1
|
Breschi GL, Cametti M, Mastropietro A, Librizzi L, Baselli G, Resnati G, Metrangolo P, de Curtis M. Different permeability of potassium salts across the blood-brain barrier follows the Hofmeister series. PLoS One 2013; 8:e78553. [PMID: 24205257 PMCID: PMC3810376 DOI: 10.1371/journal.pone.0078553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
The passage of ions across biological membranes is regulated by passive and active mechanisms. Passive ion diffusion into organs depends on the ion-pairing properties of salts present in the serum. Potassium ions could affect brain activity by crossing the blood-brain barrier (BBB) and its accumulation in the extracellular cerebral space could precipitate seizures. In the present study, we analyze passive diffusion of a series of potassium salts in the in vitro isolated guinea pig brain preparation. Different potassium counter-anions confer ion-pairing and lipophilicity properties that modulate membrane diffusion of the salt. Extracellular recordings in different cortical areas demonstrated the presence of epileptiform activities that strongly relate to anion identity, following the qualitative order of the Hofmeister series. Indeed, highly lipophilic salts that easily cross the BBB enhanced extracellular potassium concentration measured by ion-selective electrodes and were the most effective pro-epileptic species. This study constitutes a novel contribution for the understanding of the potential epileptogenicity of potassium salts and, more generally, of the role of counter-anions in the passive passage of salts through biological membranes.
Collapse
Affiliation(s)
- Gian Luca Breschi
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Massimo Cametti
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano, Italy
| | - Alfonso Mastropietro
- Scientific Direction Unit, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
- Department of Bioengineering, Politecnico di Milano, Milano, Italy
| | - Laura Librizzi
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giuseppe Baselli
- Department of Bioengineering, Politecnico di Milano, Milano, Italy
| | - Giuseppe Resnati
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano, Italy
| | - Pierangelo Metrangolo
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano, Italy
| | - Marco de Curtis
- Unit of Epileptology and Experimental Neurophysiology, Fondazione Istituto Neurologico Carlo Besta, Milano, Italy
- * E-mail:
| |
Collapse
|
2
|
Miyata M, Imoto K. Contrary roles of kainate receptors in transmitter release at corticothalamic synapses onto thalamic relay and reticular neurons. J Physiol 2009; 587:999-1012. [PMID: 19124541 DOI: 10.1113/jphysiol.2008.164996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Corticothalamic fibres, which originate from layer VI pyramidal neurons in the cerebral cortex, provide excitatory synaptic inputs to both thalamic relay neurons and reticular neurons; reticular neurons in turn supply inhibitory inputs to thalamic relay neurons. Pyramidal cells in layer VI in the mouse somatosensory cortex highly express mRNA encoding kainate receptors, which facilitate or depress transmitter release at several synapses in the central nervous system. We report here that contrary modulation of transmitter release from corticothalamic fibres onto thalamic relay and reticular neurons is mediated by activation of kainate receptors in mouse thalamic ventrobasal complex and thalamic reticular nucleus. Exogenous kainate presynaptically depresses the synaptic transmission at corticothalamic synapses onto thalamic relay neurons, but facilitates it at corticothalamic synapses onto reticular neurons. Meanwhile, the lemniscal synaptic transmission, which sends primary somatosensory inputs to relay neurons, is not affected by kainate. In addition, GluR5-containing kainate receptors are involved in the depression of corticothalamic synaptic transmission onto relay neurons, but not onto reticular neurons. Furthermore, synaptically activated kainate receptors mimic these effects; high-frequency stimulation of corticothalamic fibres depresses synaptic transmission onto relay neurons, but facilitates it onto reticular neurons. Our results suggest that the opposite sensitivity of kainate receptors at the two corticothalamic synapses is governed by cortical activity and regulates the balance of excitatory and inhibitory inputs to thalamic relay neurons and therefore their excitability.
Collapse
Affiliation(s)
- Mariko Miyata
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
| | | |
Collapse
|
3
|
Carriero G, Uva L, Gnatkovsky V, de Curtis M. Distribution of the olfactory fiber input into the olfactory tubercle of the in vitro isolated guinea pig brain. J Neurophysiol 2008; 101:1613-9. [PMID: 18922946 DOI: 10.1152/jn.90792.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The olfactory tubercle (OT) is a cortical component of the olfactory system involved in reward mechanisms of drug abuse. This region covers an extensive part of the rostral ventral cerebrum and is relatively poorly studied. The intrinsic network interactions evoked by olfactory input are analyzed in the OT of the in vitro isolated guinea pig brain by means of field potential analysis and optical imaging of voltage-sensitive signals. Stimulation of the lateral olfactory tract induces a monosynaptic response that progressively decreases in amplitude from lateral to medial. The monosynaptic input induces a disynaptic response that is proportionally larger in the medial portion of the OT. Direct stimulation of the piriform cortex and subsequent lesion of this pathway showed the existence of an associative disynaptic projection from the anterior part of the piriform cortex to the lateral part of the OT that integrates with the component mediated by the local intra-OT collaterals. Optical and electrophysiological recordings of the signals evoked by stimulation of the olfactory tract during arterial perfusion with the voltage-sensitive dye di-2-ANEPEQ confirmed the pattern of distribution of the mono and disynaptic responses in the OT. Finally, current source density analysis of laminar profiles recorded with 16-channel silicon probes confirmed that the monosynaptic and disynaptic potentials localize in the most superficial and the deep portions of the plexiform layer I, as suggested by previous reports. This study sets the standard for further analysis of the modulation of network properties in this largely unexplored brain region.
Collapse
Affiliation(s)
- Giovanni Carriero
- Unit of Experimental Epileptology and Neurophisiology, Fondazione Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milano, Italy
| | | | | | | |
Collapse
|
4
|
Pastori C, Regondi MC, Librizzi L, de Curtis M. Early excitability changes in a novel acute model of transient focal ischemia and reperfusion in the in vitro isolated guinea pig brain. Exp Neurol 2006; 204:95-105. [PMID: 17141221 DOI: 10.1016/j.expneurol.2006.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 09/01/2006] [Accepted: 09/30/2006] [Indexed: 11/19/2022]
Abstract
The study of the early events that characterize cerebral ischemia is limited in available experimental models. The study of neurophysiological network changes that occur in brain tissue during the early minutes that follow focal ischemia induction is restricted in the in vivo condition. Very simplified systems, such as in vitro brain slices and in isolated neurons, have been utilized for this type of studies. We describe here a new model of transient focal ischemia and reperfusion developed in the isolated guinea pig brain, maintained in vitro by arterial perfusion with a complex saline solution without blood cells. In this preparation, that combines the advantage of an in vitro preparation with the functional preservation of both vascular and neuronal compartments, the arteries of the Willis circle are directly accessible by visual control. To induce transitory focal ischemia, one medial cerebral artery (MCA) was transiently tied for 30 min, while brain activity was recorded with multiple electrodes positioned in brain areas within and outside MCA territory. Anoxic depression in ischemic areas propagated to the surrounding tissue and was associated with the abolition of evoked responses due to both functional impairment of afferent olfactory input and tissue depression. Recovery of evoked responses was obtained after MCA reperfusion. The spatial distribution of hypoxic depressions was characterized and was correlated with the extension of brain damage, defined by immunohistochemical analysis with antibodies against microtubule-associated protein (MAP-2). We propose that the present model can be utilized to analyze brain activity changes that occur in early stages of focal brain ischemia and reperfusion.
Collapse
Affiliation(s)
- Chiara Pastori
- Neurology Residency School University of Milano-Bicocca, Monza, Italy
| | | | | | | |
Collapse
|
5
|
Mazzetti S, Librizzi L, Frigerio S, de Curtis M, Vitellaro-Zuccarello L. Molecular anatomy of the cerebral microvessels in the isolated guinea-pig brain. Brain Res 2004; 999:81-90. [PMID: 14746924 DOI: 10.1016/j.brainres.2003.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Isolated organ preparations represent valuable models for biomedical research, provided that the functional and morphological integrity of vascular and parenchymal compartments is preserved. In this investigation, we have studied the molecular organization of the cerebral microvessels in the isolated guinea-pig brain maintained in vitro by arterial perfusion, a preparation previously proposed as a model of blood-brain barrier (BBB). Using lectin cytochemistry and immunohistochemistry, we examined the microvasculature of the cerebral cortex after 5 h in vitro to assess: (a) the structure of the endothelial glycocalyx at microscopical and ultrastructural level; (b) the distribution of the junctional molecules occludin, ZO-1, PECAM-1 and vinculin; (c) the distribution of basal lamina molecules, such as collagen type IV, laminin and heparan sulfate proteoglycan. All these components of microvessel wall have been previously shown to be vulnerable to ischemic conditions and their organization could be altered in consequence of the transient hypoxia associated with the brain isolation procedure. Our observations demonstrate that the distribution pattern of the molecules considered (i) is comparable to that shown in the cerebral microvasculature of other mammals and (ii) is similar in brains maintained in vitro and in control brains perfused in situ with fixative. The complex of our observation indicates that the molecular organization of the cerebral microvessels is preserved in isolated guinea-pig brain, thus indicating that these preparations can be used to study the cerebrovascular structure and blood-brain barrier function in a variety of experimental conditions.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
6
|
Librizzi L, Janigro D, De Biasi S, de Curtis M. Blood-brain barrier preservation in the in vitro isolated guinea pig brain preparation. J Neurosci Res 2001; 66:289-97. [PMID: 11592126 DOI: 10.1002/jnr.1223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The morphofunctional preservation of the blood-brain barrier (BBB) was evaluated in the isolated guinea pig brain maintained in vitro by arterial perfusion. Electron microscopy evaluation after 5 hr in vitro demonstrated that cerebral capillaries and BBB specializations in this preparation retain features compatible with structural integrity. BBB-impermeable and -permeable atropine derivatives arterially perfused to antagonize carbachol-induced fast oscillatory activity confirmed the functional preservation of the BBB in vitro. To study BBB function further, changes in extracellular K+ concentration during arterial perfusion of a high-K+ solution were measured with K+-sensitive electrodes positioned in the cortex and, as control, at the brain venous outlet, where the solution perfused through the brain arterial system was collected. After 5 hr in vitro, the [K+](o) values measured during high-K+ perfusion in the piriform and entorhinal cortices were 5.02 +/- 0.17 mM (mean +/- SE) and 5.2 +/- 0.21 mM, respectively (n = 6). Coperfusion of the high-K+ solution with the Na+/K+ pump blocker ouabain (10 microM; n = 4) induced consistently spreading depression preceded by a rise in [K+](o). Finally, sporadic, isolated spots of extravasation of the fluorescent marker fluorescein isothiocyanate (FITC)-dextran preferentially circumscribed to deep cortical layers was observed in brains perfused with FITC-dextran after 5 hr in vitro. The study demonstrates that the in vitro isolated guinea pig brain is viable for studying cerebrovascular interactions and BBB permeability of compounds active in the central nervous system.
Collapse
Affiliation(s)
- L Librizzi
- Department of Neurophysiology, Istituto Nazionale Neurologico, via Celoria 11, 20133 Milan, Italy
| | | | | | | |
Collapse
|
7
|
Biella G, Uva L, de Curtis M. Network activity evoked by neocortical stimulation in area 36 of the guinea pig perirhinal cortex. J Neurophysiol 2001; 86:164-72. [PMID: 11431498 DOI: 10.1152/jn.2001.86.1.164] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perirhinal cortex is a key structure involved in memory consolidation and retrieval. In spite of the extensive anatomical studies that describe the intrinsic and extrinsic associative connections of the perirhinal cortex, the activity generated within such a network has been poorly investigated. We describe here the pattern of synaptic interactions that subtend the responses evoked in area 36 of the perirhinal cortex by neocortical and local stimulation. The experiments were carried out in the in vitro isolated guinea pig brain. The synaptic perirhinal circuit was reconstructed by integrating results obtained during intracellular recordings from layer II-III neurons with simultaneous current source density analysis of laminar profiles performed with 16-channel silicon probes. Both neocortical and local stimulation of area 36 determined a brief monosynaptic excitatory potential in layer II-III neurons, followed by a biphasic synaptic inhibitory potential possibly mediated by a feed-forward inhibitory circuit at sites close to the stimulation electrode and a late excitatory postsynaptic potential (EPSP) that propagated at distance within area 36 along the rhinal sulcus. During a paired-pulse stimulation test, the inhibitory postsynaptic potential (IPSP) and the late EPSP were abolished in the second conditioned response, suggesting that they are generated by poli-synaptic circuits. Current source density analysis of the field responses demonstrated that 1) the monosynaptic activity was generated in layers II-III and 2) the sink associated to the disynaptic responses was localized within the superficial layer of area 36. We conclude that the neocortical input induces a brief monosynaptic excitation in area 36 of the perirhinal cortex, that is curtailed by a prominent inhibition and generates a recurrent excitatory associative response that travels at distance within area 36 itself. The results suggest that the perirhinal cortex network has the potentials to integrate multimodal incoming neocortical information on its way to the hippocampus.
Collapse
Affiliation(s)
- G Biella
- Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, 20133 Milan, Italy
| | | | | |
Collapse
|
8
|
Abstract
We have succeeded in culturing whole zebrafish brains ex vivo for 1 week. While isolated cells and tissue slices have previously been employed for neurobiological studies, these techniques are limited, because while local networks may be preserved, their original context in the whole brain is lost. Culture of the whole brain would facilitate the study of cells and systems within an intact brain infrastructure. Our culture method entailed isolating the whole brain and placing it on a sterile and porous membrane, after which it was maintained with a conditioned medium in a six-well plate in a CO2 incubator at 28.5 degrees C. Whole brains cultured by this simple method were relatively unaltered in terms of their morphology, cytoarchitecture, immunohistochemistry and ability to transport horse radish peroxidase (HRP). This method of cultivation may be very useful for neurobiological research.
Collapse
Affiliation(s)
- K Tomizawa
- Department of Biology, Faculty of Science, Okayama University, 700-8530, Okayama, Japan
| | | | | |
Collapse
|
9
|
Librizzi L, Folco G, de Curtis M. Nitric oxide synthase inhibitors unmask acetylcholine-mediated constriction of cerebral vessels in the in vitro isolated guinea-pig brain. Neuroscience 2001; 101:283-7. [PMID: 11074151 DOI: 10.1016/s0306-4522(00)00365-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The control of arterial vascular tone by acetylcholine contributes to the regulation of cerebral blood flow. We analysed the effects of intraluminal application of acetylcholine (1microM) on the cerebral vascular tone by measuring changes in resistance to perfusion pressure in an isolated guinea-pig brain preparation maintained in vitro by arterial perfusion under constant flow. Acetylcholine induced a reproducible, fast-onset dilation that was prevented by the nitric oxide scavenger Methylene Blue (10microM) and by the muscarinic receptor antagonist atropine (0.1microM). Prolonged arterial perfusion with the nitric oxide synthase inhibitors N-nitro-L-arginine (1mM) and N-nitro-L-arginine methyl ester (30-100microM) induced a slowly developing increase of 25.9+/-13. 44mmHg in vascular tone and blocked the acetylcholine-induced vasodilation. In these experimental conditions, the dilation determined by the nitric oxide donor nitroprusside (0.1microM) was unaffected. In five experiments, the blockade of dilation unmasked a slow acetylcholine-mediated vasoconstriction (14.40+/-3.85mmHg) that was antagonized by atropine.The results demonstrate that acetylcholine exerts two simultaneous and opposite effects on guinea-pig cerebral vessels, characterized by a slow direct constriction concealed in physiological conditions by a fast vasodilation mediated through the release of nitric oxide by endothelial cells. Acetylcholine-mediated increase in vascular tone may play a role in aggravating cerebral perfusion when endothelial cell damage occurs during brain ischemia.
Collapse
Affiliation(s)
- L Librizzi
- Dipartimento di Neurofisiologia Sperimentale, Istituto Nazionale Neurologico, via Celoria 11, 20133, Milan, Italy
| | | | | |
Collapse
|
10
|
de Curtis M, Takashima I, Iijima T. Optical recording of cortical activity after in vitro perfusion of cerebral arteries with a voltage-sensitive dye. Brain Res 1999; 837:314-9. [PMID: 10434019 DOI: 10.1016/s0006-8993(99)01712-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cortical neuronal architecture and connectivity can be analyzed with high-resolution optical imaging after staining the in vitro isolated guinea pig brain preparation by circulating the voltage-sensitive dye RH795 via the arterial system. To establish this new technique, electrical field potentials evoked in the piriform and entorhinal cortices by lateral olfactory tract stimulation were correlated to the optical signal. The depth analysis of the optical response was performed by evaluating the contribution of the mono- and poly-synaptic components of the signal generated in different layers after applying a pair-pulse stimulation protocol. The tangential propagation of neuronal activity in olfactory cortices was evaluated by gathering several 4.2 x 4.2 mm images recorded from adjacent cortical areas. The real-time optical imaging technique applied to the isolated guinea pig brain can be successfully utilized to study the integrative properties of cortical neurons ensembles.
Collapse
Affiliation(s)
- M de Curtis
- Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, via Celoria 11, 20133, Milan, Italy.
| | | | | |
Collapse
|
11
|
de Curtis M, Radici C, Forti M. Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis. Neuroscience 1999; 88:107-17. [PMID: 10051193 DOI: 10.1016/s0306-4522(98)00201-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular mechanisms involved in the generation of spontaneous epileptiform potentials were investigated in the pirifom cortex of the in vitro isolated guinea-pig brain. A single, unilateral injection of bicuculline (150-200 nmol) in the anterior piriform cortex induced locally spontaneous interictal spikes that recurred with a period of 8.81+/-4.47 s and propagated caudally to the ipsi- and contralateral hemispheres. Simultaneous extra- and intracellular recordings from layer II and III principal cells showed that the spontaneous interictal spike correlates to a burst of action potentials followed by a large afterdepolarization. Intracellular application of the sodium conductance blocker, QX-314 (80 mM), abolished bursting activity and unmasked a high-threshold slow spike enhanced by the calcium chelator EGTA (50 mM). The slow spike was abolished by membrane hyperpolarization and by local perfusion with 2 mM cadmium. The depolarizing potential that followed the primary burst was reduced by arterial perfusion with the N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (100-200 microM). The non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM), completely and reversibly blocked the spontaneous spikes. The interictal spikes were terminated by a large afterpotential blocked either by intracellular QX-314 (80 mM) or by extracellular application of phaclofen and 2-hydroxysaclofen (10 and 4 mM, respectively). The present study demonstrates that, in an acute model of epileptogenesis, spontaneous interictal spikes are fostered by a primary burst of fast action potentials that ride on a regenerative high-threshold, possibly calcium-mediated spike, which activates a recurrent, glutamate-mediated potential responsible for the entrainment of adjacent and remote cortical regions. The bursting activity is controlled by a GABA(B) receptor-mediated inhibitory synaptic potential.
Collapse
Affiliation(s)
- M de Curtis
- Department of Experimental Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy
| | | | | |
Collapse
|
12
|
de Curtis M, Biella G, Buccellati C, Folco G. Simultaneous investigation of the neuronal and vascular compartments in the guinea pig brain isolated in vitro. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 3:221-8. [PMID: 9813340 DOI: 10.1016/s1385-299x(98)00044-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe a new method for studying the interactions between vascular tone changes and neuronal activity in the arterially perfused isolated brain of the adult guinea pig maintained in vitro. Electrophysiological recordings were performed in the piriform and entorhinal cortices with the entire arterial bed preserved or after vascular restriction to the territories of median and posterior cerebral arteries of one hemisphere. The changes in vascular tone were measured by means of a pressure transducer. The arterial pressure was 53.77+/-12.74 mmHg in control conditions at 30 degreesC. Intraluminal application of vasoactive drugs, such as the tromboxane A2 receptor agonist U46619 (0.1 microM) and 5-HT (3 microM), induced an increase in the resistance to perfusion pressure that was prevented by the selective antagonists. The preservation of the endothelial function was verified by inducing the release of endogenous endothelial relaxant factor after intraluminal application of 1 microM acetylcholine. The study of the reciprocal interactions between neuronal activity and vascular tone modifications demonstrated that evoked responses in the piriform and entorhinal cortices were not modulated by rapid changes of the vascular tone. A sustained and elevated plateau of vasoconstriction maintained for several minutes determined a cortical spreading depression. Epileptiform discharges induced in limbic cortices by GABAa receptor blockade were consistently associated with a vasodilation (8.26+/-2.8 mmHg). The results demonstrate that the in vitro isolated guinea pig brain preparation can be exploited for studying simultaneously neuronal activity and cerebrovascular motility.
Collapse
Affiliation(s)
- M de Curtis
- Dipartimento di Neurofisiologia Sperimentale, Istituto Nazionale Neurologico, via Celoria 11, Milan, Italy.
| | | | | | | |
Collapse
|
13
|
Zupanc GK. An in vitro technique for tracing neuronal connections in the teleost brain. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 3:37-51. [PMID: 9767097 DOI: 10.1016/s1385-299x(98)00019-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The availability of neuronal tract-tracing techniques has been fundamental to the development of the neurosciences. While most of the previously described methods are performed in vivo, in the present paper, detailed protocols are reported for tracing neuronal connections in an in vitro preparation. This technique, tested in various neural systems of the teleost brain, allows precise application of tracer substance(s) under visual control. After the isolation of the brain, the tissue is kept alive by superfusion with oxygenated artificial cerebrospinal fluid in a slice chamber. Neuronal connections are traced by the application of crystals of biocytin or dextran-tetramethylrhodamine to the region of interest. Following intracellular transport over 8-18 h, the tissue is fixed and processed histochemically for visualization of structures filled with the tracer substance. This method can readily be modified for double labelling. Step-by-step procedures are outlined for (a) the simultaneous detection of two tracer substances in the same tissue sample, (b) the combination of tract tracing with the immunohistochemical identification of various biochemical markers such as 'classical' transmitters and neuropeptides, and (c) the visualization of both traced structures and mitotically active cells labelled with the thymidine analogue 5-bromo-2'-deoxyuridine. By exhibiting a high degree of efficiency, the described in vitro tract-tracing technique represents also a significant contribution towards a reduction of living animals in neurobiological experimentation.
Collapse
Affiliation(s)
- G K Zupanc
- Abteilung Physikalische Biologie, Max-Planck-Institut für Entwicklungsbiologie, D-72011 Tübingen, Germany.
| |
Collapse
|
14
|
Forti M, Biella G, Caccia S, de Curtis M. Persistent excitability changes in the piriform cortex of the isolated guinea-pig brain after transient exposure to bicuculline. Eur J Neurosci 1997; 9:435-51. [PMID: 9104586 DOI: 10.1111/j.1460-9568.1997.tb01621.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of long-lasting excitability changes after a single intracerebral injection of bicuculline (1 mM) in a restricted region of the anterior piriform cortex was studied by means of simultaneous intra- and extracellular recordings in the isolated guinea-pig brain preparation maintained in vitro by arterial perfusion. The transitory disinhibition induced by bicuculline revealed transient afterdischarges that were followed by the activation of a synaptic potential mediated by the recurrent propagation of the focal epileptiform activity along cortico-cortical associative fibres. The epileptiform associative potential persisted for the duration of the experiment. Both the induction and the long-term expression of the epileptiform associative potential were dependent on the activation of glutamatergic receptors of the NMDA type, as demonstrated by perfusion with the NMDA receptor antagonist 2-aminopentanoic acid (AP5) (100 microM). After bicuculline washout, piriform cortex neurons responded to afferent stimulation with a burst discharge superimposed on a paroxysmal depolarizing potential. The early component of the burst was mediated by a Ca(2+)-dependent, non-synaptic potential located at the proximal apical dendrites and soma of layer II-III cells, since (i) it was abolished by membrane hyperpolarization, (ii) it was not affected by AP5, (iii) it was correlated with a current sink in layer II, as demonstrated by current source density analysis of field potential laminar profiles, and (iv) it was abolished by cadmium (2-5 mM) applied locally in layer II. The late component of the burst response (i) coincided in time with the extracellular epileptiform associative potential, (ii) increased linearly in amplitude during membrane hyperpolarization, (iii) was blocked by AP5, and (iv) was correlated with an extracellular sink in layer Ib, where the associative fibres contact the distal apical dendrites of piriform cortex neurons. The results presented here indicate that a transient focal disinhibition promotes persistent intrinsic and synaptic excitability changes in piriform cortex neurons. These changes may be responsible for the propagation of epileptiform activity and for the induction of secondary epileptogenesis.
Collapse
Affiliation(s)
- M Forti
- Department of Neurophysiology, Istituto Nazionale Neurologico, Milan, Italy
| | | | | | | |
Collapse
|
15
|
Biella G, Panzica F, de Curtis M. Interactions between associative synaptic potentials in the piriform cortex of the in vitro isolated guinea pig brain. Eur J Neurosci 1996; 8:1350-7. [PMID: 8758942 DOI: 10.1111/j.1460-9568.1996.tb01597.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction between synaptic potentials generated by the activation of separate sets of associative fibres was investigated in the piriform cortex of an in vitro isolated guinea pig brain preparation. Restricted regions of the piriform cortex served by separate contingents of afferent fibres of the lateral olfactory tract were isolated surgically. The activity generated by these patches of cortex in response to afferent stimulation propagates to remote cortical regions along cortico-cortical associative fibres. Current source density (CSD) analysis of field potential laminar profiles evoked by lateral olfactory tract stimulation confirmed that the synaptic sinks induced by distinct associative fibre contingents converge on the apical dendrites of piriform cortex neurons in the superficial lb layer. Pairing between potentials evoked by activation of two separate sets of associative fibres resulted in an almost linear summation when the two responses coincided. For interstimulus intervals of <100 ms, heterosynaptic pairing of independent associative inputs induced a facilitation of the conditioned associative potential, which correlated with an increase in the associative sink located in layer lb, as demonstrated by CSD analysis. The evaluation of the pairing intervals suggests that the heterosynaptic facilitation of the conditioned associative potentials may be due to the summation of local and remote associative synaptic events. It is concluded that separate associative inputs converge on the apical dendrites of piriform cortex pyramidal neurons to generate synaptic potentials through the activation of spatially close but independent synapses. The role of associative synaptic integration in the functional organization of the olfactory cortex is discussed.
Collapse
Affiliation(s)
- G Biella
- Dipartimento di Neurofisiologia, Istituto Nazionale Neurologico, via Celoria 11, 20133 Milano, Italy
| | | | | |
Collapse
|
16
|
Biella G, Forti M, de Curtis M. Propagation of epileptiform potentials in the guinea-pig piriform cortex is sustained by associative fibres. Epilepsy Res 1996; 24:137-46. [PMID: 8832190 DOI: 10.1016/0920-1211(96)00014-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of the associative connections in the propagation of epileptiform discharges originating from an acute, localized epileptic focus in the anterior piriform cortex has been characterized recently in the in vitro isolated guinea-pig brain preparation. The present study demonstrates that the dorsal propagation of epileptiform synaptic potentials generated in APC is carried by long-projective associative fibres. Current source density analysis of the field potential profiles evoked by stimulation of the lateral olfactory tract has been utilized to describe the functional circuit activated in rostral and caudal regions of the piriform cortex, before and after the induction of a bicuculline epileptic focus in the anterior piriform cortex. Separate stimulation of the lateral olfactory tract at two sites, caudal and rostral to a tract incision, activates epileptiform potentials that are generated at the site of primary focus in the anterior piriform cortex and travel along associative fibres. Selective cutting of the long-projective associative fibres abolishes the epileptic associative potential in the cortical regions caudal to the section. The present study demonstrates directly that epileptiform potentials propagate along associative fibres to cortical regions that are synaptically related to the focus of origin. Such a pattern of propagation may sustain the generation of secondary foci in cortical regions remote from the primary epileptic focus.
Collapse
Affiliation(s)
- G Biella
- Department of Neurophysiology, Istituto Neurologico, Milan, Italy
| | | | | |
Collapse
|
17
|
Biella G, de Curtis M. Associative synaptic potentials in the piriform cortex of the isolated guinea-pig brain in vitro. Eur J Neurosci 1995; 7:54-64. [PMID: 7711937 DOI: 10.1111/j.1460-9568.1995.tb01020.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of local and remote associative fibres in the generation of piriform cortex synaptic potentials was investigated in the isolated guinea-pig brain maintained in vitro by arterial perfusion by implementing current source density analysis (CSD) on cortical field potential profiles. Previous hypotheses were verified using acute surgical isolation of piriform cortical areas to study different synaptic events separately. Stimulation of the lateral olfactory tract activated associative potentials throughout the piriform cortex. In the anterior piriform cortex, the current sinks responsible for the generation of associative potentials were located in the superficial portion of layer Ib and in layer III. In the posterior piriform cortex, two associative events were observed: an early sink located in the superficial part of layer Ib, followed by a sink in the deep part of the same layer. In the anterior piriform cortex, local associative synaptic potentials were separated from the component carried by long projective fibres by surgically isolating a small area of cortex monosynaptically activated by lateral olfactory tract stimulation. In this patch of lateral olfactory tract-connected anterior piriform cortex, local associative sinks were observed in the superficial Ib layer and in layer III. Monosynaptic activation of the isolated patch of anterior piriform cortex induced purely associative potentials throughout the piriform cortex. These potentials were mediated by the synaptic activation of apical dendrites in the superficial Ib layer and selectively abolished by severing the long associative fibres. The anterior piriform cortex layer III sink and the posterior piriform cortex deep Ib associative component were evoked by the activation of large population spikes in the monosynaptic anterior piriform cortex and the disynaptic posterior piriform cortex response respectively. These two sinks are presumably generated locally through a polysynaptic circuit, whose activation depends on the degree of cortical excitation. Olfactory signal processing in the guinea-pig piriform cortex during states of normal excitability is supported by the interactions between associative inputs impinging on the synapses located separately on the dendrites of pyramidal neurons. An increase in the synchronization of piriform cortex neuron discharge activates usually silent local circuit synapses.
Collapse
Affiliation(s)
- G Biella
- Dipartimento di Neurofisiologia, Istituto Nazionale Neurologico, Milan, Italy
| | | |
Collapse
|