1
|
Sweetland GD, Eggleston C, Bartz JC, Mathiason CK, Kincaid AE. Expression of the cellular prion protein by mast cells in the human carotid body. Prion 2023; 17:67-74. [PMID: 36943020 PMCID: PMC10038025 DOI: 10.1080/19336896.2023.2193128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Prion diseases are fatal neurologic disorders that can be transmitted by blood transfusion. The route for neuroinvasion following exposure to infected blood is not known. Carotid bodies (CBs) are specialized chemosensitive structures that detect the concentration of blood gasses and provide feedback for the neural control of respiration. Sensory cells of the CB are highly perfused and densely innervated by nerves that are synaptically connected to the brainstem and thoracic spinal cord, known to be areas of early prion deposition following oral infection. Given their direct exposure to blood and neural connections to central nervous system (CNS) areas involved in prion neuroinvasion, we sought to determine if there were cells in the human CB that express the cellular prion protein (PrPC), a characteristic that would support CBs serving as a route for prion neuroinvasion. We collected CBs from cadaver donor bodies and determined that mast cells located in the carotid bodies express PrPC and that these cells are in close proximity to blood vessels, nerves, and nerve terminals that are synaptically connected to the brainstem and spinal cord.
Collapse
Affiliation(s)
- Gregory D. Sweetland
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Connor Eggleston
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anthony E. Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
2
|
Bechmann N, Eisenhofer G. Hypoxia-inducible Factor 2α: A Key Player in Tumorigenesis and Metastasis of Pheochromocytoma and Paraganglioma? Exp Clin Endocrinol Diabetes 2021; 130:282-289. [PMID: 34320663 DOI: 10.1055/a-1526-5263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Germline or somatic driver mutations linked to specific phenotypic features are identified in approximately 70% of all catecholamine-producing pheochromocytomas and paragangliomas (PPGLs). Mutations leading to stabilization of hypoxia-inducible factor 2α (HIF2α) and downstream pseudohypoxic signaling are associated with a higher risk of metastatic disease. Patients with metastatic PPGLs have a variable prognosis and treatment options are limited. In most patients with PPGLs, germline mutations lead to the stabilization of HIF2α. Mutations in HIF2α itself are associated with adrenal pheochromocytomas and/or extra-adrenal paragangliomas and about 30% of these patients develop metastatic disease; nevertheless, the frequency of these specific mutations is low (1.6-6.2%). Generally, mutations that lead to stabilization of HIF2α result in distinct catecholamine phenotype through blockade of glucocorticoid-mediated induction of phenylethanolamine N-methyltransferase, leading to the formation of tumors that lack epinephrine. HIF2α, among other factors, also contributes importantly to the initiation of a motile and invasive phenotype. Specifically, the expression of HIF2α supports a neuroendocrine-to-mesenchymal transition and the associated invasion-metastasis cascade, which includes the formation of pseudopodia to facilitate penetration into adjacent vasculature. The HIF2α-mediated expression of adhesion and extracellular matrix genes also promotes the establishment of PPGL cells in distant tissues. The involvement of HIF2α in tumorigenesis and in multiple steps of invasion-metastasis cascade underscores the therapeutic relevance of targeting HIF2α signaling pathways in PPGLs. However, due to emerging resistance to current HIF2α inhibitors that target HIF2α binding to specific partners, alternative HIF2α signaling pathways and downstream actions should also be considered for therapeutic intervention.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Zera T, Moraes DJA, da Silva MP, Fisher JP, Paton JFR. The Logic of Carotid Body Connectivity to the Brain. Physiology (Bethesda) 2020; 34:264-282. [PMID: 31165684 DOI: 10.1152/physiol.00057.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The carotid body has emerged as a therapeutic target for cardio-respiratory-metabolic diseases. With the expansive functions of the chemoreflex, we sought mechanisms to explain differential control of individual responses. We purport a remarkable correlation between phenotype of a chemosensory unit (glomus cell-sensory afferent) with a distinct component of the reflex response. This logic could permit differential modulation of distinct chemoreflex responses, a strategy ideal for therapeutic exploitation.
Collapse
Affiliation(s)
- Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw , Warsaw , Poland
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo , São Paulo , Brazil
| | - James P Fisher
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland , Auckland , New Zealand
| |
Collapse
|
4
|
Pheochromocytoma and paraganglioma: genotype versus anatomic location as determinants of tumor phenotype. Cell Tissue Res 2018; 372:347-365. [DOI: 10.1007/s00441-017-2760-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
|
5
|
Retamal MA, Reyes EP, Alcayaga J. Petrosal ganglion: a more complex role than originally imagined. Front Physiol 2014; 5:474. [PMID: 25538627 PMCID: PMC4255496 DOI: 10.3389/fphys.2014.00474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
Abstract
The petrosal ganglion (PG) is a peripheral sensory ganglion, composed of pseudomonopolar sensory neurons that innervate the posterior third of the tongue and the carotid sinus and body. According to their electrical properties PG neurons can be ascribed to one of two categories: (i) neurons with action potentials presenting an inflection (hump) on its repolarizing phase and (ii) neurons with fast and brisk action potentials. Although there is some correlation between the electrophysiological properties and the sensory modality of the neurons in some species, no general pattern can be easily recognized. On the other hand, petrosal neurons projecting to the carotid body are activated by several transmitters, with acetylcholine and ATP being the most conspicuous in most species. Petrosal neurons are completely surrounded by a multi-cellular sheet of glial (satellite) cells that prevents the formation of chemical or electrical synapses between neurons. Thus, PG neurons are regarded as mere wires that communicate the periphery (i.e., carotid body) and the central nervous system. However, it has been shown that in other sensory ganglia satellite glial cells and their neighboring neurons can interact, partly by the release of chemical neuro-glio transmitters. This intercellular communication can potentially modulate the excitatory status of sensory neurons and thus the afferent discharge. In this mini review, we will briefly summarize the general properties of PG neurons and the current knowledge about the glial-neuron communication in sensory neurons and how this phenomenon could be important in the chemical sensory processing generated in the carotid body.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Edison P Reyes
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Temuco, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
6
|
Kåhlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 2014; 99:1089-98. [PMID: 24887113 DOI: 10.1113/expphysiol.2014.078873] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies on experimental animals established that the carotid bodies are sensory organs for detecting arterial blood O2 levels and that the ensuing chemosensory reflex is a major regulator of cardiorespiratory functions during hypoxia. However, little information is available on the human carotid body responses to hypoxia. The present study was performed on human carotid bodies obtained from surgical patients undergoing elective head and neck cancer surgery. Our results show that exposing carotid body slices to hypoxia for a period as brief as 5 min markedly facilitates the release of ACh and ATP. Furthermore, prolonged hypoxia for 1 h induces an increased release of interleukin (IL)-1β, IL-4, IL-6, IL-8 and IL-10. Immunohistochemical analysis revealed that type 1 cells of the human carotid body express an array of cytokine receptors as well as hypoxia-inducible factor-1α and hypoxia-inducible factor-2α. Taken together, these results demonstrate that ACh and ATP are released from the human carotid body in response to hypoxia, suggesting that these neurotransmitters, as in several experimental animal models, play a role in hypoxic signalling also in the human carotid body. The finding that the human carotid body releases cytokines in response to hypoxia adds to the growing body of information suggesting that the carotid body may play a role in detecting inflammation, providing a link between the immune system and the nervous system.
Collapse
Affiliation(s)
- Jessica Kåhlin
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Souren Mkrtchian
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anette Ebberyd
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Britt Nordlander
- Department of Otorhinolaryngology (ENT), Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nanduri Prabhakar
- Institute for Integrative Physiology & Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Jonsson Fagerlund
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars I Eriksson
- Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden Department of Anesthesiology, Surgical Services and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Miyato H, Kitayama J, Ishigami H, Kaisaki S, Nagawa H. Loss of sympathetic nerve fibers around intratumoral arterioles reflects malignant potential of gastric cancer. Ann Surg Oncol 2011; 18:2281-8. [PMID: 21290194 DOI: 10.1245/s10434-011-1562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND The role and clinical significance of the alteration of sympathetic nerve fibers (SNF) was assessed in gastric cancer. Loss of nerve fibers in malignant tumors has previously been described; however, how dysfunction of the nervous system is involved in cancer progression has not been clarified in clinical studies. MATERIALS AND METHODS The distribution of SNF was examined in 82 surgically resected gastric cancer specimens with immunohistochemical staining of tyrosine hydroxylase (TH), and the association with clinicopathological findings as well as the clinical outcome of the patients was retrospectively evaluated. RESULTS Arterioles in the normal gastric wall were totally covered with SNF, while the immunoreactivity to TH was markedly reduced around arterioles in cancer tissue. The degree of loss of SNF was significantly correlated with the depth of invasion (P < .0001) and lymph node metastasis (P < .0001) as well as microvessel density (MVD) (P = .0043). Moreover, patients who had tumors with marked loss of SNF showed a markedly worse clinical outcome, with an independent association by multivariate analysis. CONCLUSIONS Loss of periarteriolar SNF is associated with aggressive phenotype of gastric cancer possibly through enhanced angiogenesis and thus could be a useful marker to predict the clinical outcome.
Collapse
Affiliation(s)
- Hideyo Miyato
- Department of Surgery, Division of Surgical Oncology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
8
|
Lazarov NE, Reindl S, Fischer F, Gratzl M. Histaminergic and dopaminergic traits in the human carotid body. Respir Physiol Neurobiol 2008; 165:131-6. [PMID: 19022410 DOI: 10.1016/j.resp.2008.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 11/19/2022]
Abstract
Carotid body (CB) chemoreceptors are the main sensors detecting systemic hypoxia. Studies in animals revealed that dopamine and histamine may serve as transmitters between the chemoreceptor cells and the afferent nerve. To gain insight whether histamine and dopamine could play a role in the human CB and thus be important for the understanding of breathing disorders, we have investigated the chemosensory traits in human CBs from nine subjects of different ages obtained at autopsy. Immunohistochemistry revealed expression of histidine decarboxylase, vesicular monoamine transporter 2, histamine receptors 1 and 3 in virtually all chemosensory cells within the glomeruli of different ages. By contrast, catecholaminergic traits (tyrosine hydroxylase and vesicular monoamine transporter 1) were only detected in a subset of CB chemosensory cells at each age group while dopamine D2 receptors were expressed in the great majority of them. Our data suggest that histamine along with catecholamines may serve as transmitters between chemoreceptor cells and the afferent nerve in humans as well.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Anatomisches Institut der Universität München, Biedersteiner Str. 29, 80802 München, Germany
| | | | | | | |
Collapse
|
9
|
Porzionato A, Macchi V, Parenti A, De Caro R. Trophic factors in the carotid body. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:1-58. [PMID: 18779056 DOI: 10.1016/s1937-6448(08)01001-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study is to provide a review of the expression and action of trophic factors in the carotid body. In glomic type I cells, the following factors have been identified: brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, artemin, ciliary neurotrophic factor, insulin-like growth factors-I and -II, basic fibroblast growth factor, epidermal growth factor, transforming growth factor-alpha and -beta1, interleukin-1beta and -6, tumour necrosis factor-alpha, vascular endothelial growth factor, and endothelin-1 (ET-1). Growth factor receptors in the above cells include p75LNGFR, TrkA, TrkB, RET, GDNF family receptors alpha1-3, gp130, IL-6Ralpha, EGFR, FGFR1, IL1-RI, TNF-RI, VEGFR-1 and -2, ETA and ETB receptors, and PDGFR-alpha. Differential local expression of growth factors and corresponding receptors plays a role in pre- and postnatal development of the carotid body. Their local actions contribute toward producing the morphologic and molecular changes associated with chronic hypoxia and/or hypertension, such as cellular hyperplasia, extracellular matrix expansion, changes in channel densities, and neurotransmitter patterns. Neurotrophic factor production is also considered to play a key role in the therapeutic effects of intracerebral carotid body grafts in Parkinson's disease. Future research should also focus on trophic actions on carotid body type I cells by peptide neuromodulators, which are known to be present in the carotid body and to show trophic effects on other cell populations, that is, angiotensin II, adrenomedullin, bombesin, calcitonin, calcitonin gene-related peptide, cholecystokinin, erythropoietin, galanin, opioids, pituitary adenylate cyclase-activating polypeptide, atrial natriuretic peptide, somatostatin, tachykinins, neuropeptide Y, neurotensin, and vasoactive intestinal peptide.
Collapse
Affiliation(s)
- Andrea Porzionato
- Department of Human Anatomy and Physiology, University of Padova, Padova 35127, Italy
| | | | | | | |
Collapse
|
10
|
Iturriaga R, Cerpa V, Zapata P, Alcayaga J. Catecholamine release from isolated sensory neurons of cat petrosal ganglia in tissue culture. Brain Res 2003; 984:104-10. [PMID: 12932844 DOI: 10.1016/s0006-8993(03)03118-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The petrosal ganglion (PG) is entirely constituted by the perikarya of primary sensory neurons, part of which innervates the carotid body via the carotid sinus nerve (CSN). Application of acetylcholine (ACh) or nicotine (Nic) as well as adenosine 5'-triphosphate (ATP) to the PG in vitro increases the frequency of CSN discharges, an effect that is modified by the concomitant application of dopamine (DA). Since a population of PG neurons expresses tyrosine hydroxylase, and DA is released from the cat carotid body in response to electrical stimulation of C-fibers in the CSN, it is possible that DA may be released from the perikarya of PG neurons. Therefore, we studied whether ACh or Nic, ATP and high KCl could induce DA release from PG neurons in culture. Petrosal ganglia were excised from pentobarbitone-anesthetized adult cats, dissociated and their neurons maintained in culture for 7-21 days. Catecholamine release was measured by amperometry via carbon-fiber microelectrodes. In response to KCl, Nic, ACh or ATP application, about 25% of neurons exhibited electrochemical signals compatible with DA release. This percentage increased to 41% after loading the neurons with exogenous DA. The present results suggest that DA release may be induced from the perikarya of a population of PG neurons.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | | | | | |
Collapse
|
11
|
Alcayaga J, Retamal M, Cerpa V, Arroyo J, Zapata P. Dopamine inhibits ATP-induced responses in the cat petrosal ganglion in vitro. Brain Res 2003; 966:283-7. [PMID: 12618351 DOI: 10.1016/s0006-8993(02)04215-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The petrosal ganglion (PG) provides sensory innervation to the carotid sinus and carotid body through the carotid (sinus) nerve (CN). Application of either acetylcholine (ACh) or adenosine 5'-triphosphate (ATP) to the PG superfused in vitro activates CN fibers. Dopamine (DA) modulates the effects of ACh. We have previously shown that DA when applied to the PG modulates the effects of ACh on carotid sinus nerve fibers. We currently report the effects of DA on the ATP-induced responses in the isolated PG in vitro. While DA had no effect on the basal activity recorded from the CN, it reduced ATP-induced responses in a dose-dependent manner, when preceding ATP applications by 30 s. Our results suggest that DA-a transmitter present in a group of PG neurons and in carotid body cells-may act as an inhibitory modulator of ATP-evoked responses in PG neurons.
Collapse
Affiliation(s)
- Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biologi;a, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | | | | | | | | |
Collapse
|
12
|
Ichikawa H. Innervation of the carotid body: Immunohistochemical, denervation, and retrograde tracing studies. Microsc Res Tech 2002; 59:188-95. [PMID: 12384963 DOI: 10.1002/jemt.10193] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review presents information about multiple neurochemical substances in the carotid body. Nerve fibers around blood vessels and glomus cells within the chemoreceptive organ contain immunoreactivities (IR) for tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), calretinin (CR), calbindin D-28k (CB), parvalbumin (PV), and nitric oxide synthase (NOS). Parasympathetic neurons scattered around the carotid body contain VIP, choline acetyltransferase, and vanilloid receptor 1-like receptor. In the mammalian carotid body, transection of the carotid sinus nerve (CSN) causes the absence or decrease of CGRP-, SP-, and NOS-immunoreactive (IR) nerve fibers, whereas all NPY-IR nerve fibers disappear after removal of the superior cervical ganglion. Most VIP-IR nerve fibers disappear but a few persist after sympathetic ganglionectomy. In addition, the CSN transection appears to cause the acquisition of GAL-IR in originally immunonegative glomus cells and nerve fibers within the rat carotid body. On the other hand, 4%, 25%, 17%, and less than 1% of petrosal neurons retrogradely labeled from the rat CSN contain TH-, CGRP-, SP-, and VIP-IR, respectively. In the chicken carotid body, many CGRP- and SP-IR nerve fibers disappear after vagus nerve transection or nodose ganglionectomy. GAL-, NPY-, and VIP-IR nerve fibers mostly disappear after removal of the 14th cervical ganglion of the sympathetic trunk. The origin and functional significance of the various neurochemical substances present in the carotid body is discussed.
Collapse
Affiliation(s)
- Hiroyuki Ichikawa
- Department of Oral Function and Anatomy, Okayama University, Graduate School of Medicine and Dentistry, Okayama 700, Japan.
| |
Collapse
|
13
|
Abstract
The peripheral arterial chemoreceptors of the carotid body participate in the ventilatory responses to hypoxia and hypercapnia, the arousal responses to asphyxial apnea, and the acclimatization to high altitude. In response to an excitatory stimuli, glomus cells in the carotid body depolarize, their intracellular calcium levels rise, and neurotransmitters are released from them. Neurotransmitters then bind to autoreceptors on glomus cells and postsynaptic receptors on chemoafferents of the carotid sinus nerve. Binding to inhibitory or excitatory receptors on chemoafferents control the electrical activity of the carotid sinus nerve, which provides the input to respiratory-related brainstem nuclei. We and others have used gene expression in the carotid body as a tool to determine what neurotransmitters mediate the response of peripheral arterial chemoreceptors to excitatory stimuli, specifically hypoxia. Data from physiological studies support the involvement of numerous putative neurotransmitters in hypoxic chemosensitivity. This article reviews how in situ hybridization histochemistry and other cellular localization techniques confirm, refute, or expand what is known about the role of dopamine, norepinephrine, substance P, acetylcholine, adenosine, and ATP in chemotransmission. In spite of some species differences, review of the available data support that 1). dopamine and norepinephrine are synthesized and released from glomus cells in all species and play an inhibitory role in hypoxic chemosensitivity; 2). substance P and acetylcholine are not synthesized in glomus cells of most species but may be made and released from nerve fibers innervating the carotid body in essentially all species; 3). adenosine and ATP are ubiquitous molecules that most likely play an excitatory role in hypoxic chemosensitivity.
Collapse
Affiliation(s)
- Estelle B Gauda
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Institutions, Baltimore, Maryland 21287-3200, USA.
| |
Collapse
|
14
|
Alcayaga J, Varas R, Arroyo J, Iturriaga R, Zapata P. Dopamine modulates carotid nerve responses induced by acetylcholine on the cat petrosal ganglion in vitro. Brain Res 1999; 831:97-103. [PMID: 10411987 DOI: 10.1016/s0006-8993(99)01402-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently reported that application of acetylcholine (ACh) or nicotine to the petrosal ganglion-the sensory ganglion of the glossopharyngeal nerve-elicits a burst of discharges in the carotid nerve branch, innervating the carotid body and sinus, but not in the glossopharyngeal branch, innervating the tongue and pharynx. Thus, the perikarya of sensory neurons for the carotid bifurcation exhibit selective cholinosensitivity. Since dopamine (DA) modulates carotid nerve chemosensory activity, we searched for the presence of DA sensitivity at the perikarya of these neurons in the cat petrosal ganglion superfused in vitro. Applications of DA in doses of up to 5 mg to the ganglion did not modify the rate of spontaneous discharges in the carotid nerve. However, if DA was applied 30 s before ACh injections, ACh-evoked reactions were modified: low doses of DA enhanced the subsequent responses to ACh, while high doses of DA depressed the responses to ACh. This depressant effect of DA on ACh responses was partially antagonized by adding spiroperone to the superfusate. Our results show that the response to ACh of petrosal ganglion neurons projecting through the carotid nerve is modulated by DA acting on D(2) receptors located in the somata of these neurons. Thus, dopaminergic modulation of cholinosensitivity could be shared also by the membranes of peripheral endings and perikarya of primary sensory neurons involved in arterial chemoreception.
Collapse
Affiliation(s)
- J Alcayaga
- Laboratory of Neurobiology, Faculty of Sciences, University of Chile, PO Box 653, Santiago 1, Chile.
| | | | | | | | | |
Collapse
|
15
|
Shirahata M, Ishizawa Y, Rudisill M, Schofield B, Fitzgerald RS. Presence of nicotinic acetylcholine receptors in cat carotid body afferent system. Brain Res 1998; 814:213-7. [PMID: 9838124 DOI: 10.1016/s0006-8993(98)01015-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
With immunocytochemical techniques using a monoclonal antibody for alpha7 subunits of neuronal nicotinic acetylcholine receptors, we have found these subunits to be exclusively expressed in nerve fibers in the carotid body. Double-immunostaining showed that alpha7 subunit-positive nerve endings enveloped tyrosine hydroxylase-positive glomus cells. Some carotid sinus nerve fibers and tyrosine hydroxylase-positive petrosal ganglion neurons also expressed alpha7 subunits. These data support a role for acetylcholine in carotid body neurotransmission.
Collapse
Affiliation(s)
- M Shirahata
- Department of Environmental Health Sciences, The Johns Hopkins Medical Institutions, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
16
|
Parsch D, Fromm B, Kummer W. [Projections and fiber characteristics of sensory afferents of the anterior cruciate ligament in an animal experiment]. UNFALLCHIRURGIE 1996; 22:193-201. [PMID: 9005672 DOI: 10.1007/bf02641220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The sensory innervation of the rabbit anterior cruciate ligament was studied by retrograde tracing technique using wheat-germ-agglutinin-horseradish-peroxidase (WGA-HRP) and Fast Blue as neuronal tracers. Injection of the tracer into the ligament was followed by histo- and immunohistochemical investigation of labelled nerve cell bodies located in the dorsal root ganglia. In 4 animals we injected the tracer into the joint cavity to label general joint afferents. The segmental distribution of retrogradely labelled neurons following injection into the anterior cruciate ligament (L6, L7, S1) is significantly different from the distribution pattern after injection into the knee joint (L4-S2). Retrogradely labelled nerve cells innervating the anterior cruciate ligament were further investigated using immunohistochemical and morphometric analysis. The sensory innervation of the anterior cruciate ligament is therefore comprised of at least 2 different qualities of sensory afferent nerves: 1. Small neurones immunoreactive to the inflammatory peptide substance P most likely transmitting nociceptive information centrally (44%). 2. Large, presumably fast conducting A-fibre-afferents characterized by neurofilament proteins transmitting proprioceptive information from corpuscular mechanoreceptors (43%). The results of this study put further weight to the importance of the sensory role of the anterior cruciate ligament using neuroanatomical and immunohistochemical techniques.
Collapse
Affiliation(s)
- D Parsch
- Abteilung für Unfall- und Wiederherstellungschirurgie am Katharinenhospital Stuttgart
| | | | | |
Collapse
|
17
|
Jackson A, Nurse C. Plasticity in cultured carotid body chemoreceptors: environmental modulation of GAP-43 and neurofilament. JOURNAL OF NEUROBIOLOGY 1995; 26:485-96. [PMID: 7602313 DOI: 10.1002/neu.480260403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study we use dissociated cell cultures of the rat carotid body to investigate the adaptive capabilities of endogenous oxygen chemoreceptors, following chronic stimulation by various environmental factors. These oxygen chemoreceptors are catecholamine-containing glomus cells, which derive from the neural crest and resemble adrenal medullary chromaffin cells. Using double-label immunofluorescence, we found that chronic exposure of carotid body cultures to hypoxia (2% to 10% oxygen) caused a significant fraction of tyrosine hydroxylase-positive (TH+) glomus cells to acquire detectable immunoreactivity for growth-associated protein GAP-43. The effect was dose-dependent and peaked around an oxygen tension of 6%, where approximately 30% of glomus cells were GAP-43 positive. Treatment with agents that elevate intracellular cyclic adenosine monophosphate (cAMP) (i.e., dibutyryl cAMP or forskolin) also markedly stimulated GAP-43 expression. Since hypoxia is known to increase cAMP levels in glomus cells, it is possible that the effect of hypoxia on GAP-43 expression was mediated, at least in part, by a cAMP-dependent pathway. Unlike hypoxia, however, cAMP analogs also stimulated neurofilament (NF 68 or NF 160 kD) expression and neurite outgrowth in glomus cells, and these properties were enhanced by retinoic acid. Nerve growth factor, which promotes neuronal differentiation in related crest-derived endocrine cells, and dibutyryl cGMP were ineffective. Thus, it appears that postnatal glomus cells are plastic and can express neuronal traits in vitro. However, since hypoxia stimulated GAP-43 expression, without promoting neurite outgrowth, it appears that the two processes can be uncoupled. We suggest that stimulation of GAP-43 by hypoxia may be important for other physiological processes, e.g., enhancing neurotransmitter release or sensitization of G-protein-coupled receptor transduction.
Collapse
Affiliation(s)
- A Jackson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
18
|
Iturriaga R, Larraín C, Zapata P. Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia-induced excitation. Brain Res 1994; 663:145-54. [PMID: 7850463 DOI: 10.1016/0006-8993(94)90472-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of domperidone, antagonist of D2 receptors, on arterial chemoreceptor activity were studied in spontaneously breathing and pentobarbitone anesthetized cats, in which recordings of chemosensory impulse activity were obtained simultaneously from both cut carotid (sinus) nerves. Intravenous injections of domperidone 50 micrograms/kg produced a maintained increase in the basal frequency of chemosensory discharges, after which hyperoxic tests (breathing 100% O2 for 30 s) evoked larger falls in the rate of chemosensory impulses. Chemosensory responses evoked by hypoxic hypoxia (100% N2 tests) and by cytotoxic hypoxia (i.v. injections of NaCN) reached higher impulse rates after domperidone treatment. The effects of domperidone reveal that a resting release of dopamine from glomus cells maintains a low level of basal chemosensory activity under normoxic conditions. Domperidone turns off such restraining dopaminergic control and enhances the transient chemosensory responses to hypoxic stimuli. Present data support a modulatory role for dopamine within the chemoreceptor process, but not its participation as excitatory transmitter between glomus cells and sensory nerve endings.
Collapse
Affiliation(s)
- R Iturriaga
- Laboratory of Neurobiology, Catholic University of Chile, Santiago
| | | | | |
Collapse
|
19
|
Oomori Y, Nakaya K, Tanaka H, Iuchi H, Ishikawa K, Satoh Y, Ono K. Immunohistochemical and histochemical evidence for the presence of noradrenaline, serotonin and gamma-aminobutyric acid in chief cells of the mouse carotid body. Cell Tissue Res 1994; 278:249-54. [PMID: 8001081 DOI: 10.1007/bf00414167] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The immunohistochemical study revealed tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), serotonin, glutamate decarboxylase (GAD) and gamma-aminobutyric acid (GABA) immunoreactivities in the mouse carotid body. TH and DBH immunoreactivities were found in almost all chief cells and a few ganglion cells, and in relatively numerous varicose nerve fibers of the carotid body. The histofluorescence microscopy showed catecholamine fluorescence in almost all chief cells. However, no PNMT immunoreactivity was observed in the carotid body. Serotonin, GAD and GABA immunoreactivities were also seen in almost all chief cells of the carotid body. From combined immunohistochemistry and fluorescence histochemistry, catecholamine and serotonin or catecholamine and GABA were colocalized in almost all chief cells. Thus, these findings suggest that noradrenaline, serotonin and GABA may be synthesized and co-exist in almost all chief cells of the mouse carotid body and may play roles in chemoreceptive functions.
Collapse
Affiliation(s)
- Y Oomori
- Department of Anatomy, Asahikawa Medical College, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Fromm B, Kummer W. Nerve supply of anterior cruciate ligaments and of cryopreserved anterior cruciate ligament allografts: a new method for the differentiation of the nervous tissues. Knee Surg Sports Traumatol Arthrosc 1994; 2:118-22. [PMID: 7584184 DOI: 10.1007/bf01476484] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the nerve supply of anterior cruciate ligaments ((ACLs) and of cryopreserved bone-ACL-bone allografts in a rabbit model with immunohistochemical methods to establish the distribution pattern of the nervous tissues and to determine the reinnervation rate of ACL allografts. The ACL is innervated by three different classes of nerve fibre: (1) fibres of large diameter, characterized by neurofilament immunoreactivity, which are fast-conducting mechanoreceptive sensory afferents; (2) fibres of small diameter, characterized by substance P-immunoreactivity, which are slow-conducting nociceptive sensory afferents; and (3) sympathetic efferent vasomotor fibres, characterized by their immunoreactivity to the rate-limiting enzyme of noradrenaline synthesis, tyrosine hydroxylase. The ACLs showed numerous fibres of all three nerve classes; as specialised sensory nerve endings only Ruffini corpuscles were observed. All nerve fibres were located subsynovially, none within the collagen core of the ligament itself. No nerve fibres were detected in the ACL allografts at 3 and 6 weeks. Sparse fibres were detected at 12 weeks, while the 24-, 36- and 52-week specimens showed plenty of all three fibre types. No mechanoreceptors were found in the ACL allografts. To our knowledge, this method for the first time allows a differentiation of the nerve fibres of ACLs and ACL allografts into three different nerve fibre classes with known neurophysiological functions.
Collapse
Affiliation(s)
- B Fromm
- Department of Orthopaedics, University Hospital, University of Heidelberg, Germany
| | | |
Collapse
|
21
|
Wang ZZ, Bredt DS, Fidone SJ, Stensaas LJ. Neurons synthesizing nitric oxide innervate the mammalian carotid body. J Comp Neurol 1993; 336:419-32. [PMID: 7505296 DOI: 10.1002/cne.903360308] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The carotid body is an arterial chemoreceptor organ sensitive to blood levels of O2, CO2 and pH. The present immunocytochemical and neurochemical study has demonstrated the presence of an extensive plexus of nitric oxide (NO)-synthesizing nerve fibers in this organ. These nitric oxide synthase (NOS)-containing axons are closely associated with parenchymal type I cells and with blood vessels in the carotid body. Denervation and retrograde tracing experiments have revealed that these fibers arise from NOS-immunoreactive and nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase-positive neuronal cell bodies located in the petrosal ganglion and the carotid body, and dispersed along the glossopharyngeal and carotid sinus nerves (CSN). Within the petrosal ganglion, these neurons are topographically segregated from the catecholaminergic cells, and they contain the neuropeptide, substance P. NOS-positive autonomic microganglial cells in the carotid body and CSN also exhibit choline acetyltransferase (ChAT) immunoreactivity. Our results suggest that nitric oxide may be a novel neuronal messenger in the mammalian carotid body involved in the modulation of chemosensory transduction and transmission in this organ.
Collapse
Affiliation(s)
- Z Z Wang
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108
| | | | | | | |
Collapse
|
22
|
Ichikawa H, Rabchevsky A, Helke CJ. Presence and coexistence of putative neurotransmitters in carotid sinus baro- and chemoreceptor afferent neurons. Brain Res 1993; 611:67-74. [PMID: 8100177 DOI: 10.1016/0006-8993(93)91778-q] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The presence and coexistence of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP) and galanin (GAL) were studied in the petrosal and jugular neurons innervating the carotid body and carotid sinus of the rat. The retrograde labeling of the carotid sinus nerve with Fluoro-gold (FG) demonstrated that most (94.5%) FG-labeled ganglionic neurons were observed in the petrosal ganglion. Fewer (5.2%) FG-labeled neurons were seen in the jugular ganglion and very few (0.3%) were observed in the nodose ganglion. Immunohistochemistry revealed that subpopulations of TH-, VIP-, CGRP-, SP- and GAL-immunoreactive (-ir) neurons in the petrosal ganglion projected to the carotid sinus nerve. Approximately 4% of FG-labeled neurons contained TH-ir and were predominantly found in the caudal portion of the petrosal ganglion. Nearly 90% of total TH-ir neurons in the petrosal ganglion were labeled with FG. Less than 1% of FG-labeled neurons were immunoreactive for VIP in this ganglion. In the petrosal ganglion, 25% of FG-labeled neurons contained CGRP-ir, and 16.7% of FG-labeled neurons contained SP-ir. 30% of CGRP-ir or SP-ir neurons in the petrosal ganglion were labeled with FG. In the jugular ganglion, no TH- or VIP-ir neurons projected to the carotid sinus nerve and only small populations of CGRP- or SP-ir neurons projected to the carotid sinus nerve. Many FG-labeled and GAL-ir neurons were observed in the petrosal and jugular ganglia.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Ichikawa
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | | | |
Collapse
|
23
|
Kummer W, Bachmann S, Neuhuber WL, Hänze J, Lang RE. Tyrosine-hydroxylase-containing vagal afferent neurons in the rat nodose ganglion are independent from neuropeptide-Y-containing populations and project to esophagus and stomach. Cell Tissue Res 1993; 271:135-44. [PMID: 8095184 DOI: 10.1007/bf00297551] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Immunoreactivity to the rate limiting enzyme of catecholamine synthesis, tyrosine hydroxylase, has been described in the inferior sensory (= nodose) ganglion of the vagal nerve in the rat. The aim of the present study was to characterize further this neuronal population. The neurons do not represent displaced autonomic efferent neurons, since they do not receive synaptic input, as indicated by the absence of synaptophysin-immunoreactive terminals. In addition to the immunoreactivity to tyrosine hydroxylase, a tyrosine hydroxylase cRNA probe hybridizes with nodose ganglion neurons as demonstrated by in situ hybridization and Northern blotting. Many but not all of the tyrosine hydroxylase-immunoreactive neurons are also immunoreactive to the dopamine synthesizing enzyme, aromatic-L-amino-acid-decarboxylase, but lack the noradrenaline-synthesizing enzyme, dopamine-beta-hydroxylase, thus favoring synthesis of dopamine. Neuropeptide Y, which is often colocalized with catecholamines, is also present in a subset of nodose ganglion neurons, as indicated by immunohistochemistry, in situ hybridization and Northern blotting. However, double-labeling immunofluorescence has revealed that these two antigens are localized in different cell populations. Retrograde neuronal tracing utilizing fluorescent dyes (Fast blue, Fluoro-gold) combined with tyrosine hydroxylase immunohistochemistry has demonstrated that the esophagus and stomach are peripheral targets of tyrosine-hydroxylase-containing vagal viscero-afferent neurons.
Collapse
Affiliation(s)
- W Kummer
- Institut für Anatomie und Zellbiologie der Universität, Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|