13/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023] Open
|
3
|
Expression and Cellular Distribution of the Interleukin 2 Signaling System in Cortical Lesions From Patients With Focal Cortical Dysplasia. J Neuropathol Exp Neurol 2014; 73:206-22. [DOI: 10.1097/nen.0000000000000042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
4
|
Lee DH, Ahn JH, Park JH, Yan BC, Cho JH, Kim IH, Lee JC, Jang SH, Lee MH, Hwang IK, Moon SM, Lee B, Cho JH, Shin HC, Kim JS, Won MH. Comparison of expression of inflammatory cytokines in the spinal cord between young adult and aged beagle dogs. Cell Mol Neurobiol 2013; 33:615-24. [PMID: 23605681 DOI: 10.1007/s10571-013-9915-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/30/2013] [Indexed: 01/24/2023]
Abstract
Aging is an inevitable process that occurs in the whole body system accompanying with many functional and morphological changes. Inflammation is known as one of age-related factors, and inflammatory changes could enhance mortality risk. In this study, we compared immunoreactivities of inflammatory cytokines, such as interleukin (IL)-2 (a pro-inflammatory cytokine), its receptor (IL-2R), IL-4 (an anti-inflammatory cytokine), and its receptor (IL-4R) in the cervical and lumbar spinal cord of young adult (2-3 years old) and aged (10-12 years old) beagle dogs using immunohistochemistry and western blotting. IL-2 and IL-2R-immunoreactive nerve cells were found throughout the gray matter of the cervical and lumbar spinal cord of young adult and aged dogs. In the spinal cord neurons of the aged dog, immunoreactivity and protein levels were apparently increased compared with those in the young adult dog. Change patterns of IL-4- and IL-4R-immunoreactive cells and their protein levels were also similar to those in IL-2 and IL-2R; however, IL-4 and IL-4R immunoreactivity in the periphery of the neuronal cytoplasm in the aged dog was much stronger than that in the young adult dog. These results indicate that the increase of inflammatory cytokines and their receptors in the aged spinal cord might be related to maintaining a balance of inflammatory reaction in the spinal cord during normal aging.
Collapse
Affiliation(s)
- Dae Hwan Lee
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Meola D, Huang Z, Petitto JM. Selective Neuronal and Brain Regional Expession of IL-2 in IL2P 8-GFP Transgenic Mice: Relation to Sensorimotor Gating. ACTA ACUST UNITED AC 2013; 3:1000127. [PMID: 24563821 PMCID: PMC3931468 DOI: 10.4172/2161-0460.1000127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Brain-derived interleukin-2 (IL-2) has been implicated in diseases processes that arise during CNS development (e.g., autism) to neurodegenerative alterations involving neuroinflammation (e.g., Alzheimer’s disease). Progress has been limited, however, because the vast majority of current knowledge of IL-2’s actions on brain function and behavior is based on the use exogenously administered IL-2 to make inferences about the function of the endogenous cytokine. Thus, to identify the cell-type(s) and regional circuitry that express brain-derived IL-2, we used B6.Cg-Tg/ IL2-EGFP17Evr (IL2p8-GFP) transgenic mice, which express green fluorescent protein (GFP) in peripheral immune cells known to produce IL-2. We found that the IL2-GFP transgene was localized almost exclusively to NeuN-positive cells, indicating that the IL-2 is produced primarily by neurons. The IL2-GFP transgene was expressed in discrete nuclei throughout the rostral-caudal extent of the brain and brainstem, with the highest levels found in the cingulate, dorsal endopiriform nucleus, lateral septum, nucleus of the solitary tract, magnocellular/gigantocellular reticular formation, red nucleus, entorhinal cortex, mammilary bodies, cerebellar fastigial nucleus, and posterior interposed nucleus. Having identified IL-2 gene expression in brain regions associated with the regulation of sensorimotor gating (e.g., lateral septum, dorsal endopiriform nucleus, entorhinal cortex, striatum), we compared prepulse inhibition (PPI) of the acoustic startle response in congenic mice bred in our lab that have selective loss of the IL-2 gene in the brain versus the peripheral immune system, to test the hypothesis that brain-derived IL-2 plays a role in modulating PPI. We found that congenic mice devoid of IL-2 gene expression in both the brain and the peripheral immune system, exhibited a modest alteration of PPI. These finding suggest that IL2p8-GFP transgenic mice may be a useful tool to elucidate further the role of brain-derived IL-2 in normal CNS function and disease.
Collapse
Affiliation(s)
- Danielle Meola
- Departments of Psychiatry, Neuroscience, and Pharmacology & Therapeutics, McKnight Brain Institute, USA
| | - Zhi Huang
- Departments of Psychiatry, Neuroscience, and Pharmacology & Therapeutics, McKnight Brain Institute, USA
| | - John M Petitto
- Departments of Psychiatry, Neuroscience, and Pharmacology & Therapeutics, McKnight Brain Institute, USA
| |
Collapse
|
6
|
Huang Z, Meola D, Petitto JM. Dissecting the effects of endogenous brain IL-2 and normal versus autoreactive T lymphocytes on microglial responsiveness and T cell trafficking in response to axonal injury. Neurosci Lett 2012; 526:138-43. [PMID: 22922129 DOI: 10.1016/j.neulet.2012.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
Abstract
IL-2 is essential for T-helper regulatory (Treg) cell function and self-tolerance, and dysregulation of both endogenous brain and peripheral IL-2 gene expression may have important implications for neuronal injury and repair. We used an experimental approach combining mouse congenic breeding and immune reconstitution to test the hypothesis that the response of motoneurons to injury is modulated by the combined effects of IL2-mediated processes in the brain that modulate its endogenous neuroimmunological milieu, and IL2-mediated processes in the peripheral immune system that regulate T cell function (i.e., normal versus autoreactive Treg-deficient T cells). This experimental strategy enabled us to test our hypothesis by disentangling the effect of normal versus autoreactive T lymphocytes from the effect of endogenous brain IL-2 on microglial responsiveness (microglial phagocytic clusters normally associated with dead motoneurons and MHC2(+) activated microglia) and T cell trafficking, using the facial nerve axotomy model of injury. The results demonstrate that the loss of both brain and peripheral IL-2 had an additive effect on numbers of microglial phagocytic clusters at day 14 following injury, whereas the autoreactive status of peripheral T cells was the primary factor that determined the degree to which T cells entered the injured brain and contributed to increased microglial phagocytic clusters. Changes in activated MHC2(+) microglial in the injured FMN were associated with loss of endogenous brain IL-2 and/or peripheral IL-2. This model may provide greater understanding of the mechanisms involved in determining if T cells entering the injured central nervous system (CNS) have damaging or proregenerative effects.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
7
|
Schneider P, Weber-Fahr W, Schweinfurth N, Ho YJ, Sartorius A, Spanagel R, Pawlak CR. Central metabolite changes and activation of microglia after peripheral interleukin-2 challenge. Brain Behav Immun 2012; 26:277-83. [PMID: 21983278 DOI: 10.1016/j.bbi.2011.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 01/23/2023] Open
Abstract
Interleukin (IL)-2 regulates the immune response through the proliferation of activated T-cells and also exerts effects on the central nervous system (CNS). Alongside having marked neurobehavioral effects, IL-2 has been suggested to impact on various psychiatric disorders. The immune-CNS communication of IL-2 remains unclear, although, it is suggested that microglia are the source and target of IL-2. Here, we analyzed changes in brain metabolites following a peripheral IL-2 challenge and examined the contribution of microglia in mediating these effects. Rats were assessed by magnetic resonance spectroscopy (MRS) in a 9.4 T scanner for baseline metabolite levels in the prefrontal cortex (PFC) and the hippocampus. After 7 days animals were scanned again following a single injection of IL-2 (2.5 μg/kg) and then tested on the elevated plus-maze for the correlation of IL-2-induced brain metabolites and measures of anxiety. In another experiment CD25(+) microglia cells were determined. A separate group of rats was injected either with IL-2 or vehicle, and afterward the PFC and hippocampus were dissected and fluorescence activated cell sorting (FACS) analysis was performed. The MRS scans in the intra-individual study design showed a significant increase in myo-inositol in the analyzed regions. A significant correlation of anxiety-like measures and myo-inositol, a marker for microglia activity, was found in the hippocampus. The FACS analysis showed a significant increase in CD25(+) microglia in the hippocampus compared to controls. The results support the role of microglia as a mediator in the immune-CNS communication and the effects of peripheral IL-2.
Collapse
Affiliation(s)
- Peggy Schneider
- Central Institute of Mental Health, Institute of Psychopharmacology, 68159 Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Petitto JM, Huang Z, Meola D, Ha GK, Dauer D. Interleukin-2 and the septohippocampal system: intrinsic actions and autoimmune processes relevant to neuropsychiatric disorders. Methods Mol Biol 2012; 829:433-443. [PMID: 22231830 DOI: 10.1007/978-1-61779-458-2_27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effects of IL-2 on brain development, function, and disease are the result of IL-2's actions in the peripheral immune system and its intrinsic actions in the central nervous system (CNS). Determining whether, and under what circumstances (e.g., development, acute injury), these different actions of IL-2 are operative in the brain is essential to make significant advances in understanding the multifaceted affects of IL-2 on CNS function and disease, including psychiatric disorders. For several decades, there has been a great deal of speculation about the role of autoimmunity in brain disease. More recently, we have learned a great deal about the role of cytokines on neurobiological processes, and there have been many studies that have found peripheral immune alterations in patients with neurological and neuropsychiatric diseases. Despite a plethora of published literature, almost all of this data in humans is correlative and much of the basic research has understandably relied on simpler models (e.g., in vitro models). Good animal models such as our IL-2 knockout mouse model could provide valuable new insight into understanding how the complex biology of a cytokine such as IL-2 can have simultaneous, dynamic effects on multiple systems (e.g., regulating homeostasis in the brain and immune system, autoimmunity that can affect both systems). Animal models can also provide much needed new data elucidating neuroimmunological and autoimmune processes involved in brain development and disease. Such information may ultimately provide critical new insight into the role of brain cytokines and autoimmunity in prominent neurological and neuropsychiatric diseases (e.g., Alzheimer's disease, autism, multiple sclerosis, schizophrenia).
Collapse
Affiliation(s)
- John M Petitto
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
9
|
Petitto JM, Meola D, Huang Z. Interleukin-2 and the brain: dissecting central versus peripheral contributions using unique mouse models. Methods Mol Biol 2012; 934:301-11. [PMID: 22933152 DOI: 10.1007/978-1-62703-071-7_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although many studies have documented peripheral immune alterations in patients with psychiatric and neurological disorders, almost all these data in humans are correlative. The actions of IL-2 on neurodevelopment, function, and disease are the result of both IL-2's actions in the peripheral immune system and intrinsic actions in the CNS. Determining if, and under what conditions (e.g., development, acute injury) these different actions of IL-2 are operative in the brain is essential to make advances in understanding the multifaceted affects of IL-2 on CNS function and disease. Mouse models have provided ways to obtain new insights into how the complex biology of a cytokine such as IL-2 can have simultaneous, dynamic effects on multiple systems (e.g., regulating homeostasis in the brain and immune system, autoimmunity that can affect both systems). Here we describe some of the relevant literature and our research using different mouse models. This includes models such as congenic IL-2 knockout mice bred on immunodeficient backgrounds coupled with immune reconstitution strategies used to dissect neuroimmunological processes involved in the development of septohippocampal pathology, and test the hypothesis that dysregulation of the brain's endogenous neuroimmunological milieu may occur with the loss of brain IL-2 gene expression and be involved in initiating CNS autoimmunity. Use of animal models like these in the field of psychoneuroimmunology may lead to critical advances into our understanding of the role of brain cytokines and autoimmunity in neurodegenerative diseases (e.g., Alzheimer's disease), neurodevelopmental disorder (e.g., autism, schizophrenia), and autoimmune diseases including multiple sclerosis.
Collapse
Affiliation(s)
- John M Petitto
- Departments of Psychiatry, Neuroscience, and Pharmacology and Therapeutics, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | |
Collapse
|
10
|
Huang Z, Meola D, Petitto JM. Loss of CNS IL-2 gene expression modifies brain T lymphocyte trafficking: response of normal versus autoreactive Treg-deficient T cells. Neurosci Lett 2011; 499:213-8. [PMID: 21669253 DOI: 10.1016/j.neulet.2011.05.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Emerging data from our lab and others suggested that dysregulation of the brain's endogenous neuroimmunological milieu may occur with the loss of brain IL-2 gene expression and be involved in initiating processes that lead to CNS autoimmunity. We sought to test our working hypothesis that IL-2 deficiency induces endogenous changes in the CNS that play a key role in eliciting T cell homing into the brain. To accomplish this goal, we used an experimental approach that combined mouse congenic breeding and immune reconstitution. In congenic mice without brain IL-2 (two IL-2 KO alleles) that were reconstituted with a normal wild-type immune system, the loss of brain IL-2 doubled the number of T cells that trafficked into the brain in all regions quantified (hippocampus, septum, and cerebellum) compared to mice with two wild-type brain IL-2 alleles and a wild-type peripheral immune system. Congenic mice with normal brain IL-2 (two wild-type IL-2 alleles) that were immune reconstituted with autoreactive Treg-deficient T cells from IL-2 KO mice developed the expected peripheral autoimmunity (splenomegaly) and had a comparable doubling of T cell trafficking into the hippocampus and septum, whereas they exhibited an additional twofold proclivity for the cerebellum over the septohippocampal regions. Unlike brain trafficking of wild-type T cells, the increased homing of IL-2 KO T cells to the cerebellum was independent of brain IL-2 gene expression. These findings demonstrate that brain IL-2 deficiency induces endogenous CNS changes that may lead to the development of brain autoimmunity, and that autoreactive Treg-deficient IL-2 KO T cells trafficking to the brain could have a proclivity to induce cerebellar neuropathology.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
11
|
Shen Y, Liu SS, Zhan MY, Luo JH, Zhu LJ. Interleukin-2 Enhances Dendritic Development and Spinogenesis in Cultured Hippocampal Neurons. Anat Rec (Hoboken) 2010; 293:1017-23. [DOI: 10.1002/ar.21118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Time-dependent effects of striatal interleukin-2 on open field behaviour in rats. J Neuroimmunol 2009; 208:10-8. [DOI: 10.1016/j.jneuroim.2008.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/12/2008] [Accepted: 12/12/2008] [Indexed: 11/21/2022]
|
13
|
Barabanova SV, Artyukhina ZE, Ovchinnikova KT, Abramova TV, Kazakova TB, Khavinson VK, Malinin VV, Korneva EA. Comparative analysis of the expression of c-Fos and interleukin-2 proteins in hypothalamus cells during various treatments. ACTA ACUST UNITED AC 2008; 38:237-43. [PMID: 18264770 DOI: 10.1007/s11055-008-0035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/12/2006] [Indexed: 11/25/2022]
Abstract
The aim of the present work was to perform a combined analysis of the degree of activation of the anterior hypothalamus of the rat and expression of the interleukin-2 gene during treatments of different types: mild stress ("handling") and adaption to it, as well as intranasal administration of physiological saline and the peptides Vilon (Lys-Glu) and Epitalon (Ala-Glu-Asp-Gly). Changes in the numbers of c-Fos-and IL-2-positive cells in structures of the lateral area (LHA) and anterior (AHN), supraoptic (SON), and paraventricular (PVN) nuclei of the hypothalamus in Wistar rats. Ratios of the quantities of c-Fos-and IL-2-positive cells were determined in intact animals and after activation of brain cells initiated by different treatments; the influences of adaptation to handling on the nature of changes in the expression of these proteins was also studied. Combined analysis of the intensity of expression of these two proteins - c-Fos, a marker of neuron activation and a trans-factor for the IL-2 cytokine gene and other inducible genes, and IL-2 - in intact animals and after various treatments showed that the process of cell activation in most of the hypothalamic structures studied correlated with decreases in the quantity of IL-2-positive cells in these structures; different patterns of changes in the numbers of c-Fos-and IL-2-positive cells were seen in response to different treatments in conditions of stress and adaptation to it.
Collapse
Affiliation(s)
- S V Barabanova
- Department of General Pathology and Pathophysiology, State Research Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Prinz M, Rossum DV, Hanisch UK. Interleukin-2 as a Neuroregulatory Cytokine. CYTOKINES AND THE BRAIN 2008. [DOI: 10.1016/s1567-7443(07)10008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Gómez-Nicola D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro M. Interleukin 15 expression in the CNS: Blockade of its activity prevents glial activation after an inflammatory injury. Glia 2008; 56:494-505. [DOI: 10.1002/glia.20628] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Cáceda R, Kinkead B, Nemeroff CB. Involvement of neuropeptide systems in schizophrenia: human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:327-76. [PMID: 17349866 DOI: 10.1016/s0074-7742(06)78011-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropeptides are heterogeneously distributed throughout the digestive, circulatory, and nervous systems and serve as neurotransmitters, neuromodulators, and hormones. Neuropeptides are phylogenetically conserved and have been demonstrated to regulate numerous behaviors. They have been hypothesized to be pathologically involved in several psychiatric disorders, including schizophrenia. On the basis of preclinical data, numerous studies have sought to examine the role of neuropeptide systems in schizophrenia. This chapter reviews the clinical data, linking alterations in neuropeptide systems to the etiology, pathophysiology, and treatment of schizophrenia. Data for the following neuropeptide systems are included: arginine-vasopressin, cholecystokinin (CCK), corticotropin-releasing factor (CRF), interleukins, neuregulin 1 (NRG1), neurotensin (NT), neuropeptide Y (NPY), opioids, secretin, somatostatin, tachykinins, thyrotropin-releasing hormone (TRH), and vasoactive intestinal peptide (VIP). Data from cerebrospinal fluid (CSF), postmortem and genetic studies, as well as clinical trials are described. Despite the inherent difficulties associated with human studies (including small sample size, variable duration of illness, medication status, the presence of comorbid psychiatric disorders, and diagnostic heterogeneity), several findings are noteworthy. Postmortem studies support disease-related alterations in several neuropeptide systems in the frontal and temporal cortices. The strongest genetic evidence supporting a role for neuropeptides in schizophrenia are those studies linking polymorphisms in NRG1 and the CCKA receptor with schizophrenia. Finally, the only compounds that act directly on neuropeptide systems that have demonstrated therapeutic efficacy in schizophrenia are neurokinin receptor antagonists. Clearly, additional investigation into the role of neuropeptide systems in the etiology, pathophysiology, and treatment of schizophrenia is warranted.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
17
|
Shen Y, Zhu LJ, Liu SS, Zhou SY, Luo JH. Interleukin-2 inhibits NMDA receptor-mediated currents directly and may differentially affect subtypes. Biochem Biophys Res Commun 2006; 351:449-54. [PMID: 17069761 DOI: 10.1016/j.bbrc.2006.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/09/2006] [Indexed: 10/24/2022]
Abstract
Using whole-cell patch-clamp recordings, this study investigated the effects of interleukin-2 (IL-2) on N-methyl-d-aspartate (NMDA) receptor-mediated currents (I(NMDA)) in rat cultured hippocampal neurons and human embryonic kidney (HEK) 293 cells expressing recombinant NMDA receptors. We found that IL-2 (0.01-1ng/ml) immediately and significantly decreased peak I(NMDA) in cultured neurons. Interestingly, the peak I(NMDA) induced in HEK 293 cells was also inhibited by IL-2. We also found that IL-2 differentially decreased the peak amplitudes of NR2A- and NR2B-containing NMDA receptor-mediated currents (I(NR2A) and I(NR2B)) by 54+/-5% and 30+/-4%, respectively. These results provide new evidence that IL-2 induces rapid inhibition of peak currents of NMDA receptor-mediated responses with possible NR1/NR2A and NR1/NR2B subtype-differentiation, and suggest that the inhibition is mediated by direct interaction between IL-2 and NMDA receptors.
Collapse
Affiliation(s)
- Yi Shen
- Department of Neurobiology, Institute for Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
18
|
Pawlak CR, Schwarting RKW. Striatal microinjections of interleukin-2 and rat behaviour in the elevated plus-maze. Behav Brain Res 2006; 168:339-44. [PMID: 16337016 DOI: 10.1016/j.bbr.2005.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 10/19/2005] [Indexed: 11/19/2022]
Abstract
We showed that the relationship between cytokine mRNA in the rat brain and elevated plus-maze behaviour is site- (striatum, prefrontal cortex), and cytokine-specific (interleukin-2). Here, we investigated whether a striatal microinjection of interleukin-2 (1, 10, 25 ng) affects elevated plus-maze behaviour. Analyses showed no acute effects of IL-2 on open arm time, whereas dose-dependent differences in rearing activity, and open arm entries became apparent between IL-2 doses. Twenty-four hours later, a previous dose of 25 ng IL-2 showed a trend for more open arm time compared to vehicle. These behavioural changes are discussed in relation to anxiety-relevant and exploratory behaviour, and possible neurochemical mechanisms.
Collapse
Affiliation(s)
- Cornelius R Pawlak
- Philipps-University Marburg, Faculty of Psychology, Section for Experimental and Biological Psychology, Experimental and Physiological Psychology Unit, Gutenbergstr. 18, 35032 Marburg, Germany.
| | | |
Collapse
|
19
|
Serrats J, Sawchenko PE. CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 2006; 495:236-54. [PMID: 16435288 DOI: 10.1002/cne.20872] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that engages the immune system in a T-lymphocyte-dependent manner and induces a cytokine profile distinct from that elicited by the better-studied bacterial pathogen analog, lipopolysaccharide (LPS). Because of reports of SEB recruiting central nervous system (CNS) host defense mechanisms via pathways in common with LPS, we sought to further characterize central systems impacted by this agent. Rats were treated with SEB at doses of 50-5,000 mug/kg, and killed 0.5-6 hours thereafter. SEB injection produced a discrete pattern of Fos induction in brain that peaked at 2-3 hours postinjection and whose strength was dose-related. Induced Fos expression was predominantly subcortical and focused in a set of interconnected central autonomic structures, including aspects of the bed n. of the stria terminalis, central amygdala and lateral parabrachial nuclei; functionally related (and LPS-responsive) cell groups in the n. solitary tract, ventrolateral medulla, and paraventricular hypothalamic n. (PVH) were, by contrast, weakly responsive. SEB also activated cell groups in the limbic forebrain (lateral septal n, medial prefrontal cortex) and hypothalamic GABAergic neurons, which could account for its failure to elicit reliable increases in Fos-ir or corticotropin-releasing factor (CRF) mRNA in the PVH. SEB nevertheless did provoke reliable pituitary-adrenal secretory responses. The identification of subsets of central autonomic and limbic forebrain structures that are sensitive to SEB provides a basis for a systems-level understanding of the physiological and behavioral effects attributed to the superantigen. Core SEB-responsive cell groups exclude a medullary-PVH circuit implicated in pituitary-adrenal responses to LPS.
Collapse
Affiliation(s)
- Jordi Serrats
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies and The Foundation for Medical Research, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Bhatt S, Zalcman S, Hassanain M, Siegel A. Cytokine modulation of defensive rage behavior in the cat: role of GABAA and interleukin-2 receptors in the medial hypothalamus. Neuroscience 2005; 133:17-28. [PMID: 15893628 DOI: 10.1016/j.neuroscience.2005.01.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/18/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Defensive rage behavior is a form of aggressive behavior occurring in nature in response to a threatening stimulus. It is also elicited by stimulation of the medial hypothalamus and midbrain periaqueductal gray (PAG) and mediated through specific neurotransmitter-receptor mechanisms within these regions. Since interleukin (IL)-2 modulates the release of neurotransmitters linked to aggression and rage, we sought to determine whether IL-2 microinjected into the medial hypothalamus would modulate defensive rage. Microinjections of relatively low doses of IL-2 into the medial hypothalamus significantly suppressed defensive rage elicited from the PAG in a dose-dependent manner and in the absence of signs of sickness behavior. Pre-treatment with an antibody directed against IL-2Ralpha or a GABA(A) receptor antagonist blocked IL-2's suppressive effects upon defensive rage. Since the suppression of defensive rage is also mediated by 5-HT(1) receptors in the medial hypothalamus, a 5-HT(1) antagonist was microinjected into this region as a pretreatment for IL-2; however, it did not block IL-2's suppressive effects. Immunocytochemical data provided anatomical support for these findings by revealing extensive labeling of IL-2Ralpha on neurons in the medial hypothalamus. IL-2 microinjected into the medial hypothalamus did not modulate predatory attack elicited from the lateral hypothalamus. In summary, we provide evidence for a novel role for IL-2 in the medial hypothalamus as a potent suppressor of defensive rage behavior. These effects are mediated through an IL-2-GABA(A) receptor mechanism.
Collapse
MESH Headings
- Aggression/drug effects
- Aggression/physiology
- Animals
- Antibodies, Blocking
- Bicuculline/pharmacology
- Body Temperature/drug effects
- Cats
- Cytokines/physiology
- Electric Stimulation
- Electrodes, Implanted
- Female
- GABA Antagonists/pharmacology
- Hypothalamus, Middle/drug effects
- Hypothalamus, Middle/physiology
- Immunohistochemistry
- Interleukin-2/pharmacology
- Microinjections
- Predatory Behavior/drug effects
- Rage/drug effects
- Rage/physiology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/physiology
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Interleukin-2/drug effects
- Receptors, Interleukin-2/physiology
- Serotonin Antagonists/pharmacology
Collapse
Affiliation(s)
- S Bhatt
- Department of Neurology and Neurosciences, New Jersey Medical School, Medical Science Building, Room H-512, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
21
|
Beck RD, Wasserfall C, Ha GK, Cushman JD, Huang Z, Atkinson MA, Petitto JM. Changes in hippocampal IL-15, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Res 2005; 1041:223-30. [PMID: 15829231 DOI: 10.1016/j.brainres.2005.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/02/2005] [Accepted: 02/07/2005] [Indexed: 11/27/2022]
Abstract
Previous studies have demonstrated that interleukin-2 knockout (KO) mice exhibit alterations in hippocampal cytoarchitecture. Several lines of evidence suggest that these variations may result from immune dysregulation and/or autoimmunity. Thus, this study sought to compare adult IL-2 KO mice and wild-type littermates (8-12 weeks of age), the age where differences in hippocampal cytoarchitecture have previously been observed, for differences in measures of neuroimmunological status in the hippocampus. Furthermore, because IL-15 shares the same receptor subunits for signal transduction as IL-2 (IL-2/15Rbeta and gammac) that are enriched in the hippocampus and may induce inflammatory processes in IL-2 KO mice, we sought to test the hypothesis that IL-15 is elevated in the hippocampus of IL-2 KO mice. Compared to wild-type mice, IL-2 KO mice exhibited increased hippocampal protein concentrations of IL-15 as well as IL-12, IP-10, and MCP-1. These cytokine changes, however, did not correlate with levels in the peripheral circulation, and there were no T cells or an increase in MHCII-positive microglia in the hippocampus of IL-2 KO mice. Since elevated levels of certain inflammatory cytokines may impair hippocampal neurogenesis, we also tested the hypothesis that changes in neuroimmunological status would be associated with reductions in neurogenesis of neurons in the dentate gyrus of IL-2 KO mice. Contrary to this hypothesis, compared to wild-type mice, male IL-2 KO mice exhibited increased neurogenesis in both the infrapyramidal and suprapyramidal limbs of the granule cell layer of the dentate gyrus, differences that were not observed between females. These findings indicate that IL-2 gene deletion alters the neuroimmunological status of the mouse hippocampus through a dysregulation of cytokines produced by CNS cells, and in males, these changes are associated with increased hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ray D Beck
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Beck RD, King MA, Ha GK, Cushman JD, Huang Z, Petitto JM. IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: relation to development and neurotrophins. J Neuroimmunol 2005; 160:146-53. [PMID: 15710467 DOI: 10.1016/j.jneuroim.2004.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 11/29/2022]
Abstract
We have found previously that brain IL-2 receptors are enriched in the hippocampal formation, and that loss of this cytokine results in cytoarchitectural alterations in the hippocampus and septum and related behavioral changes in IL-2 knockout (IL-2 KO) mice. These alterations included decreased cholinergic somata in the medial septum/vertical limb of the diagonal band of Broca (MS/vDB) and decreased distance across the infrapyramidal (IP) granule cell layer (GCL) of the dentate gyrus (DG). To extend our previous findings, several experiments were conducted comparing IL-2 KO mice and wild-type littermates to determine (1) whether the GABAergic projection neurons of IL-2 KO mice in this region were also affected; (2) if the reduction in septal cholinergic projection neurons found in adult IL-2 KO mice is present at weaning (and prior to the development of peripheral autoimmune disease); and (3) if loss of IL-2 may result in changes in the neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), involved in maintenance of hippocampal neurons. No differences in GABAergic neurons in the MS/vDB were found in adult mice, and the reduction in cholinergic neurons seen in adult IL-2 KO mice was not found in animals at postnatal day 21. The number of neurons in the IP-GCL was also significantly reduced. Compared to wild-type mice, IL-2 KO mice had significantly reduced concentration of BDNF protein and increased concentrations of NGF. These data suggest that the septohippocampal neuronal loss in IL-2 KO mice is selective for the cholinergic neurons and appears to be due to a failure in neuronal maintenance/survival that may be, in part, associated with changes in neurotrophins.
Collapse
Affiliation(s)
- Ray D Beck
- McKnight Brain Institute, L4-118, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL 32610-0256, USA
| | | | | | | | | | | |
Collapse
|
23
|
Miguelez M, Lacasse M, Kentner AC, Rizk I, Fouriezos G, Bielajew C. Short- and long-term effects of interleukin-2 on weight, food intake, and hedonic mechanisms in the rat. Behav Brain Res 2004; 154:311-9. [PMID: 15313018 DOI: 10.1016/j.bbr.2004.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/20/2004] [Accepted: 02/24/2004] [Indexed: 12/26/2022]
Abstract
In the present work, we investigated the short- and long-term effects of a single systemic injection of rat recombinant interleukin-2 on weight, food intake, and brain stimulation reward thresholds elicited from the ventral tegmental area. An inverted U-shaped dose-function was obtained with 0.5 microg producing the greatest increases in the threshold for rewarding brain stimulation which were sustained during the month long tests. No differences between groups in terms of maximum response rates, a measure of performance, were observed. Although all injected groups showed a minor decline in the rate of weight gain over time, percent efficiency of food utilization (percent weight gain/food intake) was the same across groups, suggesting that metabolic function was not affected by the cytokine. In animals with bilateral ventral tegmental area implants, there was no consistent correspondence between the threshold change obtained from ipsilateral stimulation and that associated with the contralateral site; side-to-side differences ranged from 0 to 100%, suggesting a specific interaction between cytokine activity and the locus of rewarding brain stimulation. These data suggest that peripheral IL-2 significantly modifies hedonic processes arising from medial forebrain bundle stimulation in a long-term manner. We further suggest that since this modulation appears to be notably site-specific, IL-2 receptors or its metabolites may not be evenly distributed within the medial forebrain bundle.
Collapse
Affiliation(s)
- M Miguelez
- School of Psychology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Yao MZ, Gu JF, Wang JH, Sun LY, Liu H, Liu XY. Adenovirus-mediated interleukin-2 gene therapy of nociception. Gene Ther 2003; 10:1392-9. [PMID: 12883536 DOI: 10.1038/sj.gt.3301992] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of adenovirus-mediated interleukin-2 (IL-2) gene on rat basal nociceptive response and chronic neuropathic pain was explored. The paw withdrawal latency induced by radiant heat was used to evaluate the antinociceptive effect of adenovirus type 5 (Ad5) and Ad5-IL-2. The results showed that intrathecal delivery of Ad5-IL-2 exhibited obvious antinociceptive effects on basal nociceptive response and chronic neuropathic pain, which were maintained for 3 and 4 weeks, respectively. This suggested that the antinociceptive effect of Ad5-IL-2 on chronic neuropathic pain was greater than its effect on basal nociceptive response. Human IL-2 mRNA was detected by in situ hybridization in the spinal pia mater and parenchyma of the lumbar, sacral, thoracic and cervical regions, and gray matter had higher level of IL-2 expression than white matter. These data demonstrated that the IL-2 gene was transfected into spinal cord regions relevant to pain modulation. The expressed IL-2 protein profile in spinal cord detected by enzyme-linked immunosorbent assay coincided almost exactly with its antinociceptive effect. This supported the hypothesis that the therapeutic effect of IL-2 gene was related to IL-2 protein expression. The study indicates that intrathecal delivery of adenovirus-mediated IL-2 gene has a relatively long antinociceptive effect.
Collapse
Affiliation(s)
- M Z Yao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Petitto JM, Huang Z, Lo J, Streit WJ. IL-2 gene knockout affects T lymphocyte trafficking and the microglial response to regenerating facial motor neurons. J Neuroimmunol 2003; 134:95-103. [PMID: 12507776 DOI: 10.1016/s0165-5728(02)00422-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following facial nerve axotomy in mice, T cells cross the intact blood-brain barrier (BBB), home to nerve cell bodies in the facial motor nucleus (FMN), and augment neuroregenerative processes. The pivotal T cell immunoregulatory cytokine, IL-2, appears to have bidirectional effects on neuronal and microglial cell function, suggesting rival hypotheses that IL-2 could either enhance or disrupt processes associated with regeneration of axotomized facial motor neurons. We tested these competing hypotheses by comparing the effect of facial nerve axotomy on C57BL/6-IL-2(-/-) knockout and C57BL/6-IL-2(+/+) wild-type littermates. Since IL-2 may also be produced endogenously in the brain, we also sought to determine whether differences between the knockout and wild-type mice were attributable to loss of IL-2 gene expression in the CNS, loss of peripheral sources of IL-2 and the associated effects on T cell function, or a combination of these factors. To address this question, we bred novel congenic mice with the SCID mutation (mice lacking T cell derived IL-2) that were homozygous for either the IL-2 knockout or wild-type gene alleles (C57BL/6scid-IL-2(-/-) and C57BL/6scid-IL-2(+/+) littermates, respectively). Groups were assessed for differences in (1) T lymphocytes entering the axotomized FMN; (2) perineuronal CD11b(+) microglial phagocytic clusters, a measure of motor neuron death; and (3) activated microglial cells as measured by MHC-II positivity. C57BL/6-IL-2(-/-) knockout mice had significantly higher numbers of T cells and lower numbers of activated MHC-II-positive microglial cells in the regenerating FMN than wild-type littermates, although the number of CD11b(+) phagocytic microglia clusters did not differ. Thus, despite the significant impairment of T cell function known to be associated with loss of peripheral IL-2, the increased number of T cells entering the axotomized FMN appears to have sufficient activity to support neuroregenerative processes. Congenic C57BL/6scid-IL-2(-/-) knockout mice had lower numbers of CD11b(+) microglial phagocytic clusters than congenic C57BL/6scid-IL-2(+/+) wild-type littermates, suggesting that loss of the IL-2 gene in the CNS (and possibly the loss of other unknown sources of the gene) enhanced neuronal regeneration. Further study of IL-2's complex actions in neuronal injury may provide greater understanding of key variables that determine whether or not immunological processes in the brain are proregenerative.
Collapse
Affiliation(s)
- John M Petitto
- Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610-0256, USA.
| | | | | | | |
Collapse
|
26
|
Beck RD, King MA, Huang Z, Petitto JM. Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Res 2002; 955:16-23. [PMID: 12419517 DOI: 10.1016/s0006-8993(02)03295-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin-2 (IL-2) has potent effects on acetylcholine (ACh) release from septohippocampal cholinergic neurons and trophic effects on fetal septal and hippocampal neuronal cultures. Previous work from our lab showed that the absence of endogenous IL-2 leads to impaired hippocampal neurodevelopment and related behaviors. We sought to extend this work by testing the hypotheses that the loss of IL-2 would result in reductions in cholinergic septohippocampal neuron cell number and the density of cholinergic axons found in the hippocampus of IL-2 knockout mice. Stereological cell counting and imaging techniques were used to compare C57BL/6-IL-2(-/-) knockout and C57BL/6-IL-2(+/+) wild-type mice for differences in choline acetyltransferase (ChAT)-positive somata in the medial septum and vertical limb of the diagonal band of Broca (MS/vDB) and acetylcholine esterase (AChE)-labeled cholinergic axons in hippocampal projection fields. IL-2 knockout mice had significantly lower numbers (26%) of MS/vDB ChAT-positive cell bodies than wild-type mice; however, there were no differences in striatal ChAT-positive neurons. Although AChE-positive axon density in CA1, CA3b, the internal, and external blades of the dentate gyrus did not differ between the knockout and wild-type mice, the distance across the granular cell layer of the external blade of the dentate gyrus was reduced significantly in IL-2 knockout mice. Further research is needed to determine whether these outcomes in IL-2 knockout mice may be due to the absence of central and/or peripheral IL-2 during brain development or neurodegeneration secondary to autoimmunity.
Collapse
Affiliation(s)
- Ray D Beck
- McKnight Brain Institute College of Medicine, University of Florida, PO Box 100256, L4-118, Gainseville, FL 32610-0256, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Yao MZ, Gu JF, Wang JH, Sun LY, Lang MF, Liu J, Zhao ZQ, Liu XY. Interleukin-2 gene therapy of chronic neuropathic pain. Neuroscience 2002; 112:409-16. [PMID: 12044458 DOI: 10.1016/s0306-4522(02)00078-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous research has revealed an antinociceptive (analgesic) effect of interleukin-2 (IL-2) in central and peripheral nervous systems. Unfortunately IL-2 is very short-lived in vivo, so it is impractical to apply IL-2 for analgesia in clinic. This study was performed to evaluate the effect of intrathecal delivery of human IL-2 gene on rat chronic neuropathic pain induced by chronic constriction injury of the sciatic nerve. Human IL-2 cDNA was cloned into pcDNA3 containing a cytomegalovirus promoter. The paw-withdrawal latency induced by radiant heat was used to measure the pain threshold. The results showed that recombinant human IL-2 had a dose-dependent antinociceptive effect, but that this only lasted for 10-25 min. The pcDNA3-IL-2 or pcDNA3-IL-2/lipofectamine complex in contrast also showed dose-dependent antinociceptive effects, but these reached a peak at day 2-3 and were maintained for up to 6 days. Liposome-mediated pcDNA3-IL-2 produced a more powerful antinociceptive effect than pcDNA3-IL-2 alone. The paw-withdrawal latencies were not affected by control treatments such as vehicle, lipofectamine, pcDNA3, or pcDNA3-lipofectamine. In the experimental groups, human IL-2 mRNA was detected by reverse transcription-polymerase chain reaction in the lumbar spinal pia mater, dorsal root ganglion, sciatic nerve, and spinal dorsal horn, but not in gastrocnemius muscle. The expressed IL-2 profile detected by western blot coincided with its mRNA profile except it was present in the spinal dorsal horn at a higher level. Furthermore, human IL-2 assayed by enzyme-linked immunosorbent assay in cerebrospinal fluid could still be detected at day 6, but lower than day 3. The antinociceptive effect of pcDNA3-IL-2 could be blocked by naloxone, showing some relationship of the antinociceptive effect produced by IL-2 gene to the opioid receptors. It is hoped that the new delivery approach of a single intrathecal injection of the IL-2 gene described here may be of some practical use as a part of a gene therapy for treating neuropathic pain.
Collapse
Affiliation(s)
- M-Z Yao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Petitto JM, Huang Z, Hartemink DA, Beck R. IL-2/15 receptor-beta gene deletion alters neurobehavioral performance. Brain Res 2002; 929:218-25. [PMID: 11864627 DOI: 10.1016/s0006-8993(01)03393-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The common IL-2/15 receptor-beta (IL-2/15Rbeta) is an essential signaling subunit that is shared exclusively by IL-2 and IL-15, and is enriched in the hippocampal formation and related limbic regions. We have previously shown that mice lacking IL-2 exhibit alterations in hippocampal-dependent learning, sensorimotor gating and accompanying reductions in hippocampal infrapyramidal mossy neuronal fiber length. Although the effects of exogenous IL-2 on various aspects of forebrain neuronal function are well documented, it is unclear whether IL-15 has neuromodulatory actions. Here we sought to test the hypothesis that the combined loss of the ability of IL-2 and IL-15 to signal through IL-2/15Rbeta in the brain would influence neurobehavioral performance, in particular spatial learning and memory performance. To test this hypothesis, we compared several different domains of behavior in mice that had one or both IL-2/15Rbeta gene alleles deleted. Compared with C57BL/6-IL-2/15Rbeta+/+ wild-type and C57BL/6-IL-2/15Rbeta+/- heterozygote littermates, C57BL/6-IL-2/15Rbeta-/- knockout mice exhibited a deficit in prepulse inhibition of the acoustic startle reflex (PPI). The IL-2/15Rbeta knockout mice also showed significant reductions in acoustic startle reactivity, and modest differences in behavior in the elevated plus-maze test indicative of reduced levels of fearfulness in response to novelty. The IL-2/15Rbeta knockout mice did not differ in locomotor activity in either the plus-maze or the Morris water-maze, and contrary to our working hypothesis, they did not differ in spatial learning or memory performance in the water-maze. Further studies are required to determine if these behavioral alterations may be attributable to factors such as the loss of the ability of IL-15 and/or IL-2 to modulate limbic neurons, autoimmunity or genetic factors associated with IL-2/15Rbeta gene deletion.
Collapse
Affiliation(s)
- John M Petitto
- McKnight Brain Institute, Departments of Psychiatry, Neuroscience, and Pharmacology, University of Florida College of Medicine, Gainesville, FL 32610-0256, USA.
| | | | | | | |
Collapse
|
30
|
Capuron L, Ravaud A, Dantzer R. Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-alpha treatments in cancer patients. Psychosom Med 2001; 63:376-86. [PMID: 11382265 DOI: 10.1097/00006842-200105000-00007] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Neuropsychological changes develop in patients treated by cytokine immunotherapy with interleukin-2 (IL-2) and interferon-alpha (IFN-alpha). However, the time course of appearance of these effects remains unclear, and their precise nature is still incompletely characterized. The objective of this study was to assess and characterize the early cognitive changes induced by IL-2 and IFN-alpha in cancer patients at the end of the first week of treatment and to investigate the subsequent evolution of these changes. METHODS The study was conducted in 47 cancer patients who received subcutaneous IL-2, administered alone (N = 17) or with IFN-alpha (N = 7), or IFN-alpha alone, administered subcutaneously at low doses (N = 7) or intravenously at high doses (N = 16). An automated battery of neuropsychological tests (Cambridge Neuropsychological Test Automated Battery) was used to measure reaction time, spatial working memory, and planning tasks. Cognitive tests were performed before treatment (day 1) and after 5 days (day 5) and 1 month of treatment. RESULTS On day 5, patients treated with IL-2 alone had impaired spatial working memory and lower accuracy of planning abilities. In contrast, patients treated with IFN-alpha did not show any impairment in performance accuracy in these tasks but showed longer latencies in the test of reaction time. Most of these early alterations persisted at the end of the first month of treatment without any obvious sign of worsening. CONCLUSIONS These findings suggest the existence of early differential neuropsychological changes in patients treated with IL-2 and IFN-alpha.
Collapse
Affiliation(s)
- L Capuron
- INSERM U394, Neurobiologie Intégrative, Institut François Magendie, Bordeaux, France.
| | | | | |
Collapse
|
31
|
Abstract
Interleukin (IL)-2 is a cytokine that influences exploratory behavior and central dopamine activity in rodents, and induces schizophrenic-like behavior and cognitive deficits in humans. We presently report that a single i.p. injection of murine IL-2 (0.05-0.80 microg/mouse) induced significant increases in novelty-induced locomotion and exploration in BALB/c mice. These measures were not significantly altered in mice that were pre-exposed to the test cage prior to cytokine injection. The IL-2-induced behavioral changes were not further augmented by repeated intermittent injections (five daily i.p. injections; 0.4 microg/mouse), however. Nonetheless, during the treatment period, activity scores of IL-2-treated mice significantly exceeded those of mice receiving saline; hence, repeated injections of IL-2 induced a persistent behavioral activation. IL-2 treatment also increased sensitivity to the behavior-stimulating effects of GBR 12909, a highly selective dopamine uptake inhibitor. This effect was a very long-lasting one since the dopamine agonist was administered 6 weeks after cessation of IL-2 treatment. The latter finding indicates that IL-2 interacts with the mesolimbic dopamine system, changing its sensitivity to seemingly different substances. Based on these data, and those of Zalcman and colleagues (S. Zalcman, I. Savina, R.A. Wise, Interleukin-6 increases sensitivity to the locomotor-stimulating effects of amphetamine in rats, Brain Res. 847 (1999) 276-283), it is suggested that cytokines can influence the development of behavioral abnormalities that are characteristic of aberrant mesolimbic dopamine activity via sensitization-like processes.
Collapse
Affiliation(s)
- S S Zalcman
- Department of Psychiatry and Rutgers/UMDNJ Integrative Neuroscience Program, UMD-New Jersey Medical School, Medical Science Building, E-503, 185 S. Orange Ave., Newark, NJ 07103-2714, USA.
| |
Collapse
|
32
|
Korneva EA, Barabanova SV, Golovko OI, Nosov MA, Novikova NS, Kazakova TB. C-fos and IL-2 gene expression in rat brain cells and splenic lymphocytes after nonantigenic and antigenic stimuli. Ann N Y Acad Sci 2001; 917:197-209. [PMID: 11268345 DOI: 10.1111/j.1749-6632.2000.tb05384.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunostimulatory or immunosuppressive stress models were used: (1) rotation stress (RS) and (2) immobilization (restraint) stress (IS). Intravenous injection of tetanus toxoid (anatoxin) (TT) was chosen as the antigenic stimulus (500 micrograms/kg weight), and intravenous injection of saline solution was used as the control. Splenic lymphocytes (CBA mice) or different brain structures (Wistar and Sprague-Dawley rats) were analyzed. The c-fos and interleukin-2 (IL-2) mRNA expression was measured using a digoxigenin (Dig)-labeled cDNA probe by spot or in situ hybridization. Rotation stress stimulated IL-2 mRNA synthesis in lymphocytes in the presence of ConA and rIL-2 by 40%. IL-2 mRNA synthesis in lymphoid cells obtained from animals after IS and after IS in combination with the administration in vitro of the cytotoxic drug CsA to the splenic lymphocytes was inhibited (30% and 99%), accordingly, as compared with control rats. Induction of c-fos mRNA synthesis in rat brain cells was noted 30 minutes after RS in the hypothalamus (lateralis hypothalamic area, LHA), thalamus, corpus collosum, and sensorimotor zone of the brain cortex. IL-2 mRNA synthesis was shown two hours after RS in the same structures. The increased number of c-fos mRNA-positive cells two hours after TT injection was shown in the posterior hypothalamus area (PHA), LHA, dorsomedial nucleus (DMH), ventromedial nucleus (VMH), and anterior hypothalamus area (AHA) as compared to the effect of i.v. saline injection. Moreover, IL-2 mRNA-positive cell induction was noted in the PHA, DMH, and VMH. Six hours after TT injection, c-fos mRNA expression was decreased in the PHA, LHA, and AHA. Activation of c-fos and IL-2 mRNA was detected in the paraventricularis nucleus 6 hours after TT i.v. injection. Thus, inhibition or stimulation of IL-2 gene expression in lymphoid cells depends on the nature of the stressors. RS or antigenic stimuli induce c-fos and IL-2 gene expression in definite structures of the brain. The dynamics of this process are time dependent. The partial correlation between c-fos and IL-2 mRNA expression in localization in brain structures and time dependence was shown.
Collapse
Affiliation(s)
- E A Korneva
- Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 12 Acad. Pavlov Str., St. Petersburg 197376, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Petitto JM, Huang Z. Cloning the full-length IL-2/15 receptor-beta cDNA sequence from mouse brain: evidence of enrichment in hippocampal formation neurons. REGULATORY PEPTIDES 2001; 98:77-87. [PMID: 11179782 DOI: 10.1016/s0167-0115(00)00229-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous studies have implicated interleukin-2 (IL-2) in various brain processes, and more recently, several studies have also attributed neurobiological actions to interleukin-15 (IL-15). On lymphocytes, receptors for IL-2 and IL-15 share a common subunit, the IL-2/15 receptor-beta (IL-2/15Rbeta) that is essential for intracellular signaling. Although a short segment of IL-2/15Rbeta has been cloned (0.35 kb) from normal brain cells, attempts to isolate the full-length cDNA have been unsuccessful, suggesting the possibility that the genes expressed by brain cells and lymphocytes may differ. Using conventional and anchored PCR cloning strategies, we isolated the full-length cDNA of IL-2/15Rbeta (2038 bp) from well-perfused, normal mouse forebrain. The coding sequence and the adjacent 5' and 3' UTR sequences from brain and lymphocyte were found to be fully homologous. Although evidence of expression of IL-2/15Rbeta can be found in many brain regions using PCR, clear evidence of gene expression by in situ hybridization was detectable only in the hippocampal formation, habenula and piriform cortex. This same pattern of mRNA expression in situ was also observed for the common gamma subunit shared by IL-2 and IL-15. In the hippocampus, IL-2/15Rbeta expression was localized to neurons by high resolution in situ hybridization and evidence of IL-2 receptor protein expression was also detected by radioligand receptor binding using hippocampal homogenates. Comparison of undifferentiated and differentiated, immortalized H19-7 hippocampal neurons showed that IL-2/15Rbeta was constitutively expressed across disparate stages of hippocampal neuronal differentiation. These data indicate that IL-2/15Rbeta may serve to modulate neuronal processes in the hippocampus and associated limbic brain regions.
Collapse
Affiliation(s)
- J M Petitto
- McKnight Brain Institute, Departments of Psychiatry, Neuroscience, and Pharmacology, University of Florida College of Medicine, P.O. Box 100256, Gainesville, FL 32610-0256, USA.
| | | |
Collapse
|
34
|
Wang G, Lu C, Liu H, Jin W, Jiao X, Wei G, Chen J, Zhu Y. Immunohistochemical localization of interleukin-2 and its receptor subunits alpha, beta and gamma in the main olfactory bulb of the rat. Brain Res 2001; 893:244-52. [PMID: 11223012 DOI: 10.1016/s0006-8993(00)03317-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endogenous interleukin-2 (IL-2) was found in the adult rat brain, however, it has not been reported whether this cytokine is present in the olfactory bulb. Immunohistochemical techniques were used to examine the cellular localization of IL-2 and its receptor subunits in the main olfactory bulb of the rat. Strong IL-2 immunoreactivity was localized in glial cells, specifically in the olfactory nerve layer, glomerular layer and external plexiform layer. IL-2 mRNA was detected in the olfactory bulb by RT-PCR. All three IL-2 receptor subunits also showed distinct laminar distributions. The IL-2Ralpha and IL-2Rbeta immunoreactivity was found both in neurons and glial cells, whereas IL-2Rgamma imunoreactivity was found in glial cells, and thus resembled IL-2 immunostaining. The present results demonstrated a wide distribution of IL-2 and its receptor subunits in the main olfactory bulb of the rat, suggesting that IL-2 might play a role in the olfactory function through autocrine or paracrine pathways. The exclusive high expression of IL-2 in glial cells in distinct laminar structures, where neuron-glia interactions are closely associated with olfactory nerve regeneration, imply that IL-2 might be involved in the process of nerve regeneration in the olfactory bulb.
Collapse
Affiliation(s)
- G Wang
- Department of Physiology, Fourth Military Medical University, 17 Chang Le Xi Road, Xi'an, 710032, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Study of the communication between nervous and immune systems culminated in the understanding that cytokines, formerly considered exclusively as immune system-derived peptides, are endogenous to the brain and display central actions. More recently, immune cells have been recognized as a peripheral source of "brain-specific" peptides with immunomodulatory actions. This article reviews studies concerning reciprocal effects of selected cytokines and neuropeptides in the nervous and immune systems, respectively. The functional equivalence of these two categories of communicators is discussed with reference to the example of the actions of neuropeptide somatostatin in the immune system.
Collapse
Affiliation(s)
- S Krantic
- INSERM 407, Faculté de Médecine Lyon-Sud BP12, 69921 Oullins, France.
| |
Collapse
|
36
|
Kim YK, Kim L, Lee MS. Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 2000; 44:165-75. [PMID: 10962218 DOI: 10.1016/s0920-9964(99)00171-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been postulated that altered interleukin (IL) regulation may be involved in the pathogenesis of schizophrenia. We therefore investigated the relationships between interleukins, neurotransmitters, and psychopathology in schizophrenia. IL-1beta, IL-2, IL-6, homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the plasma of neuroleptic-free male schizophrenics in comparison to age-matched healthy male controls (n=25 each). The patients' psychopathology was assessed by the Scale for the Assessment of Positive and Negative Symptoms (SAPS, SANS). The above variables were measured during acute states of illness and after eight weeks of treatment with haloperidol. The plasma levels of IL-2 and HVA were significantly higher in patients compared to controls. In schizophrenic patients, there were significant correlations between IL-2 and HVA, IL-2 and SAPS, and HVA and SAPS during the acute state of illness. The level of IL-6 was significantly correlated to SANS and duration of illness. In schizophrenic patients, the plasma levels of IL-2 and HVA were significantly lowered after treatment with haloperidol. Changes in IL-2 and HVA significantly correlated to those in HVA and SAPS, respectively. These results strongly suggest that the cytokines may modulate dopaminergic metabolism and schizophrenic symptomatology in schizophrenia.
Collapse
Affiliation(s)
- Y K Kim
- Department of Psychiatry, College of Medicine, Korea University, Ansan, South Korea.
| | | | | |
Collapse
|
37
|
Abstract
The present study was designed to investigate the involvement of mu receptor in interleukin 2-induced antinociception. Intraplantar injection of human recombinant interleukin 2 (rIL-2) (1. 5x10(4) U) significantly enhanced pain threshold as measured by paw withdrawal latencies (PWLs) to noxious radiant heat in normal rats. After administration of rIL-2, PWLs were also markedly increased in morphine-tolerant and chronic constriction injury (CCI)-operated rats, which have been proven morphine-insensitive. rIL-2-induced antinociception in both morphine-tolerant and CCI-operated rats was significantly lower than that in normal rats. rIL-2 antinociception was partially blocked by naloxone (1 mg/kg i.p.) in normal rats but remained unchanged in the CCI group. Our results suggest that the use of rIL-2 in human medical practice may be extended for its effectiveness in relief of neuropathic pain induced by CCI. Here we infer that mu receptor plays an critical role in IL-2-induced antinociception and that there are also some other receptors involved in this process.
Collapse
Affiliation(s)
- P Song
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, P. R. China
| | | |
Collapse
|
38
|
Guo H, Zhao ZQ. Inhibition of nociceptive withdrawal reflex by microinjection of interleukin 2 into rat locus coeruleus. Neuropeptides 2000; 34:216-20. [PMID: 11021983 DOI: 10.1054/npep.2000.0817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was to examine the effects of microinjection of human recombinant interleukin 2 (IL-2) into locus coeruleus (LC) on spinal nociception. Following application of IL-2 (0.1 microl, 10 pM) into LC, the percentage of inhibition of nociceptive C responses of reflex at 3, 9, 15, 21 and 27 min after injection were 88.2 +/-9.4%, 84.0 +/- 11.8%, 89.7 +/- 10.5%, 57.1 +/- 8.7% and 26.3 +/- 12.2%, respectively. Also, the expression of Fos protein in superficial dorsal horn was reduced by 73.01 +/- 13.58% of control (P<0.0001). Naloxone (10 microg, i.p.) completely blocked the IL-2-induced inhibition of C responses. The results clearly show that IL-2 receptors present in LC mediate descending inhibition of the spinal nociception, which may couple with the activation of opioid receptors on LC neurons.
Collapse
Affiliation(s)
- H Guo
- Key Laboratory of Neurobiology, Shanghai Institute of Physiology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | |
Collapse
|
39
|
Xi X, Toth LA. Lipopolysaccharide effects on neuronal activity in rat basal forebrain and hypothalamus during sleep and waking. Am J Physiol Regul Integr Comp Physiol 2000; 278:R620-7. [PMID: 10712281 DOI: 10.1152/ajpregu.2000.278.3.r620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral administration of lipopolysaccharide (LPS) is associated with alterations in sleep and the electroencephalogram. To evaluate potential neuronal mechanisms for the somnogenic effects of LPS administration, we used unanesthetized rats to survey the firing patterns of neurons in various regions of rat basal forebrain (BF) and hypothalamus during spontaneous sleep and waking and during the epochs of sleep and waking that occurred after the intraperitoneal administration of LPS. In the brain regions studied, LPS administration was associated with altered firing rates in 39% of the neurons examined. A larger proportion of LPS-responsive units showed vigilance-related alterations in firing rates compared with nonresponsive units. Approximately equal proportions of LPS-responsive neurons showed increased and decreased firing rates after LPS administration, with some units in the lateral preoptic area of the hypothalamus showing particularly robust increases. These findings are consistent with other studies showing vigilance-related changes in neuronal activity in various regions of BF and hypothalamus and further demonstrate that peripheral LPS administration alters neuronal firing rates in these structures during both sleep and waking.
Collapse
Affiliation(s)
- X Xi
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
40
|
Jiang CL, Xu D, Lu CL, Wang YX, You ZD, Liu XY. Interleukin-2: structural and biological relatedness to opioid peptides. Neuroimmunomodulation 2000; 8:20-4. [PMID: 10859484 DOI: 10.1159/000026448] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-2 is not only an immunoregulatory factor, but also an analgesic molecule. There are distinct domains of immune and analgesic functions in the IL-2 molecule. The analgesic domain is located around the 45th Tyr residue of human IL-2 in tertiary structure. Antiopioid (beta-endorphin, Leu-enkephalin, Met-enkephalin and dynorphin A1-13) sera partially neutralized the analgesic activity of IL-2. Monoclonal antibody against the IL-2 receptor alpha subunit (Tac) could not block the analgesic activity of IL-2. There existed cross-reactivity between IL-2 and antiopioid sera by indirect ELISA. These studies show strong structural and biological similarities between IL-2 and opioid peptides. The tertiary structure around the 45th residue of IL-2 composes the analgesic domain that is similar to that of endogenous opioids. These results are consistent with the hypothesis that multiple domains of cytokines serve as the structural bases for the immunoregulatory and neuroregulatory effects of cytokines.
Collapse
MESH Headings
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Antibodies/blood
- Antibodies, Monoclonal/pharmacology
- Brain Chemistry/drug effects
- Brain Chemistry/immunology
- Cross Reactions
- Dynorphins/chemistry
- Dynorphins/genetics
- Dynorphins/immunology
- Enkephalin, Leucine/chemistry
- Enkephalin, Leucine/genetics
- Enkephalin, Leucine/immunology
- Enkephalin, Methionine/chemistry
- Enkephalin, Methionine/genetics
- Enkephalin, Methionine/immunology
- Enzyme-Linked Immunosorbent Assay
- Humans
- Interleukin-2/chemistry
- Interleukin-2/genetics
- Interleukin-2/pharmacology
- Male
- Mutagenesis, Site-Directed/immunology
- Neuroimmunomodulation/genetics
- Neuroimmunomodulation/immunology
- Nociceptors/drug effects
- Nociceptors/immunology
- Opioid Peptides/chemistry
- Opioid Peptides/genetics
- Opioid Peptides/immunology
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Protein Structure, Tertiary
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/immunology
- Structure-Activity Relationship
- beta-Endorphin/chemistry
- beta-Endorphin/genetics
- beta-Endorphin/immunology
Collapse
Affiliation(s)
- C L Jiang
- Department of Neurobiology, Second Military Medical University, Shanghai, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
41
|
Lacosta S, Merali Z, Anisman H. Central monoamine activity following acute and repeated systemic interleukin-2 administration. Neuroimmunomodulation 2000; 8:83-90. [PMID: 10965233 DOI: 10.1159/000026457] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interleukin-2 (IL-2), together with other cytokines, may be involved in communication between the immune system and the CNS. Moreover, IL-2 alterations have been implicated in psychiatric disorders, and IL-2 immunotherapy may engender neuropsychiatric and cognitive disturbances. Given the presumed relationship between mood disturbances and monoamine activity, the present investigation was undertaken to determine the central monoamine alterations associated with acute and repeated systemic IL-2 administration in mice. Acute, systemic IL-2 (0.55-17.6 x 10(3) IU) did not influence plasma adrenocorticotropic hormone or corticosterone levels, but increased the utilization of norepinephrine (NE) within the paraventricular nucleus of the hypothalamus. In contrast to the effects of acute IL-2 administration, when administered repeatedly (for 7 days), IL-2 increased NE utilization within the median eminence plus arcuate nucleus and in the hippocampus, and to a lesser extent in the central amygdala and medial prefrontal cortex. These changes in utilization were accompanied by increased levels of NE within the median eminence plus arcuate nucleus and central amygdala, and reduced NE within the locus coeruleus. As well, serotonin (5-hydroxytryptamine; 5-HT) levels were altered within the hippocampus and prefrontal cortex, and dopamine turnover was reduced within the caudate and substantia nigra. The finding of altered central neurotransmitter activity needs to be considered in the context of the marked cognitive/memory impairments, as well as the neuropsychiatric symptoms, which are associated with IL-2 immunotherapy in humans.
Collapse
Affiliation(s)
- S Lacosta
- Institute of Neuroscience, Carleton University, Ottawa, Canada
| | | | | |
Collapse
|
42
|
Tanebe K, Nishijo H, Muraguchi A, Ono T. Effects of chronic stress on hypothalamic lnterleukin-1beta, interleukin-2, and gonadotrophin-releasing hormone gene expression in ovariectomized rats. J Neuroendocrinol 2000; 12:13-21. [PMID: 10692139 DOI: 10.1046/j.1365-2826.2000.00414.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of chronic stress on the expression of interleukin (IL)-1beta and IL-2 mRNAs in ovariectomized rat brains, and the physiological consequences of the expression of these cytokines on hypothalamic-pituitary-gonadal (HPG) activity were investigated. Using polymerase chain reaction (PCR)-assisted semiquantitative analysis, we demonstrated alterated expression of IL-1beta and IL-2 mRNA during repeated cold stress; the expression of both IL-beta and IL-2 mRNA increased in the medial preoptic area and ventromedial hypothalamus, and decreased in the lateral hypothalamic area. In the arcuate nucleus/median eminence, IL-2 mRNA expression was dramatically decreased, in contrast to the increase in IL-1beta mRNA expression. Concomitant analysis of GnRH mRNA expression indicated significant suppression of GnRH synthesis in the chronic phase, and a strong negative correlation with cytokine expression in the medial preoptic area. Similar results were obtained in intact females exposed to this stress. These results, together with previous pharmacological studies, suggest that chronic stress may induce reproductive dysfunction through the effects of stress-induced expression of endogenous cytokines.
Collapse
Affiliation(s)
- K Tanebe
- Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Toyama, Japan
| | | | | | | |
Collapse
|
43
|
Song C, Merali Z, Anisman H. Variations of nucleus accumbens dopamine and serotonin following systemic interleukin-1, interleukin-2 or interleukin-6 treatment. Neuroscience 1999; 88:823-36. [PMID: 10363820 DOI: 10.1016/s0306-4522(98)00271-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of systemically administered interleukin-1beta (1.0 microg), interleukin-6 (1.0 microg) and interleukin-2 (1.0 microg) on in vivo variations of monoamines were assessed in the nucleus accumbens. Administration of interleukin-1beta did not affect extracellular accumbal dopamine, provoked a modest rise of homovanillic acid, and prevented the decline of dihydroxyphenylacetic acid ordinarily seen in saline treated rats. Also, interleukin-1 provoked a modest increase of extracellular 5-hydroxyindoleacetic acid from the nucleus accumbens. Following exposure to the stress of a series of air-puffs, a still greater increase of accumbal 5-hydroxyindoleacetic acid was evident. In contrast to interleukin-1, systemic administration of interleukin-6 and interleukin-2 both induced marked reductions of interstitial dopamine levels. The air-puff exposure further enhanced these effects in rats that had received the cytokine treatment. As well, interleukin-6 and interleukin-2 were both found to reduce the homovanillic acid response associated with the stress, and interleukin-2 promoted a decline of homovanillic acid levels. Treatment with interleukin-6, like that of interleukin-1, prevented the decline of dihydroxyphenylacetic acid ordinarily observed over time, while interleukin-2 was without effect in this respect. Finally, interleukin-6 provoked a modest rise of 5-hydroxyindoleacetic acid, which was most apparent following air-puff exposure, while administration of interleukin-2 did not affect accumbal 5-hydroxyindoleacetic acid. It is suggested that the cytokines may influence the release of biogenic amines in the nucleus accumbens, but the profile of changes were cytokine-specific. As well, it appeared that the cytokines, particularly interleukin-1 and interleukin-6, may act synergistically with the stressor in promoting the amine variations. Systemic administration of cytokines clearly influenced monoamine activity at the nucleus accumbens, a region associated with both rewarding and aversive events. Thus, it may be expected that cytokine treatments may affect behavior. Moreover, it seems that the effects of interleukin-1 and interleukin-6 may be influenced by the presence of stressful stimuli. It ought to be underscored that although cytokines share features with the effects of stressors, most notably the variations of hypothalamic-pituitary-adrenal hormones, the pattern of central neurochemical changes elicited by the cytokines could be distinguished from the amine variations ordinarily associated with stressors.
Collapse
Affiliation(s)
- C Song
- Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
44
|
Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ. Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J Neurosci Res 1999; 56:441-6. [PMID: 10340751 DOI: 10.1002/(sici)1097-4547(19990515)56:4<441::aid-jnr11>3.0.co;2-g] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interleukin-2 (IL-2), the protypical T cell growth factor and immunoregulatory cytokine produced by lymphocytes, has been implicated as a brain neurotrophic factor and neuromodulator. The consequences of the absence of endogenous IL-2 on brain development and function were unknown. Brain IL-2 receptors are enriched in the hippocampal formation, an area critical for the acquisition and consolidation of spatial learning and memory. Thus, we tested the hypothesis that mice lacking IL-2 would exhibit alterations in hippocampal-dependent learning and neurodevelopment. Compared with C57BL/6-IL-2+/+ wild-type mice, we observed that C57BL/6-IL-2-/- gene knockout mice had markedly impaired spatial learning and memory in the Morris water maze. No significant deficits in parameters of learning and memory performance were found in severe combined immunodeficient (SCID) mice (C57BL/6scid), however, suggesting that the impaired spatial learning and memory exhibited by IL-2 knockout mice is not attributable to generalized immunodeficiency resulting from the absence of endogenous IL-2. Examination of other domains of behavioral performance showed that the IL-2 knockout and wildtype mice did not differ in measures of fearfulness or locomotor activity in an elevated plus maze, or in reflexive startle responses to auditory stimuli--although prepulse inhibition of acoustic startle (PPI) was increased significantly in IL-2 knockout mice. The spatial learning and memory impairment in IL-2 knockout mice was accompanied by reductions in hippocampal infrapyramidal mossy neuronal fiber length, a factor shown previously to correlate positively with spatial learning ability. These findings indicate that, in addition to being a pivotal cytokine in immune regulation, IL-2 may play a role in the development and regulation of brain neurons involved in spatial learning and memory.
Collapse
Affiliation(s)
- J M Petitto
- Department of Psychiatry, Brain Institute, University of Florida College of Medicine, Gainesville 32610-0256, USA.
| | | | | | | | | |
Collapse
|
45
|
Karanth S, Lyson K, McCann SM. Effects of cholinergic agonists and antagonists on interleukin-2-induced corticotropin-releasing hormone release from the mediobasal hypothalamus. Neuroimmunomodulation 1999; 6:168-74. [PMID: 10213914 DOI: 10.1159/000026378] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In previous research we found that interleukin-2 (IL-2)-induced corticotropin-releasing hormone (CRH) release in vitro is mediated by cholinergic activation of nitric oxidergic (NOergic) neurons. The NOergic neurons release nitric oxide that stimulates CRH release. To further characterize the mechanism of IL-2-induced CRH release, the possible role of nicotinic as well as muscarinic receptors in IL-2-stimulated CRH release was evaluated. Medial hypothalamic (MH) explants from adult male rats were preincubated in Krebs-Ringer (KRB) buffer for 45 min followed by incubation for an additional 30 min in fresh KRB or KRB containing various compounds. As previously reported, acetylcholine (ACH) stimulated CRH release in a dose-related fashion. IL-2 (10(-13) M) stimulation of CRH release was unaffected by the lower concentration of ACH (10(-9) M), but surprisingly was inhibited by a 100-fold higher concentration. Atropine (ATR) (10(-7) M) blocked CRH release induced by ACH (10(-7) M) and the release of CRH induced by IL-2. The cholinergic agonist carbachol (CAR) (10(-7) M) also released CRH and this action was blocked by ATR (10(-7) M). CRH release in the presence of CAR was lowered below basal when the concentration of ATR was increased to 10(-6) M. In contrast to ACH, CAR had an additive effect to release CRH when combined with IL-2 (10(-13) M). Nicotine (10(-7) M) also stimulated CRH release and this stimulation was completely blocked by 10(-6) M but not by 10(-7) M of the nicotinic receptor blocker, hexamethonium (HEX). The lower concentration of HEX blocked the stimulatory effect of ACH (10(-7) M) and IL-2 on CRH release. Combined blockade with ATR plus HEX completely blocked the action of ACH and even reduced the CRH concentration to below basal values. Furthermore, combined blockade completely blocked the release of CRH induced by IL-2. We conclude that nicotinic as well as muscarinic receptors play an important role in CRH release, and that they both act to mediate IL-2-stimulated CRH release.
Collapse
Affiliation(s)
- S Karanth
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808-4124, USA
| | | | | |
Collapse
|
46
|
Gahtan E, Overmier JB. Inflammatory pathogenesis in Alzheimer's disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev 1999; 23:615-33. [PMID: 10392655 DOI: 10.1016/s0149-7634(98)00058-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental evidence from molecular biology, biochemistry, epidemiology and behavioral research support the conclusion that brain inflammation contributes to the pathogenesis of Alzheimer's disease and other types of human dementias. Aspects of neuroimmunology relating to the pathogenesis of Alzheimer's disease are briefly reviewed. The effects of brain inflammation, mediated through cytokines and other secretory products of activated glial cells, on neurotransmission (specifically, nitric oxide, glutamate, and acetylcholine), amyloidogenesis, proteolysis, and oxidative stress are discussed within the context of the pathogenesis of learning and memory dysfunction in Alzheimer's disease. Alzheimer's disease is proposed to be an etiologically heterogeneous syndrome with the common elements of amyloid deposition and inflammatory neuronal damage.
Collapse
Affiliation(s)
- E Gahtan
- Department of Psychology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
47
|
Abstract
Cytokines are important partners in the bidirectional network interrelating the immune and the neuroendocrine systems. These substances and their specific receptors, initially thought to be exclusively present in the immune system, have recently been shown to be also expressed in the neuroendocrine system. Cytokines can modulate the responses of all endocrine axes by acting at both the central and the peripheral levels. To explain how systemic cytokines may gain access to the brain, several mechanisms have been proposed, including an active transport through the blood-brain barrier, a passage at the circumventricular organ level, as well as a neuronal pathway through the vagal nerve. The immune-neuroendocrine interactions are involved in numerous physiological and pathophysiological conditions and seem to play an important role to maintain homeostasis.
Collapse
Affiliation(s)
- R C Gaillard
- Division of Endocrinology and Metabolism, University Hospital (CHUV), Lausanne/Switzerland
| |
Collapse
|
48
|
|
49
|
Mashaly MM, Trout JM, Hendricks G, al-Dokhi LM, Gehad A. The role of neuroendocrine immune interactions in the initiation of humoral immunity in chickens. Domest Anim Endocrinol 1998; 15:409-22. [PMID: 9785045 DOI: 10.1016/s0739-7240(98)00023-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The presence of neuroendocrine immune interaction in mammalian species has been studied extensively and has been established. However, such an interaction is not as well established in avian species. Furthermore, the role of such an interaction in the initiation of humoral immunity is not well understood. Therefore, the present studies were conducted to determine mechanisms involved in the initiation of humoral immunity in chickens. Cornell K-strain White Leghorn immature male chickens were used for all the experiments. Changes in hormonal and leukocyte profiles after antigen stimulation were studied. The ability of different leukocytes to produce ACTH was also investigated. It was concluded that the first step in the initiation of humoral immunity after antigen exposure is the release of interleukin-1 by macrophages, which in turn stimulates the production of CRF by hypothalamus and/or leukocytes. It is important to mention that CRF production could also be a direct effect of antigen stimulation. The CRF will then stimulate ACTH production by anterior pituitary and/or leukocytes. In addition, CRF will directly enhance lymphocyte activities in the spleen. Corticosteroid production will be stimulated by ACTH and will cause redistribution of lymphocytes from circulation to secondary lymphoid organs such as the spleen for antigen processing and eventual production of antibodies against the invading antigens. Finally, both ACTH and corticosteroids will later act in a negative feedback manner to regulate and control the process of antibody production by inhibiting lymphocyte activities and/or reducing the responsiveness to different stimuli.
Collapse
Affiliation(s)
- M M Mashaly
- Department of Poultry Science, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | |
Collapse
|
50
|
Hebb AL, Zacharko RM, Anisman H. Self-stimulation from the mesencephalon following intraventricular interleukin-2 administration. Brain Res Bull 1998; 45:549-56. [PMID: 9566497 DOI: 10.1016/s0361-9230(97)00447-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intracranial self-stimulation was evaluated among CD-1 mice responding for brain stimulation from the dorsal and ventral aspects of the ventral tegmental area (VTA). Intraventricular interleukin-2 (IL-2) administration (5 ng) in a 1-microl volume elevated the stimulation frequency required to effect half-maximal responding for brain stimulation from the dorsal A10 region 15 min, 24 h, 48 h, and 1 week following drug administration relative to vehicle-treated animals. Intraventricular IL-2 administration did not influence responding for brain stimulation from the ventral A10 area, and performance of these animals was indistinguishable from the performance of vehicle-challenged animals implanted with a stimulating electrode in the ventral A10 area. These data suggest that central IL-2 administration reduces the value of previously rewarding brain stimulation from subregions of the VTA. The implications of these data for behavioural pathology are discussed.
Collapse
Affiliation(s)
- A L Hebb
- Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | |
Collapse
|