1
|
miRNAs-dependent regulation of synapse formation and function. Genes Genomics 2020; 42:837-845. [DOI: 10.1007/s13258-020-00940-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
|
2
|
Ishikawa Y, Okada M, Honda A, Ito Y, Tamada A, Endo N, Igarashi M. Phosphorylation sites of microtubule-associated protein 1B (MAP 1B) are involved in axon growth and regeneration. Mol Brain 2019; 12:93. [PMID: 31711525 PMCID: PMC6849251 DOI: 10.1186/s13041-019-0510-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/29/2023] Open
Abstract
The growth cone is a specialized structure that forms at the tip of extending axons in developing and regenerating neurons. This structure is essential for accurate synaptogenesis at developmental stages, and is also involved in plasticity-dependent synaptogenesis and axon regeneration in the mature brain. Thus, understanding the molecular mechanisms utilized by growth cones is indispensable to understanding neuronal network formation and rearrangement. Phosphorylation is the most important and commonly utilized protein modification in signal transduction. We previously identified microtubule-associated protein 1B (MAP 1B) as the most frequently phosphorylated protein among ~ 1200 phosphorylated proteins. MAP 1B has more than 10 phosphorylation sites that were present more than 50 times among these 1200 proteins. Here, we produced phospho-specific antibodies against phosphorylated serines at positions 25 and 1201 of MAP 1B that specifically recognize growing axons both in cultured neurons and in vivo in various regions of the embryonic brain. Following sciatic nerve injury, immunoreactivity with each antibody increased compared to the sham operated group. Experiments with transected and sutured nerves revealed that regenerating axons were specifically recognized by these antibodies. These results suggest that these MAP 1B phosphorylation sites are specifically involved in axon growth and that phospho-specific antibodies against MAP 1B are useful markers of growing/regenerating axons.
Collapse
Affiliation(s)
- Yuya Ishikawa
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Masayasu Okada
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Trans-disciplinary Research Programs, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsuko Honda
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsushi Tamada
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.,Trans-disciplinary Research Programs, Brain Research Institute, Niigata University, Niigata, Japan.,Department of iPS Cell Applied Medicine, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan. .,Trans-disciplinary Research Programs, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
3
|
Promotion of Functional Nerve Regeneration by Inhibition of Microtubule Detyrosination. J Neurosci 2016; 36:3890-902. [PMID: 27053198 DOI: 10.1523/jneurosci.4486-15.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3α(S/A)/β(S/A) knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury.In vitroandin vivoanalysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3β, as both GSK3(S/A) knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3α(S/A)/β(S/A) mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently acceleratedin vivoaxon regeneration and functional recovery similar to GSK3α(S/A)/β(S/A) mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolidein vivomarkedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.
Collapse
|
4
|
Gobrecht P, Leibinger M, Andreadaki A, Fischer D. Sustained GSK3 activity markedly facilitates nerve regeneration. Nat Commun 2014; 5:4561. [PMID: 25078444 DOI: 10.1038/ncomms5561] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/30/2014] [Indexed: 12/16/2022] Open
Abstract
Promotion of axonal growth of injured DRG neurons improves the functional recovery associated with peripheral nerve regeneration. Both isoforms of glycogen synthase kinase 3 (GSK3; α and β) are phosphorylated and inactivated via phosphatidylinositide 3-kinase (PI3K)/AKT signalling upon sciatic nerve crush (SNC). However, the role of GSK3 phosphorylation in this context is highly controversial. Here we use knock-in mice expressing GSK3 isoforms resistant to inhibitory PI3K/AKT phosphorylation, and unexpectedly find markedly accelerated axon growth of DRG neurons in culture and in vivo after SNC compared with controls. Moreover, this enhanced regeneration strikingly accelerates functional recovery after SNC. These effects are GSK3 activity dependent and associated with elevated MAP1B phosphorylation. Altogether, our data suggest that PI3K/AKT-mediated inhibitory phosphorylation of GSK3 limits the regenerative outcome after peripheral nerve injury. Therefore, suppression of this internal 'regenerative break' may potentially provide a new perspective for the clinical treatment of nerve injuries.
Collapse
Affiliation(s)
- Philipp Gobrecht
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Marco Leibinger
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Anastasia Andreadaki
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Department of Neurology, Heinrich Heine University of Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Villarroel-Campos D, Gonzalez-Billault C. The MAP1B case: an old MAP that is new again. Dev Neurobiol 2014; 74:953-71. [PMID: 24700609 DOI: 10.1002/dneu.22178] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022]
Abstract
The functions of microtubule-associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule-stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
6
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
7
|
Sutherland C. What Are the bona fide GSK3 Substrates? Int J Alzheimers Dis 2011; 2011:505607. [PMID: 21629754 PMCID: PMC3100594 DOI: 10.4061/2011/505607] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 01/07/2023] Open
Abstract
Nearly 100 proteins are proposed to be substrates for GSK3, suggesting that this enzyme is a fundamental regulator of almost every process in the cell, in every tissue in the body. However, it is not certain how many of these proposed substrates are regulated by GSK3 in vivo. Clearly, the identification of the physiological functions of GSK3 will be greatly aided by the identification of its bona fide substrates, and the development of GSK3 as a therapeutic target will be highly influenced by this range of actions, hence the need to accurately establish true GSK3 substrates in cells. In this paper the evidence that proposed GSK3 substrates are likely to be physiological targets is assessed, highlighting the key cellular processes that could be modulated by GSK3 activity and inhibition.
Collapse
Affiliation(s)
- Calum Sutherland
- Biomedical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
8
|
The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 2009; 1:AN20090036. [PMID: 19743964 PMCID: PMC2785511 DOI: 10.1042/an20090036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix) transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.
Collapse
Key Words
- COX, cytochrome c oxidase
- E, embryonic day
- ESC, embryonic stem cell
- F-actin, filamentous actin
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- MAP, microtubule-associated protein
- MMP, mitochondrial membrane potential
- MTG, MitoTracker® Green
- MTR, MitoTracker® Red
- NGF, nerve growth factor
- NRF, nuclear respiratory factor
- NeuroD family
- PDL, poly-d-lysine
- PGC-1, peroxisome-proliferator-activated receptor-γ co-activator-1
- SOD2, superoxide dismutase 2
- WGA, wheat germ agglutinin
- bHLH, basic helix–loop–helix
- basic helix–loop–helix transcription factor
- cytoskeletal remodelling
- mitochondrial biogenesis
- mtDNA, mitochondrial DNA
- neuronal differentiation
Collapse
|
9
|
Cueille N, Blanc CT, Popa-Nita S, Kasas S, Catsicas S, Dietler G, Riederer BM. Characterization of MAP1B heavy chain interaction with actin. Brain Res Bull 2007; 71:610-8. [PMID: 17292804 DOI: 10.1016/j.brainresbull.2006.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/01/2006] [Accepted: 12/01/2006] [Indexed: 10/23/2022]
Abstract
Microtubule-associated protein 1B is an essential protein during brain development and neurite outgrowth and was studied by several assays to further characterize actin as a major interacting partner. Tubulin and actin co-immunoprecipitated with MAP1B at similar ratios throughout development. Their identity was identified by mass spectrometry and was confirmed by Western blots. In contrast to previous reports, the MAP1B-actin interaction was not dependent on the MAP1B phosphorylation state, since actin was precipitated from brain tissue throughout development at similar ratios and equal amounts were precipitated before and after dephosphorylation with alkaline phosphatase. MAP1B heavy chain was able to bind actin directly and therefore the N-terminal part of MAP1B heavy chain must also contain an actin-binding site. The binding force of this interaction was measured by atomic force microscopy and values were in the same range as those of MAP1B binding to tubulin or that measured in MAP1B self-aggregation. Aggregation was confirmed by negative staining and electron microscopy. Experiments including COS-7 cells, PC12 cells, cytochalasin D and immunocytochemistry with subsequent confocal laser microscopy, suggested that MAP1B may bind to actin but has no obvious microfilament stabilizing effect. We conclude, that the MAP1B heavy chain has a microtubule-stabilization effect, and contains an actin-binding site that may play a role in the crosslinking of actin and microtubules, a function that may be important in neurite elongation.
Collapse
Affiliation(s)
- N Cueille
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, 9 rue du bugnon, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
Riederer BM. Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 2006; 71:541-58. [PMID: 17292797 DOI: 10.1016/j.brainresbull.2006.11.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/28/2006] [Indexed: 11/25/2022]
Abstract
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.
Collapse
Affiliation(s)
- Beat M Riederer
- Département de Biologie Cellulaire et de Morphologi), Université de Lausanne, 9 rue du Bugnon, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
11
|
JiméNez-Mateos E, Wandosell F, Reiner O, Avila J, González-Billault C. Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochem J 2005; 389:333-41. [PMID: 15762842 PMCID: PMC1175110 DOI: 10.1042/bj20050244] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For neuronal migration to occur, the cell must undergo morphological changes that require modifications of the cytoskeleton. Several different MAPs (microtubule-associated proteins) or actin-binding proteins are proposed to be involved in the migration of neurons. Therefore we have specifically analysed how two members of the MAP family, MAP1B and LIS1 (lissencephaly-related protein 1), interact with one another and participate in neuronal migration. Our results indicate that, in hippocampal neurons, MAP1B and LIS1 co-localize, associate and interact with each another. The interaction between these two MAPs is regulated by the phosphorylation of MAP1B. Furthermore, this interaction interferes with the association between LIS1 and the microtubule-dependent molecular motor, dynein. Clearly, the differential binding of these cytoskeletal proteins could regulate the functions attributed to the LIS1-dynein complex, including those related to extension of the neural processes necessary for neuronal migration.
Collapse
Affiliation(s)
- Eva M. JiméNez-Mateos
- *Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Cantoblanco 28049, Madrid, Spain
| | - Francisco Wandosell
- *Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Cantoblanco 28049, Madrid, Spain
| | - Orly Reiner
- †Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Jesús Avila
- *Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Cantoblanco 28049, Madrid, Spain
- Correspondence may be addressed to either of the authors (email or )
| | - Christian González-Billault
- *Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Cantoblanco 28049, Madrid, Spain
- Correspondence may be addressed to either of the authors (email or )
| |
Collapse
|
12
|
Jiménez-Mateos EM, Paglini G, González-Billault C, Cáceres A, Avila J. End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis. J Neurosci Res 2005; 80:350-9. [PMID: 15789376 DOI: 10.1002/jnr.20453] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The different strains of microtubule-associated protein (MAP)-1B-deficient mice that have been generated appear to express different phenotypes. This variability could be the consequence of the distinct genetic backgrounds of the animals used to generate these lines. Certain proteins might be able to complement the deficit of MAP1B function in these mice. Therefore, we examined whether the concentrations of potential compensatory proteins varied among these mutant strains. In this way, we identified significant differences in the amounts of the microtubule-associated EB1 protein between two of these strains. Furthermore, in transfection studies, we demonstrated that the overexpression of end binding protein-1 (EB1) could facilitate axonogenesis in MAP1B-/- cells in which EB1 is normally weakly expressed. Thus, we suggest that EB1 could complement MAP1B function during neural development.
Collapse
Affiliation(s)
- Eva M Jiménez-Mateos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Hahn CM, Kleinholz H, Koester MP, Grieser S, Thelen K, Pollerberg GE. Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience 2005; 134:449-65. [PMID: 15964697 DOI: 10.1016/j.neuroscience.2005.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 03/23/2005] [Accepted: 04/05/2005] [Indexed: 12/11/2022]
Abstract
Axons elongate and perform steering reactions with their growth cones constantly undergoing local collapse and stabilization. Our previous studies have shown that a type-1 phosphorylated form of microtubule-associated protein 1B, recognized by monoclonal antibody 1E11 (mab1E11), is present in stable regions and absent from unstable regions of turning growth cones of retinal ganglion cells. In contrast, the total population of microtubule-associated protein 1B is present in the entire growth cone. Here we demonstrate that inhibition of cyclin-dependent kinase 5 (Cdk5) results in loss of mab1E11 binding whereas inhibition of glycogen synthase kinase 3 has no such effect, revealing that mab1E11 recognizes a Cdk5 phosphorylation site on type-1 phosphorylated form of microtubule-associated protein 1B. We moreover show that kinase Cdk5 as well as its activator P35 is present in retinal ganglion cells in the early developing chick embryo retina and enriched in their extending axons. Cdk5 and P35 are concentrated in the youngest, distal axon region and the growth cone as also seen for Cdk5-phosphorylated type-1 phosphorylated form of microtubule-associated protein 1B. Inhibition of Cdk5 by antibodies or inhibitor Roscovitine results in growth cone collapse and axon retraction and prevents substantial axon outgrowth. In contrast, glycogen synthase kinase 3 inhibition causes only a transient axon retraction which is soon recovered and allows for axon formation. In growth cones induced to turn at substrate borders, where stable and instable parts of the growth cone are clearly defined, Cdk5 is present in the entire growth cone. P35, in contrast, is restricted to the stable parts of the growth cone, which do not collapse but instead transform into new distal axon. The local presence of Cdk5-phosphorylated type-1 phosphorylated form of microtubule-associated protein 1B in stabilized growth cone areas can be therefore attributed to the local activation of Cdk5 by P35 in these regions. Together our data demonstrate a crucial role of Cdk5 and its activator P35 in elongation and maintenance of axons as well as for stability and steering of their growth cones.
Collapse
Affiliation(s)
- C M Hahn
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, Im Neuenheimer Feld 232, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
González-Billault C, Del Río JA, Ureña JM, Jiménez-Mateos EM, Barallobre MJ, Pascual M, Pujadas L, Simó S, Torre AL, Gavin R, Wandosell F, Soriano E, Avila J. A role of MAP1B in Reelin-dependent neuronal migration. ACTA ACUST UNITED AC 2004; 15:1134-45. [PMID: 15590913 DOI: 10.1093/cercor/bhh213] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The signaling cascades governing neuronal migration are believed to link extracellular signals to cytoskeletal components. MAP1B is a neuron-specific microtubule-associated protein implicated in the control of the dynamic stability of microtubules and in the cross-talk between microtubules and actin filaments. Here we show that Reelin can induce mode I MAP1B phosphorylation, both in vivo and in vitro, through gsk3 and cdk5 activation. Additionally, mDab1 participates in the signaling cascade responsible for mode I MAP1B phosphorylation. Conversely, MAP1B-deficient mice display an abnormal structuring of the nervous system, especially in brain laminated areas, indicating a failure in neuronal migration. Therefore, we propose that Reelin can induce post-translational modifications on MAP1B that could correlate with its function in neuronal migration.
Collapse
|
15
|
Del Río JA, González-Billault C, Ureña JM, Jiménez EM, Barallobre MJ, Pascual M, Pujadas L, Simó S, La Torre A, Wandosell F, Avila J, Soriano E. MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance. Curr Biol 2004; 14:840-50. [PMID: 15186740 DOI: 10.1016/j.cub.2004.04.046] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 03/17/2004] [Accepted: 03/18/2004] [Indexed: 11/21/2022]
Abstract
BACKGROUND The signaling cascades governing neuronal migration and axonal guidance link extracellular signals to cytoskeletal components. MAP1B is a neuron-specific microtubule-associated protein implicated in the crosstalk between microtubules and actin filaments. RESULTS Here we show that Netrin 1 regulates, both in vivo and in vitro, mode I MAP1B phosphorylation, which controls MAP1B activity, in a signaling pathway that depends essentially on the kinases GSK3 and CDK5. We also show that map1B-deficient neurons from the lower rhombic lip and other brain regions have reduced chemoattractive responses to Netrin 1 in vitro. Furthermore, map1B mutant mice have severe abnormalities, similar to those described in netrin 1-deficient mice, in axonal tracts and in the pontine nuclei. CONCLUSIONS These data indicate that MAP1B phosphorylation is controlled by Netrin 1 and that the lack of MAP1B impairs Netrin 1-mediated chemoattraction in vitro and in vivo. Thus, MAP1B may be a downstream effector in the Netrin 1-signaling pathway.
Collapse
Affiliation(s)
- José A Del Río
- Developmental Neurobiology and Regeneration Unit, Institut de Recerca Biomedica de Barcelona, Barcelona Science Park and Department of Cell Biology, University of Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. ACTA ACUST UNITED AC 2004; 58:48-59. [PMID: 14598369 DOI: 10.1002/neu.10283] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microtubule-associated protein 1B is the first MAP to be expressed during the development of the nervous system. Several different approaches have revealed that MAP1B function is associated with microtubule and actin microfilament polymerization and dynamics. In recent years, the generation of molecular models to inactivate MAP1B function in invertebrates and mammals has sparked some controversy about the real role of MAP1B. Despite discrepancies between some studies, it is clear that MAP1B plays a principal role in the development of the nervous system. In this article, we summarize the evidence for MAP1B function in a wide variety of cellular processes implicated in the proper construction of the nervous system. We also discuss the role of MAP1B in pathological processes.
Collapse
|
17
|
Moreno-Flores MT, Martín-Aparicio E, Martín-Bermejo MJ, Agudo M, McMahon S, Avila J, Díaz-Nido J, Wandosell F. Semaphorin 3C preserves survival and induces neuritogenesis of cerebellar granule neurons in culture. J Neurochem 2004; 87:879-90. [PMID: 14622119 DOI: 10.1046/j.1471-4159.2003.02051.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Semaphorins (sema) constitute a family of molecules sharing a common extracellular domain (semaphorin domain). This family includes several types of secreted and membrane-associated molecules that are grouped into eight subclasses (subclasses 1-7 and viral semaphorins). Subclass 3 semaphorins are secreted molecules involved in axonal guidance, mainly through repulsive gradients and induction of growth cone collapse. More recently sema 3 molecules have been identified as positive factors in dependence of the type of neurons. Besides their axonal guidance function, some semaphorins have been implicated in apoptosis and survival. We investigated the effect of sema3C on survival and neurite outgrowth of rat cerebellar granule neurons (CGNs) in culture. 3T3 cells were stably transfected with sema3C. Several clonal lines were established and tested for their neuritogenic activity and one, S3C-8, was selected for the bulk of experiments. S3C-8 was co-cultured with CGNs. Sema3C enhanced CGN viability as assessed in co-cultures of CGNs with monolayers of S3C-8 in comparison with co-cultures of CGNs with control mock-transfected 3T3 cells. Moreover sema3C induced neuritogenesis of cultured CGNs, which express neuropilin-1 and -2. S3C-8 cells, overexpressing sema3C, were significantly more neuritogenic for CGN than poly l-lysine (PLL), a positive substrate for CGNs, as assessed by the measurement of the length of neurites and confirmed by Tau expression along the time of culture. CGNs co-cultured with S3C-8, showed up-regulation of the expression of axonal microtubule-associated proteins (MAPs) such as Tau, phosphorylated MAP2C and mode I-phosphorylated MAP1B compared with neurons cultured on control 3T3 cells. We also found increased expression of a specific marker of neuronal cell bodies and dendrites, high molecular weight MAP2 (HMW-MAP2). Interestingly, there was no accompanying up-regulation of a marker enriched within the neuronal somatodendritic domain, mode II-phosphorylated MAP1B. These data support the idea that secreted sema3C favors survival and neuritogenesis of cultured CGNs.
Collapse
Affiliation(s)
- M T Moreno-Flores
- Centro de Biología 'Severo Ochoa', Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gonzalez-Billault C, Owen R, Gordon-Weeks PR, Avila J. Microtubule-associated protein 1B is involved in the initial stages of axonogenesis in peripheral nervous system cultured neurons. Brain Res 2002; 943:56-67. [PMID: 12088839 DOI: 10.1016/s0006-8993(02)02534-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal process extension is dependent on the reorganisation of the cytoskeleton, in particular microtubules and microfilaments, and one of the ways in which microtubules are regulated is by a group of microtubule-associated proteins called MAPs. MAP1B, the first MAP to be expressed in developing neurons, has been shown to play an important role during axonogenesis. Previously, we have shown that a phosphorylated isoform of MAP1B is involved in maintaining growth cone microtubules in a dynamically unstable state. In order to further investigate the role of MAP1B during axonogenesis we have cultured dorsal root ganglion (DRG) neurons from a MAP1B deficient mutant mouse. These mice express only trace amounts of MAP1B, have defects in the development of their nervous system and die perinatally. Cultured DRG neurons from MAP1B deficient mice show a reduction in axon elongation and an increase in growth cone area. The reduction in axon elongation is most likely to occur due to an inhibition in the early stages of axonogenesis. Using time-lapse video we have verified that during the first 2 h after plating, MAP1B deficient neurones extend their axons with an average speed that is half the speed of control neurones. These results support the participation of MAP1B during the initial stages of axonogenesis.
Collapse
|
19
|
González-Billault C, Engelke M, Jiménez-Mateos EM, Wandosell F, Cáceres A, Avila J. Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res 2002; 67:713-9. [PMID: 11891784 DOI: 10.1002/jnr.10161] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several lines of evidence have indicated that changes in the structure of neuronal cytoskeleton provide the support for the dramatic morphological changes that occur during neuronal differentiation. It has been proposed that microtubule-associated proteins can contribute to the development of this phenomenon by controlling the dynamic properties of microtubules. In this report we have characterized the effect of the combined suppression of MAP1B and tau, and MAP1B and MAP2 on neuronal polarization in cultured hippocampal cells grown on a laminin-containing substrate. We have taken advantage of the use of a mouse line deficient in MAP1B expression obtained by the gene trapping approach. In addition to this engineered mice line we used the antisense oligonucleotide approach to induce the suppression of tau or MAP2, in wild type and MAP1B-deficient neurons. Together these results show a synergistic role for MAP1B/MAP2 and MAP1B/TAU.
Collapse
Affiliation(s)
- C González-Billault
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Campus Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Vecino E, Avila J. Distribution of the phosphorylated form of microtubule associated protein 1B in the fish visual system during optic nerve regeneration. Brain Res Bull 2001; 56:131-7. [PMID: 11704350 DOI: 10.1016/s0361-9230(01)00618-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microtubule associated proteins are a heterogeneous group of proteins that have been implicated in regulating microtubule stability. They play an important role in the organisation of the neuronal cytoskeleton during neurite outgrowth, plasticity and regeneration. The fish visual system presents a considerable degree of plasticity. Thus, the retina grows continually throughout life and the optic nerve regenerates after crush. In the present study, we compared the distribution of the microtubule associated protein 1B in its phosphorylated form (MAP1B-phos) in the normal adult fish visual system with that observed during optic nerve regeneration after adult optic nerve crush using a specific monoclonal antibody mAb-150. Expression of MAP1B-phos was observed in some ganglion cell somata and in developing, growing axons within the control optic nerve. Few immunoreactive terminals were seen in the control optic tectum. After optic nerve crush, we found additional MAP1B-phos expression in regenerating axons throughout the visual system. Our results demonstrate that MAP1B-phos is present in growing and regenerating axons of fish retinal ganglion cells, which suggests that the phosphorylated form of MAP1B may play an important role in developmental and regeneration processes within the fish central nervous system.
Collapse
Affiliation(s)
- E Vecino
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad del País Vasco, Leioa, Vizcaya, Spain.
| | | |
Collapse
|
21
|
Sánchez Martin C, Ledesma D, Dotti CG, Avila J. Microtubule-associated protein-2 located in growth regions of rat hippocampal neurons is highly phosphorylated at its proline-rich region. Neuroscience 2001; 101:885-93. [PMID: 11113337 DOI: 10.1016/s0306-4522(00)00434-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuronal morphogenesis is regulated, among other factors, by microtubule-associated proteins (MAPs). A family of these proteins, MAP2, which is very abundant in the mammalian nervous system, has been associated with the formation of neurites at early developmental stages and with the dendritic scaffold upon maturation. The function of MAP2 is regulated by its phosphorylation state. One of the phosphorylation sites that has been described is located in the proline-rich region of the protein. It comprises of the residues 1616-1626 and is specifically recognized by the antibody 305. However, little is known about the functional consequences of its modification in vivo. To gain insight into this, we have analysed the expression levels and intracellular distribution of MAP2 phosphorylated at this site (MAP2-P), in primary cultures of rat hippocampal neurons at different developmental stages. Western blot analysis of hippocampal neuron protein extracts revealed that the ratio of MAP2-P:MAP2 was 4:1 at early developmental stages and became 1:4 at later developmental stages, suggesting a role of such phosphorylated forms of the protein in neuritogenesis. Consistent with this view, immunofluorescence microscopy analysis showed that the ratio MAP2-P:MAP2 was 2 in the neurite growth cones, sites where net elongation takes place. A higher presence of phosphorylated MAP2 was observed in growth regions with higher levels of microfilaments, which may be related with the growth region stability. Indeed, when growth-cone collapse was induced in hippocampal neurons after cytochalasin D treatment, which depolymerizes microfilaments, the ratio MAP2-P:MAP2 in these growing regions decreased down to 1. Finally, acceleration of neuronal maturation induced by the activation of glutamate-receptors triggered a dramatic decrease in the phosphorylation of MAP2 at the site recognized by antibody 305. From these results we suggest that the phosphorylation of MAP2 at its proline-rich region is an important event during neuritogenesis.
Collapse
Affiliation(s)
- C Sánchez Martin
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco. 28049, Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Ma D, Connors T, Nothias F, Fischer I. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons. Neuroscience 2000; 99:157-70. [PMID: 10924960 DOI: 10.1016/s0306-4522(00)00141-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microtubule-associated protein 1B is a major constituent of the neuronal cytoskeleton during the early stages of development. This protein and its phosphorylated isoform, microtubule-associated protein 1B-P, defined by the monoclonal antibody 1B-P [Boyne L. J. et al. (1995) J. Neurosci. Res. 40, 439-450], are present in growing axons and concentrated in the distal end near the growth cone. In most regions of the central nervous system, microtubule-associated protein 1B and microtubule-associated protein 1B-P are developmentally down-regulated. They remain, however, at relatively high levels in the adult peripheral nervous system, where microtubule-associated protein 1B-P is localized exclusively in axons. The aim of this study was to examine the levels of microtubule-associated protein 1B and its phosphorylated isoform during regenerative growth of peripheral axons. Following transection and re-apposition of the sciatic nerve at midthigh, the levels of total microtubule-associated protein 1B, microtubule-associated protein 1B-P and microtubule-associated protein 1B messenger RNA were analysed in dorsal root ganglion neurons and sciatic nerve axons using western blots and RNase protection assays. After the lesion, there was a small decrease in the levels of microtubule-associated protein 1B and its messenger RNA in dorsal root ganglion neurons. The proximal axonal stump showed a similar decrease in the levels of microtubule-associated protein 1B 30days after lesion and returned to normal 60-90days post-lesion. In the distal stump of the sciatic nerve, the levels of microtubule-associated protein 1B increased dramatically and rapidly between three and 14days, but the protein was localized mainly in activated Schwann cells and myelin-like structures, and not in axons [Ma D. et al. (1999) Brain Res. 823, 141-153]. With the regeneration of axons into the distal stump, an intense expression of microtubule-associated protein 1B was observed in these axons. Microtubule-associated protein 1B-P, however, disappeared from the degenerated distal axonal stump as early as three days post-operation, and was absent in the regenerating axons and in Schwann cells between three and 14days. The levels of microtubule-associated protein 1B-P recovered slowly and did not reach the normal levels even after 90days post-operation. In contrast to the response following transection, the levels of microtubule-associated protein 1B and microtubule-associated protein 1B-P were much less affected after nerve crush. We propose that the relatively high levels of microtubule-associated protein 1B and its messenger RNA in adult dorsal root ganglions support peripheral neuron regeneration. The presence of microtubule-associated protein 1B in the regenerating axons suggests that microtubule-associated protein 1B is involved in axonal growth during peripheral nerve regeneration. However, the phosphorylated microtubule-associated protein 1B-P isoform, associated with growing axons during development, is not present in the regenerating axons after transection, presumably because of changes in the activities of kinases and phosphatases associated with the injury. These observations underscore the difference between axonal development and regeneration and the importance of injury-related effects that occur locally.
Collapse
Affiliation(s)
- D Ma
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania Hahnemann University, 3200 Henry Avenue, Philadelphia, PA 19129, USA
| | | | | | | |
Collapse
|
23
|
Axonal transport of microtubule-associated protein 1B (MAP1B) in the sciatic nerve of adult rat: distinct transport rates of different isoforms. J Neurosci 2000. [PMID: 10704485 DOI: 10.1523/jneurosci.20-06-02112.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytoskeletal proteins are axonally transported with slow components a and b (SCa and SCb). In peripheral nerves, the transport velocity of SCa, which includes neurofilaments and tubulin, is 1-2 mm/d, whereas SCb, which includes actin, tubulin, and numerous soluble proteins, moves as a heterogeneous wave at 2-4 mm/d. We have shown that two isoforms of microtubule-associated protein 1B (MAP1B), which can be separated on SDS polyacrylamide gels on the basis of differences in their phosphorylation states (band I and band II), were transported at two different rates. All of band I MAP1B moved as a coherent wave at a velocity of 7-9 mm/d, distinct from slow axonal transport components SCa and SCb. Several other proteins were detected within the component that moved at the velocity of 7-9 mm/d, including the leading wave of tubulin and actin. The properties of this component define a distinct fraction of the slow axonal transport that we suggest to term slow component c (SCc). The relatively fast transport of the phosphorylated MAP1B isoform at 7-9 mm/d may account for the high concentration of phosphorylated MAP1B in the distal end of growing axons. In contrast to band I MAP1B, the transport profile of band II was complex and contained components moving with SCa and SCb and a leading edge at SCc. Thus, MAP1B isoforms in different phosphorylation states move with distinct components of slow axonal transport, possibly because of differences in their abilities to associate with other proteins.
Collapse
|
24
|
Abstract
MAP1B is a microtubule-associated phosphoprotein that is particularly highly expressed in developing neurons. There is experimental evidence that it plays an important role in neuronal differentiation, especially the extension of axons and dendrites, but exactly what role is unclear. Recent experiments have shed light on the gene structure of MAP1B and identified some of the kinases that phosphorylate the protein. Implicit in these findings is the idea that MAP1B regulates the organisation of microtubules in neurites and is itself regulated in a complex way and at a number of levels.
Collapse
Affiliation(s)
- P R Gordon-Weeks
- Centre for Developmental Neurobiology, GKT School of Biomedical Sciences, King's College London, London WC2B 5RL.
| | | |
Collapse
|
25
|
Mack TG, Koester MP, Pollerberg GE. The microtubule-associated protein MAP1B is involved in local stabilization of turning growth cones. Mol Cell Neurosci 2000; 15:51-65. [PMID: 10662505 DOI: 10.1006/mcne.1999.0802] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For the development of the nervous system it is crucial that growth cones detect environmental information and react by altering their growth direction. The latter process is thought to depend on local stabilization of growth cone microtubules. We have obtained evidence of a role for the microtubule-associated protein MAP1B, in particular a mode 1 phosphoisoform of the molecule, P1-MAP1B, in this process. P1-MAP1B is tightly associated with the cytoskeleton and is present at highest concentrations in the distal axon and the growth cone of chick retinal ganglion cells. In growth cones turning at nonpermissive substrate borders, P1-MAP1B is restricted to regions which are stabilized. Unilateral neutralization of P1-MAP1B in one-half the growth cone by microscale chromophore-assisted laser inactivation changes growth cone motility, morphology, and growth direction. The results indicate a functional role for P1-MAP1B in local growth cone stabilization and thus growth cone steering.
Collapse
Affiliation(s)
- T G Mack
- Institute of Zoology, University of Heidelberg, Im Neuenheimer Feld 232, Heidelberg, D-69120, Germany
| | | | | |
Collapse
|
26
|
Sapir T, Cahana A, Seger R, Nekhai S, Reiner O. LIS1 is a microtubule-associated phosphoprotein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:181-8. [PMID: 10491172 DOI: 10.1046/j.1432-1327.1999.00711.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lissencephaly, a severe brain malformation, may be caused by mutations in the LIS1 gene. LIS1 encodes a microtubule-associated protein (MAP) that is also part of the enzyme complex, platelet-activating factor acetylhydrolase. LIS1 is also found in a complex with two protein kinases; a T-cell Tat-associated kinase, which contains casein-dependent kinase (CDK) activating kinase (CAK), as well as CAK-inducing activity, and with a spleen protein-tyrosine kinase similar to the catalytic domain of p72syk. As phosphorylation is one of the ways to control cellular localization and protein-protein interactions, we investigated whether LIS1 undergoes this post-translational modification. Our results demonstrate that LIS1 is a developmentally regulated phosphoprotein. Phosphorylated LIS1 is mainly found in the MAP fraction. Phosphoamino acid analysis revealed that LIS1 is phosphorylated on serine residues. Alkaline phosphatase treatment reduced the number of visible LIS1 isoforms. In-gel assays demonstrate a 50-kDa LIS1 kinase that is enriched in microtubule-associated fractions. In vitro, LIS1 was phosphorylated by protein kinase CKII (casein kinase II), but not many other kinases that were tested. We suggest that LIS1 activity may be regulated by phosphorylation.
Collapse
Affiliation(s)
- T Sapir
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
27
|
Goold RG, Owen R, Gordon-Weeks PR. Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones. J Cell Sci 1999; 112 ( Pt 19):3373-84. [PMID: 10504342 DOI: 10.1242/jcs.112.19.3373] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that glycogen synthase kinase 3beta (GSK3beta) phosphorylates the microtubule-associated protein (MAP) 1B in an in vitro kinase assay and in cultured cerebellar granule cells. Mapping studies identified a region of MAP1B high in serine-proline motifs that is phosphorylated by GSK3beta. Here we show that COS cells, transiently transfected with both MAP1B and GSK3beta, express high levels of the phosphorylated isoform of MAP1B (MAP1B-P) generated by GSK3beta. To investigate effects of MAP1B-P on microtubule dynamics, double transfected cells were labelled with antibodies to tyrosinated and detyrosinated tubulin markers for stable and unstable microtubules. This showed that high levels of MAP1B-P expression are associated with the loss of a population of detyrosinated microtubules in these cells. Transfection with MAP1B protected microtubules in COS cells against nocodazole depolymerisation, confirming previous studies. However, this protective effect was greatly reduced in cells containing high levels of MAP1B-P following transfection with both MAP1B and GSK3beta. Since we also found that MAP1B binds to tyrosinated, but not to detyrosinated, microtubules in transfected cells, we propose that MAP1B-P prevents tubulin detyrosination and subsequent conversion of unstable to stable microtubules and that this involves binding of MAP1B-P to unstable microtubules. The highest levels of MAP1B-P are found in neuronal growth cones and therefore our findings suggest that a primary role of MAP1B-P in growing axons may be to maintain growth cone microtubules in a dynamically unstable state, a known requirement of growth cone microtubules during pathfinding. To test this prediction, we reduced the levels of MAP1B-P in neuronal growth cones of dorsal root ganglion cells in culture by inhibiting GSK3beta with lithium. In confirmation of the proposed role of MAP1B-P in maintaining microtubule dynamics we found that lithium treatment dramatically increased the numbers of stable (detyrosinated) microtubules in the growth cones of these neurons.
Collapse
Affiliation(s)
- R G Goold
- Developmental Biology Research Centre, The Randall Institute, King's College London, London WC2B 5RL, UK
| | | | | |
Collapse
|
28
|
Nakamura Y, Hashimoto R, Kashiwagi Y, Wada Y, Sakoda S, Miyamae Y, Kudo T, Takeda M. Casein kinase II is responsible for phosphorylation of NF-L at Ser-473. FEBS Lett 1999; 455:83-6. [PMID: 10428477 DOI: 10.1016/s0014-5793(99)00832-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ser-473 is solely phosphorylated in vivo in the tail region of neurofilament L (NF-L). With peptides including the native phosphorylation site, it was not possible to locate responsible kinases. We therefore adopted full-length dephosphorylated NF-L as the substrate, and employed MALDI/TOF (matrix-assisted laser desorption and ionization/time of flight) mass spectrometry and a site-specific phosphorylation-dependent antibody recognizing Ser-473 phosphorylation. The antibody showed that casein kinase I (CK I) as well as casein kinase II (CK II) phosphorylated Ser-473 in vitro, while neither GSK-3beta nor calcium/calmodulin-dependent protein kinase II did so. However, the mass spectra of the tail fragments of the phosphorylated NF-L indicated that CK II was the kinase mediating Ser-473 phosphorylation in vitro as opposed to CK I, because CK I phosphorylated another site as well as Ser-473 in vitro. The antibody also demonstrated that NF-L phosphorylated at Ser-473 was abundant in the neuronal perikarya of the rat cortex, indicating that phosphorylation of Ser-473 may take place there. This result may support the suggestion that CK II is the kinase responsible for Ser-473 phosphorylation. Despite many reports showing that CK I mediates phosphorylation of neurofilaments, CK II may phosphorylate NF-L in vivo.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Clinical Neuroscience, Psychiatry, Osaka University Graduate School of Medicine, Suita-shi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Neuroblastoma cells are used as a model system to study neuronal differentiation. Here we describe the induction of morphological differentiation of mouse neuroblastoma Neuro 2a (N2a) cells by treatments with either chemical inhibitors of cyclin-dependent kinases or lithium, which inhibits glycogen synthase kinase-3. Cyclin-dependent kinase inhibitors cause a rapid cell cycle block as well as the extension of multiple neurites per cell. These multipolar differentiated cells then undergo a massive death. However, lithium promotes a delayed mitotic arrest and the extension of one or two long neurites per cell. This differentiation is maximal after 48 hours of lithium treatment and the differentiated cells remain viable for long periods of time. Neuronal differentiation in lithium-treated cells is preceded by the accumulation of beta-catenin, a protein which is efficiently proteolyzed when it is phosphorylated by glycogen synthase kinase-3. Both neuronal differentiation and beta-catenin accumulation are observed in lithium-treated cells either in the absence or in the presence of supraphysiological concentrations of inositol. The results are consistent with the hypothesis that inhibition of glycogen synthase kinase-3 by lithium triggers the differentiation of neuroblastoma N2a cells.
Collapse
Affiliation(s)
- J García-Pérez
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | |
Collapse
|
30
|
Ma D, Chow S, Obrocka M, Connors T, Fischer I. Induction of microtubule-associated protein 1B expression in Schwann cells during nerve regeneration. Brain Res 1999; 823:141-53. [PMID: 10095020 DOI: 10.1016/s0006-8993(99)01148-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubule-associated protein 1B (MAP1B) is expressed at high levels during development of the nervous system and is localized primarily in neurons while specific phosphorylated isoforms of MAP1B are localized exclusively in growing axons. The levels of MAP1B are down regulated in most regions of the adult CNS, but remain high in neurons and axons of the PNS. This study demonstrates that the expression of MAP1B is induced in adult Schwann cells following sciatic nerve lesion and regeneration. High levels of both mRNA and the MAP1B protein were detected in Schwann cells associated with the axotomized distal stump. Expression of MAP1B was also observed in cultured primary Schwann cells from neonatal rats. The properties of the MAP1B protein in cultured Schwann cells were further characterized by Western blot analysis using specific antibodies that recognize the N-terminal, middle and C-terminal domains of MAP1B. All of these antibodies detected a protein of 320-340 kDa demonstrating that MAP1B expressed by Schwann cells is very similar, or identical, to MAP1B expressed by neurons. The phosphorylation of MAP1B in Schwann cells was also studied using monoclonal antibodies (mAb) that recognize specific phosphorylation epitopes. The results indicated that the expression of MAP1B in Schwann cells exhibited a differential phosphorylation state that was recognized by mAb 1B6 but not by other mAbs, including 1B-P, 150 and RT97, that recognize phosphorylated MAP1B in growing axons. We therefore conclude that MAP1B is expressed in Schwann cells during both development and axonal regeneration, suggesting that the developmental pattern of MAP1B in these cells is recapitulated in adult Schwann cells during the early stages of regeneration and remyelination of injured peripheral axons. The presence of MAP1B in Schwann cells may support morphological changes of these cells, particularly the formation of processes prior to their differentiation into myelin forming Schwann cells.
Collapse
Affiliation(s)
- D Ma
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania Hahnemann University, 3200 Henry Avenue, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
31
|
Pérez M, Avila J. The expression of casein kinase 2alpha' and phosphatase 2A activity. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:150-6. [PMID: 10082973 DOI: 10.1016/s0167-4889(99)00008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein phosphatase 2A (PP2A) activity may be differentially regulated by the expression of proteins containing a related amino acid sequence motif such as the casein kinase 2alpha (CK2alpha) subunit or SV40 small t antigen (SVt). Expression of CK2alpha increases PP2A activity whereas SVt decreases its activity. In this work we have tested for the effect of the expression of a third protein containing a similar motif that could be involved in PP2A regulation, the catalytic casein kinase 2alpha' subunit. Our results show that despite the structural similarity of this protein with the other CK2 catalytic (alpha) subunit, the function of the two subunits with respect to the modulation of PP2A activity is quite different: CK2alpha increases whereas CK2alpha' slightly decreases PP2A activity.
Collapse
Affiliation(s)
- M Pérez
- Centro de Biología Molecular, Universidad Autónoma de Madrid, 28049-, Madrid, Spain
| | | |
Collapse
|
32
|
Ramón-Cueto A, Avila J. Two modes of microtubule-associated protein 1B phosphorylation are differentially regulated during peripheral nerve regeneration. Brain Res 1999; 815:213-26. [PMID: 9878743 DOI: 10.1016/s0006-8993(98)01092-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two major modes of MAP1B phosphorylation (I and II), respectively recognized by monoclonal antibodies 150 and 125, have been related to remodeling and formation of processes in the mature nervous system. To gain insight into the cytoskeletal modifications underlying peripheral nerve regeneration, the pattern of expression of both MAP1B phosphorylated modes was studied during this process. Sciatic nerves from adult Wistar rats were crushed and animals allowed to survive for 5, 7, 10 or 14 days. After those survival periods, damaged and undamaged sciatic nerves, dorsal root ganglia (DRG), and spinal cords, were subjected to immunohistochemistry and Western blot, using antibodies 150 and 125. At all survival periods analysed, MAP1B phosphorylated at mode I was concentrated at the distal region of regenerating nerves whereas mode II phosphorylation underwent an overall decrease in regenerating axons that was less evident in more proximal nerve regions. Very high levels of MAP1B phosphorylated at mode II were detected in the bodies of DRG neurons and in bodies and dendrites of spinal motor neurons. This phosphorylation mode was also encountered in some Schwann cells and oligodendroglia associated with more proximal regions of regenerating axons. In this study we conclude that MAP1B was differentially phosphorylated depending on the cell type, subcellular compartment and stage of the regenerative process and discuss the possible functional implications that differential expression of each MAP1B phosphorylation mode might have during nerve regeneration.
Collapse
Affiliation(s)
- A Ramón-Cueto
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | | |
Collapse
|
33
|
Lucas FR, Goold RG, Gordon-Weeks PR, Salinas PC. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 1998; 111 ( Pt 10):1351-61. [PMID: 9570753 DOI: 10.1242/jcs.111.10.1351] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WNT-7a induces axonal spreading and branching in developing cerebellar granule neurons. This effect is mediated through the inhibition of GSK-3beta, a serine/threonine kinase and a component of the WNT pathway. Lithium, an inhibitor of GSK-3beta, mimics WNT-7a in granule cells. Here we examined further the effect of GSK-3beta inhibition on cytoskeletal re-organisation. Lithium induces axonal spreading and increases growth cone area and perimeter. This effect is associated with the absence or reduction of stable microtubules in spread areas. Lithium induces the loss of a phosphorylated form of MAP-1B, a microtubule associated protein involved in axonal outgrowth. Down-regulation of the phosphorylated MAP-1B, MAP-1B-P, from axonal processes occurs before axonal remodelling is evident. In vitro phosphorylation assays show that MAP-1B-P is generated by direct phosphorylation of MAP-1B by GSK-3beta. WNT-7a, like lithium, also leads to loss of MAP-1B-P from spread axons and growth cones. Our data suggest that WNT-7a and lithium induce changes in microtubule dynamics by inhibiting GSK-3beta which in turn lead to changes in the phosphorylation of MAP-1B. These findings suggest a novel role for GSK-3beta and WNTs in axonal remodelling and identify MAP-1B as a new target for GSK-3beta and WNT.
Collapse
Affiliation(s)
- F R Lucas
- Developmental Biology Research Centre, The Randall Institute, King's College London, 26-29 Drury Lane, London WC2B 5RL, UK
| | | | | | | |
Collapse
|
34
|
Mandell JW, Banker GA. Selective blockade of axonogenesis in cultured hippocampal neurons by the tyrosine phosphatase inhibitor orthovanadate. JOURNAL OF NEUROBIOLOGY 1998; 35:17-28. [PMID: 9552163 DOI: 10.1002/(sici)1097-4695(199804)35:1<17::aid-neu2>3.0.co;2-e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphorylation has been implicated in several aspects of neurite outgrowth regulation. To address specific roles in early neuronal morphogenesis, hippocampal neurons in culture were treated with the tyrosine phosphatase inhibitor orthovanadate. This treatment completely suppressed axon formation, yet enhanced formation of minor neurites. The inhibition of axonogenesis was dose dependent and occurred in parallel with a marked increase in cellular phosphotyrosine immunoreactivity, which was especially concentrated within neuritic growth cones and showed partial colocalization with f-actin. Both the blockade of axonogenesis and the elevation of phosphotyrosine were completely reversible. An additional and unexpected effect of orthovanadate was the appearance of many binucleate neurons. Immunoblotting experiments using a phosphotyrosine-specific antibody revealed an orthovanadate-induced reversible hyperphosphorylation of several protein bands, especially of two at 115 and 125 kD. These data suggest a potentially important role for tyrosine phosphatases and their phosphoprotein substrates in axonogenesis.
Collapse
Affiliation(s)
- J W Mandell
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|
35
|
Sánchez C, Ulloa L, Montoro RJ, López-Barneo J, Avila J. NMDA-glutamate receptors regulate phosphorylation of dendritic cytoskeletal proteins in the hippocampus. Brain Res 1997; 765:141-8. [PMID: 9310405 DOI: 10.1016/s0006-8993(97)00563-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most forms of synaptic potentiation need the activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors which generate changes in dendritic morphology of postsynaptic neurons. Since microtubule proteins have an essential role in dendritic morphology, they may be involved and regulated during the modifications of dendritic morphology associated with synaptic potentiation. The phosphorylation of the microtubule-associated proteins (MAPs) has been analyzed in situ after activation or blockade of NMDA-glutamate receptors in hippocampal slices. The phosphorylation of MAP1B and MAP2 has been studied by using several antibodies raised against phosphorylation-sensitive epitopes. Whereas antibodies 125 and 305 recognize phosphorylated epitopes on MAP1B and MAP2, respectively, Ab 842 recognizes a phosphorylatable sequence on MAP1B only when it is dephosphorylated. NMDA treatment decreased the phosphorylation state of the epitope recognized by the antibody 305 on MAP2 and caused a slight dephosphorylation of MAP1B sequences recognized by Ab 125 and 842. Moreover, exposure to APV (an antagonist of NMDA-glutamate receptors) counteracted the effect of NMDA and induced an increase in the phosphorylation state of these sequences in MAP2. Since phosphorylation regulates the interaction of MAPs with cytoskeleton, the results suggest that the modulation of the phosphorylated state of MAP2 by NMDA-glutamate receptors may be implicated in dendritic plasticity.
Collapse
Affiliation(s)
- C Sánchez
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | | | | |
Collapse
|
36
|
Johnstone M, Goold RG, Fischer I, Gordon-Weeks PR. The neurofilament antibody RT97 recognises a developmentally regulated phosphorylation epitope on microtubule-associated protein 1B. J Anat 1997; 191 ( Pt 2):229-44. [PMID: 9306199 PMCID: PMC1467675 DOI: 10.1046/j.1469-7580.1997.19120229.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microtubules are important for the growth and maintenance of stable neuronal processes and their organisation is controlled partly by microtubule-associated proteins (MAPs). MAP 1B is the first MAP to be expressed in neurons and plays an important role in neurite outgrowth. MAP 1B is phosphorylated at multiple sites and it is believed that the function of the protein is regulated by its phosphorylation state. We have shown that the monoclonal antibody (mAb) RT97, which recognises phosphorylated epitopes on neurofilament proteins, fetal tau, and on Alzheimer's paired helical filament-tau, also recognises a developmentally regulated phosphorylation epitope on MAP 1B. In the rat cerebellum, Western blot analysis shows that mAb RT97 recognises the upper band of the MAP 1B doublet and that the amount of this epitope peaks very early postnatally and decreases with increasing age so that it is absent in the adult, despite the continued expression of MAP 1B in the adult. We confirmed that mAb RT97 binds to MAP 1B by showing that it recognises MAP 1B immunoprecipitated from postnatal rat cerebellum using polyclonal antibodies to recombinant MAP 1B proteins. We established that the RT97 epitope on MAP 1B is phosphorylated by showing that antibody binding was abolished by alkaline phosphatase treatment of immunoblots. Epitope mapping experiments suggest that the mAb RT97 site on MAP 1B is near the N-terminus of the molecule. Despite our immunoblotting data, immunostaining of sections of postnatal rat cerebellum with mAb RT97 shows a staining pattern typical of neurofilaments with no apparent staining of MAP 1B. For instance, basket cell axons and axons in the granule cell layer and white matter stained, whereas parallel fibres did not. These results suggest that the MAP 1B epitope is masked or lost under the immunocytochemical conditions in which the cerebellar sections are prepared. The upper band of the MAP 1B doublet is believed to be predominantly phosphorylated by proline-directed protein kinases (PDPKs). PDPKs are also good candidates for phosphorylating neurofilament proteins and tau and therefore we postulate that the sites recognised by RT97 on these neuronal cytoskeletal proteins may be phosphorylated by similar kinases. Important goals are to determine the precise location of the RT97 epitope on MAP 1B and the kinase responsible.
Collapse
Affiliation(s)
- M Johnstone
- Developmental Biology Research Centre, Randall Institute, Kings College, London, UK
| | | | | | | |
Collapse
|
37
|
Ramón-Cueto A, Avila J. Differential expression of microtubule-associated protein 1B phosphorylated isoforms in the adult rat nervous system. Neuroscience 1997; 77:485-501. [PMID: 9472406 DOI: 10.1016/s0306-4522(96)00437-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylated microtubule-associated protein 1B isoforms are thought to be involved in the plastic events taking place in neurons during development. However, little is known about their expression and possible role in the mature nervous system. To gain insight into the mechanisms underlying neuronal plasticity in the adult, we studied the pattern of expression of three microtubule-associated protein 1B isoforms in the entire adult rat nervous system. Accordingly, we performed western blots and immunohistochemistries using the antibodies 125, 150 and 531, which specifically recognize phosphorylated and unphosphorylated microtubule-associated protein 1B epitopes. Two electrophoretically distinct microtubule-associated protein 1B isoforms, slow-migrating and fast-migrating, were detected with the antibodies. The pattern of expression of these isoforms in the adult rat nervous system was region specific. Phosphorylated slow-migrating microtubule-associated protein 1B was expressed at all cellular compartments of primary sensory neurons in the central and peripheral nervous systems. In addition to primary sensory axons, slow-migrating microtubule-associated protein 1B was encountered at some other axons within the central nervous system. We discuss the correlation between slow-migrating microtubule-associated protein 1B axonal content and the regenerative potential of neurons. Phosphorylated fast-migrating microtubule-associated protein 1B was exclusively found in central nervous system dendrites where synaptic plasticity with morphological changes occurs in the adult. Unphosphorylated fast-migrating microtubule-associated protein 1B was the only isoform present in the bodies and dendrites of all motor neurons, and in peripheral and central nervous system glial cells of myelinated tracts with slow-migrating microtubule-associated protein 1B-containing axons. In summary, this report describes the pattern of expression of microtubule-associated protein 1B isoforms in the entire adult rat nervous system. In addition, it provides some information about the possible functional implications of phosphorylated microtubule-associated protein 1B isoforms in the adult.
Collapse
Affiliation(s)
- A Ramón-Cueto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | |
Collapse
|
38
|
Abstract
Mechanisms underlying axonogenesis remain obscure. Although a large number of proteins eventually become polarized to the axonal domain, in no case does protein compartmentalization occur before or simultaneous with the earliest morphological expression of axonal properties. How then might initially unpolarized proteins, such as the microtubule-associated protein tau, play a role in the microdifferentiation of axons? We hypothesized that tau function could be locally regulated by phosphorylation during the period of axonogenesis. To test this hypothesis, we mapped relative levels of tau phosphorylation within developing cultured hippocampal neurons. This was accomplished using calibrated immunofluorescence ratio measurements employing phosphorylation state-dependent and state-independent antibodies. Tau in the nascent axon is more highly dephosphorylated at the site recognized by the tau-1 antibody than tau in the somatodendritic compartment. The change in phosphorylation state from soma to axon takes the form of a smooth proximo-distal gradient, with tau in the soma, immature dendrites and proximal axon approximately 80% phosphorylated at the tau-1 site, and that in the axonal growth cone only 20% phosphorylated. The existence of real spatial differences in tau phosphorylation state was confirmed by in situ phosphatase and kinase treatment. Pervanadate, a tyrosine phosphatase inhibitor, induced rapid tau dephosphorylation within live cells, effectively abolishing the phosphorylation gradient. Thus, the gradient is dynamic and potentially regulatable by upstream signals involving tyrosine phosphorylation. Phosphorylation gradients are likely to be present on many neuronal proteins in addition to tau, and their modulation by transmembrane signals could direct the establishment of polarity.
Collapse
|
39
|
Hoffman JR, Boyne LJ, Levitt P, Fischer I. Short exposure to methylazoxymethanol causes a long-term inhibition of axonal outgrowth from cultured embryonic rat hippocampal neurons. J Neurosci Res 1996; 46:349-59. [PMID: 8933374 DOI: 10.1002/(sici)1097-4547(19961101)46:3<349::aid-jnr8>3.0.co;2-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methylazoxymethanol (MAM) is an alkylating agent that is used to induce microencephaly by killing mitotically active neuroblasts. We found that at later developmental times, MAM exposure can result in abnormal fiber growth in vivo. However, there have not been any previous studies on the effects of MAM on differentiating neurons. We examined the outcome of short exposure to MAM on postmitotic embryonic hippocampal cultures during the establishment of axonal polarity. At 0, 1, or 2 days in vitro (DIV), neurons were treated with 0.1 nM-1 microM MAM for 3 hr and then transferred to glial conditioned media. At 3 DIV, the cells were fixed and analyzed by immunofluorescent staining for neuron viability and differentiation. Control cells initiate several minor processes; one process elongates rapidly at about 1 DIV eventually becoming an axon, while extensive dendritic growth occurs after 3-4 DIV. Neurons treated with 1 microM MAM at 0 or 1 DIV showed a marked inhibition of neurite growth and withdrawal of axons without affecting cell viability. These cells continued to show minimal neurite outgrowth at 7 DIV, even when transferred to a glial coculture. In contrast, cells treated initially with MAM, after neuronal polarity is established at 2 DIV, showed no effect on axonal growth. To determine the effects of MAM on the neuronal cytoskeleton, we examined the in vitro assembly of brain microtubules in a one cycle assay. Exposure to MAM depleted the soluble pool of proteins, including microtubule-associated protein 1B (MAP1B) and MAP2, which are required for neurite outgrowth, through a nonspecific process. Under non-saturating conditions, there were no changes in the total amount of microtubules assembled or the coassembly of MAP1B and MAP2 in the presence of MAM. These results demonstrate that MAM can directly affect differentiating neurons, indicating that an early disruption of axonal outgrowth may have long-term effects.
Collapse
Affiliation(s)
- J R Hoffman
- Department of Biology, Beaver College, Glenside, PA 19038, USA
| | | | | | | |
Collapse
|
40
|
Bush MS, Tonge DA, Woolf C, Gordon-Weeks PR. Expression of a developmentally regulated, phosphorylated isoform of microtubule-associated protein 1B in regenerating axons of the sciatic nerve. Neuroscience 1996; 73:553-63. [PMID: 8783270 DOI: 10.1016/0306-4522(96)00078-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoclonal antibodies SMI-31 and 150 recognize phosphorylation epitopes on microtubule-associated protein 1B that have been shown to be developmentally down-regulated in the nervous system. We have used these antibodies to establish changes in the pattern of expression of their epitopes on microtubule-associated protein 1B in regenerating axons of the sciatic nerves in the adult mouse and rat. Immunohistochemical studies showed that, in the sciatic nerve, regenerating axons in both adult mice and rats were labelled with monoclonal antibody 150 in a proximodistal gradient which was highest at the growth cone. This is the first report of expression of a developmentally regulated, phosphorylated isoform of microtubule-associated protein 1B in regenerating axons. Immunoblotting showed that the expression of the isoform recognized by monoclonal antibody 150 is present in normal adult mouse sciatic nerve and in regenerating axons following crush or cut lesions, but was not detectable in the normal or regenerating adult rat peripheral nervous system. Regenerating axons were also labelled by monoclonal antibody SMI-31, but the labelling, unlike antibody 150 labelling, was uniform along the entire length of the axon and immunoblotting showed that it was due to recognition of neurofilament protein. We conclude that the phosphorylated isoforms of microtubule-associated protein 1B recognized by monoclonal antibody 150 that are developmentally down-regulated in the adult rat central and peripheral nervous systems and adult mouse cerebellum are maintained in the normal peripheral nervous system of the adult mouse. When peripheral axons regenerate in the adult mouse, the regenerating axons also contain these isoforms. Adult rat regenerating axons are stained by antibody 150 only in tissue sections, not in immunoblots. The maintenance of immature isoforms of microtubule-associated protein 1B in mouse peripheral axons may relate to a continual capacity for growth and remodelling. The immunohistochemical localization of the antibody 150 epitope in growth cone-like structures and sprouts in injured nerves shows that phosphorylation of microtubule-associated protein 1B is likely to be an integral part of the regenerative response. These results also show that the phosphorylation epitopes on microtubule-associated protein 1B recognized by monoclonal antibodies 150 and SMI-31 are different and that only expression of the former correlates with axonal regeneration.
Collapse
Affiliation(s)
- M S Bush
- Developmental Biology Research Centre, Randall Institute, King's College London, U.K
| | | | | | | |
Collapse
|
41
|
Pedrotti B, Islam K. Dephosphorylated but not phosphorylated microtubule associated protein MAP1B binds to microfilaments. FEBS Lett 1996; 388:131-3. [PMID: 8690071 DOI: 10.1016/0014-5793(96)00520-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have reported that purified native MAP1B interacts with microtubules but not with microfilaments [Pedrotti and Islam, Cell Motil. Cytoskel. (1995) 30, 301-309]. However, MAP1B can be phosphorylated at multiple sites by casein kinase 11 (CKII) and proline-directed protein kinases (PDPK) and immunoblotting studies show that purified native MAP1B is phosphorylated at least at two CKII sites and at one PDPK site [Pedrotti et al., Biochemistry (1996) 35, 3016-3023]. We now show that phosphorylation affects the in vitro binding of MAP1B with microfilaments. Native MAP1B does not bind to microfilaments but after treatment with alkaline phosphatase the dephosphorylated MAP1B binds and cosediments with microfilaments. Dephosphorylation kinetics suggest that the PDPK site, but not CKII sites, may negatively regulate the interaction with F-actin. The ability of dephosphorylated MAP1B to crosslink microfilaments was also examined and showed that MAP1B exhibits only a weak crosslinking of F-actin when compared with MAP2.
Collapse
Affiliation(s)
- B Pedrotti
- Lepetit Research Center, Marion Merell Dow Research Institute, Gerenzano (VA), Italy
| | | |
Collapse
|
42
|
Nothias F, Fischer I, Murray M, Mirman S, Vincent JD. Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity. J Comp Neurol 1996; 368:317-34. [PMID: 8725342 DOI: 10.1002/(sici)1096-9861(19960506)368:3<317::aid-cne1>3.0.co;2-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microtubule-associated protein IB (MAP1B) is the first MAP to be detected in the developing nervous system, and it becomes markedly down-regulated postnatally. Its expression, particularly that of its phosphorylated isoform, is associated with axonal growth. To determine whether adult central nervous system (CNS) areas that retain immunoreactivity for MAP1B are associated with morphological plasticity, we compared the distribution of a phosphorylated MAP1B isoform (MAP1B-P) to the distribution of total MAP1B protein and MAP1B-mRNA. Although they were present only at very low levels, both protein and message were found ubiquitously in almost all adult CNS neurons. The intensity of staining, however, varied markedly among different regions, with only a few nuclei retaining relatively high levels. MAP1B-P was restricted to axons, whereas total MAP1B was present in cell bodies and processes. Relatively to total MAP1B protein and its mRNA, MAP1B-P levels decreased more dramatically with maturation, and they were detectable in only a few specific areas that underwent structural modifications. These included primary afferents and motor neurons, olfactory tubercles, habenular and raphe projections to interpeduncular nuclei, septum, and the hypothalamus. The distribution pattern of MAP1B-P was compared to that of the embryonic N-CAM rich in polysialic acid (PSA-NCAM). We found that the PSA-NCAM immunostaining was largely overlapped with that of MAP1B-P in the adult CNS. These results suggest that, like PSA-NCAM, MAP1B may be one of the molecules expressed during brain development that also plays a role in structural remodeling in the adult.
Collapse
Affiliation(s)
- F Nothias
- Institut Alfred Fessard, CNRS/UPR 2212, Gif-Sur-Yvettte, France
| | | | | | | | | |
Collapse
|
43
|
Bush MS, Goold RG, Moya F, Gordon-Weeks PR. An analysis of an axonal gradient of phosphorylated MAP 1B in cultured rat sensory neurons. Eur J Neurosci 1996; 8:235-48. [PMID: 8714695 DOI: 10.1111/j.1460-9568.1996.tb01208.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study investigated the cellular distribution of a developmentally regulated phosphorylated form of MAP 1B recognized by monoclonal antibody (mAb) 150 in cultures of dorsal root ganglia. The cell soma and the whole axon, when it first appears, are labelled, but longer axons label with a proximodistal gradient, such that the cell soma and proximal axon become unlabelled, whilst the distal axon and growth cone label strongly. Double-labelling experiments with mAb 150 and a polyclonal antibody (N1-15) that recognizes all forms of MAP 1B demonstrated that MAP 1B is distributed along the entire length of axons with gradients, so the gradient of phosphorylated MAP 1B is not due to a loss or absence of MAP 1B from the proximal axon. The proportion of axons from 20 h cultures that were labelled with a mAb 150 gradient was at least 80% and this proportion was independent of the nerve growth factor concentration of the culture medium. Analysis of axons ranging in length from 100 to 700 microm and labelled with a gradient showed that the unlabelled proximal portions of axons increased in length more slowly than the labelled distal axon. Axons labelled along their entire length accounted for no more than 19% of th axonal population and analysis of these showed them to be frequently < 400 microm long. After simultaneously fixing and detergent-extracting cultures this proportion rose significantly to 93%, suggesting that in the proximal axon the mAb 150 epitope is masked by some factor(s) that is removed by detergent extraction. The possibility that mAb 150 could not access the epitope in the proximal axon was discounted because another IgM, mAb 125, which recognizes a different phosphorylation epitope on MAP 1B, labelled the proximal axon of conventionally fixed cultures. In growth cones of fixed and extracted neurons examined by immunofluorescence, the mAb 150 labelling strongly colocalized to bundled microtubules in the distal axon shaft and the C-domain. In the P-domain, mAb 150 staining was weaker and more widely distributed than the microtubules. Immunogold electron microscopy confirmed that antibody N1-15 and mAb 150 strongly labelled the bundled microtubules in the C-domain and also showed that individual microtubules in the P-domain, some of which lie alongside actin filament bundles of filopodia, were labelled lightly and discontinuously with both antibodies. This suggests that the phosphorylated isoform of MAP 1B recognized by mAb 150 may be microtubules and actin filaments in the P-domain.
Collapse
Affiliation(s)
- M S Bush
- Developmental Biology Research Centre, Randall Institute, King's College London, 26-29 Drury Lane, London WCB 5RL, UK
| | | | | | | |
Collapse
|
44
|
Lankford KL, Kenney AM, Kocsis JD. Cellular mechanisms regulating neurite initiation. PROGRESS IN BRAIN RESEARCH 1996; 108:55-81. [PMID: 8979794 DOI: 10.1016/s0079-6123(08)62532-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K L Lankford
- Department of Neurology, Yale University School of Medicine and Neuroscience, West Haven, CT, USA
| | | | | |
Collapse
|
45
|
García Rocha M, Avila J. Characterization of microtubule-associated protein phosphoisoforms present in isolated growth cones. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 89:47-55. [PMID: 8575092 DOI: 10.1016/0165-3806(95)00105-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The presence of microtubule-associated proteins (MAPs) in growth cones has been analyzed by isolation of these structures and characterization of their proteins by immunofluorescence studies. Two major MAPs, MAP1B and tau, were present in growth cones of cerebellum neurons isolated from 5-day-old rats. Both MAPs could be modified by proline-dependent protein kinases (PDPK) with opposite effects. PDPK-modified MAP1B isoforms are present at the growth cones whereas PDPK-modified tau isoforms are absent. This result suggests a different role for each phosphoMAP. To look for a possible PDPK involved in the modification of MAP1B at the growth cone, the localization of MAP and cdc2 kinases was studied. Our results indicate that the distribution in neuronal cells of MAP kinase is compatible with a possible role of this protein in modifying MAP1B.
Collapse
Affiliation(s)
- M García Rocha
- Centro de Biología Molecular Severo Ochoa Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
46
|
Tejero-Díez P, Rodríguez-Sánchez P, Díez-Guerra FJ. Expression of protein kinase C isozymes in hippocampal neurones in culture. FEBS Lett 1995; 363:293-8. [PMID: 7737420 DOI: 10.1016/0014-5793(95)00303-q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several protein kinase C (PKC) isozymes were analyzed by immunoblot and immunocytochemistry in cultures of hippocampal neurones at several stages of differentiation. Our findings reveal the existence of two distinct patterns of expression. Firstly, conventional PKC isozymes alpha, beta and gamma, that are expressed at very low levels during the initial stages and then increase continuously with time of culture. Secondly, novel PKC isozymes delta, epsilon and zeta, whose contents increase very early to reach a maximum after three days of culture and then progressively decline. Specific proteolysis for PKC isozymes beta and gamma was observed throughout the period studied. The developmental profile obtained for the different PKC isozymes is discussed in relation to the differentiation of hippocampal neurones in culture.
Collapse
Affiliation(s)
- P Tejero-Díez
- Centro de Biología Molecular, Facultad de Ciencias Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
47
|
Sánchez C, Díaz-Nido J, Avila J. Variations in in vivo phosphorylation at the proline-rich domain of the microtubule-associated protein 2 (MAP2) during rat brain development. Biochem J 1995; 306 ( Pt 2):481-7. [PMID: 7887902 PMCID: PMC1136543 DOI: 10.1042/bj3060481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microtubule-associated protein 2 (MAP2) is an in vitro substrate for MAP kinase. Part of the phosphorylation occurs at the C-terminal microtubule-binding domain of the molecule which contains a cluster of putative consensus sites for MAP kinase on a proline-rich region. A peptide with the sequence RTPGTPG-TPSY, located at this region of the molecule, is efficiently phosphorylated by MAP kinase in vitro. An antibody (972) raised against this non-phosphorylated peptide has been used to test for in vivo phosphorylation at the proline-rich domain of the MAP2 molecule. The reaction of purified MAP2 with antibody 972 diminishes after in vitro phosphorylation by MAP kinase and is enhanced after in vitro dephosphorylation by alkaline phosphatase. A fraction of brain MAP2 isolated by iron-chelation affinity chromatography appears to be phosphorylated in vivo at the site recognized by antibody 972. There is some variation in the phosphorylation of MAP2 at the proline-rich region throughout rat brain development. MAP2C is more highly phosphorylated in the developing rat brain, whereas high-molecular-mass MAP2 is more extensively phosphorylated in the adult rat brain.
Collapse
Affiliation(s)
- C Sánchez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|