1
|
Ahmadi M, Rouhi N, Fathollahi Y, Shojaei A, Rezaei M, Rostami S, Saab BJ, Mirnajafi-Zadeh J. A Dual Effect of Dopamine on Hippocampal LTP and Cognitive Functions in Control and Kindled Mice. J Neurosci 2024; 44:e0926212023. [PMID: 38124004 PMCID: PMC10860576 DOI: 10.1523/jneurosci.0926-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The impact of dopamine on synaptic plasticity and cognitive function following seizure is not well understood. Here, using optogenetics in the freely behaving animal, we examined exploratory behavior and short-term memory in control and kindled male mice during tonic stimulation of dopaminergic neurons within the ventral tegmental area (VTA). Furthermore, using field potential recording, we compared the effect of dopamine on synaptic plasticity in stratum radiatum and stratum oriens layers of both ventral and dorsal hippocampal CA1 regions, and again in both control and kindled male mice. Our results demonstrate that tonic stimulation of VTA dopaminergic neurons enhances novelty-driven exploration and short-term spatial memory in kindled mice, essentially rescuing the seizure-induced cognitive impairment. In addition, we found that dopamine has a dual effect on LTP in control versus kindled mice, such that application of dopamine prevented LTP induction in slices from control mice, but rescued LTP in slices taken from the kindled animal. Taken together, our results highlight the potential for dopaminergic modulation in improving synaptic plasticity and cognitive function following seizure.
Collapse
Affiliation(s)
- Mahboubeh Ahmadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nahid Rouhi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Sareh Rostami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Bechara J Saab
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, Zurich CH-8008, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Zurich 8057, Switzerland
- Mobio Interactive Pte. Ltd., 389637, Singapore, Republic of Singapore
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
2
|
Chindo BA, Schröder H, Koeberle A, Werz O, Becker A. Analgesic potential of standardized methanol stem bark extract of Ficus platyphylla in mice: Mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:101-106. [PMID: 26945978 DOI: 10.1016/j.jep.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the stem bark of Ficus platyphylla (FP) have been used in traditional the Nigerian medicine to treat psychoses, depression, epilepsy, pain and inflammation. Previous studies have revealed the analgesic and anti-inflammatory effects of FP in different assays including acetic acid-induced writhing, formalin-induced nociception, and albumin-induced oedema. PURPOSE/METHODS In this study, we assessed the effects of the standardised extract of FP on hot plate nociceptive threshold and vocalisation threshold in response to electrical stimulation of the tail root in order to confirm its acclaimed analgesic properties. We also investigated the molecular mechanisms underlying these effects, with the focus on opiate receptor binding and the key enzymes of eicosanoid biosynthesis, namely cyclooxygenase (COX) and 5-lipoxygenase (5-LO). RESULTS FP (i) increased the hot plate nociceptive threshold and vocalisation threshold. The increase in hot plate nociceptive threshold was detectable over a period of 30min whereas the increase in vocalisation threshold persisted over a period of 90min. (ii) FP showed an affinity for µ opiate receptors but not for δ or κ opiate receptors, and (iii) FP inhibited the activities of COX-2 and 5-LO but not of COX-1. CONCLUSIONS We provided evidence supporting the use of FP in Nigerian folk medicine for the treatment of different types of pain, and identified opioid and non-opioid targets. It is interesting to note that the dual inhibition of COX-2 and 5-LO appears favourable in terms of both efficacy and side effect profile.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria; Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, P. M. B. 21, Abuja, Nigeria
| | - Helmut Schröder
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
3
|
Pahuja M, Mehla J, Reeta KH, Tripathi M, Gupta YK. Effect of Anacyclus pyrethrum on pentylenetetrazole-induced kindling, spatial memory, oxidative stress and rho-kinase II expression in mice. Neurochem Res 2012; 38:547-56. [PMID: 23242789 DOI: 10.1007/s11064-012-0947-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 01/30/2023]
Abstract
Anacyclus pyrethrum (A. pyrethrum) has been reported to exhibit anticonvulsant activity. In the present study, the effect of hydro-alcoholic extract of A. pyrethrum root (HEAP) on pentylenetetrazole (PTZ) induced kindling, spatial memory, oxidative stress and rho kinase (ROCK II) was assessed. Male albino mice (25-30 g) were used in the study. PTZ (35 mg/kg, i.p. on alternate days) was injected to induce kindling and PTZ (70 mg/kg, i.p) challenge was given 7 days post-kindling. HEAP was administered orally daily in the doses of 100, 250 and 500 mg/kg along with PTZ injections during the kindling process and continued till PTZ challenge post kindling. Spatial memory was assessed using Morris water maze test. Oxidative stress parameters [malondialdehyde (MDA) and reduced glutathione (GSH)] and ROCK II expression were estimated in whole brain at the end of the study. Pre-treatment with HEAP (250 and 500 mg/kg) showed significant increase in the myoclonic jerk latency and delay in the development of kindling. A significant decrease in mortality was observed at higher doses of HEAP (250 and 500 mg/kg). Pre-treatment with HEAP significantly increased the number of platform crossings and decreased the escape latency, as opposed to the PTZ group, thus showing protection against memory deficit. HEAP pre-treatment also attenuated the oxidative stress induced by PTZ kindling. PTZ induced kindling increased the ROCK II expression whereas, HEAP pre-treatment attenuated the increase in ROCK II expression. To conclude, HEAP pre-treatment showed antiepileptic effect and also showed protection against cognitive impairment by decreasing oxidative stress and ROCK II expression in PTZ kindled mice.
Collapse
Affiliation(s)
- Monika Pahuja
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | | | | | | |
Collapse
|
4
|
Simjee SU, Shaheen F, Choudhary MI, Rahman AU, Jamall S, Shah SUA, Khan N, Kabir N, Ashraf N. Suppression of c-Fos protein and mRNA expression in pentylenetetrazole-induced kindled mouse brain by isoxylitones. J Mol Neurosci 2011; 47:559-70. [PMID: 22170037 DOI: 10.1007/s12031-011-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
An early immediate gene c-fos has been proposed as the gene responsible for turning on molecular events that might underlie the long-term neural changes occurring during kindling. We have evaluated the effects of novel anticonvulsant isomeric compounds isoxylitones [(E/Z)-2-propanone-1,3,5,5-trimethyl-2-cyclohexen-1-ylidine] on the c-Fos protein and mRNA expression in the brain samples of kindled mice and compared it with the normal and untreated kindled groups. Kindling was induced in male NMRI mice by repeated administration of sub-convulsive dose (50 mg/kg) of pentylenetetrazole (PTZ) until a seizure score of 4-5 was achieved. The c-Fos expression was quantified by combination of immunohistochemistry and RT-PCR protocols. Both the immunohistochemical and RT-PCR analysis revealed a marked increase in the expression of c-fos mRNA and protein in the brain regions tested in case of PTZ-kindled control group compared to normal control. In contrast, the isoxylitone (30 mg/kg)-treated group demonstrated significant reduction of c-Fos expression compared to PTZ-kindled control animals. However, low expression of c-fos mRNA was only detected in the thalamus of the isoxylitone-treated brain samples. Based on these observations, we suggest that isoxylitones may have the capacity to control the seizure pattern by mechanism such as the suppression of c-Fos protein and mRNA levels in different regions of the brain. Further investigations to explore the mechanism of action of these compounds are under process.
Collapse
Affiliation(s)
- Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Bidziński A, Kołosowska K, Płaźnik A. Time course of changes in the concentrations of amino acids in the brain structures of pentylenetetrazole-kindled rats. Brain Res 2010; 1342:150-9. [DOI: 10.1016/j.brainres.2010.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/16/2010] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
|
6
|
Inan S, Büyükafşar K. Antiepileptic effects of two Rho-kinase inhibitors, Y-27632 and fasudil, in mice. Br J Pharmacol 2008; 155:44-51. [PMID: 18536751 DOI: 10.1038/bjp.2008.225] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Rho/Rho-kinase signalling is involved in many cellular events, including some in the CNS. However, the role of this pathway in epilepsy has not yet been assessed. Therefore, we determined the effects of two Rho-kinase inhibitors, Y-27632 and fasudil, on seizures induced by pentylenetetrazole (PTZ) or maximal electroconvulsive shock (MES). EXPERIMENTAL APPROACH Effects of Y-27632 (5-10 mg kg(-1)) and fasudil (5-25 mg kg(-1)) on duration of myoclonic jerks, clonic and tonic convulsions, tonic hindlimb extensions and percentage of tonic convulsion index, as well as recovery latency for righting reflex were investigated in mice stimulated with PTZ (65 mg kg(-1)) or MES (50 Hz, 50 mA and 0.4 s). These inhibitors were also tested on a model of kindling induced by PTZ (35 mg kg(-1), for 11 days). Membrane and cytosolic levels of RhoA protein were measured in brain homogenates from kindled mice. KEY RESULTS Y-27632 and fasudil diminished onset of myoclonic jerks, clonic convulsions and tonic hindlimb extensions in mice given PTZ. These inhibitors suppressed the percentage of tonic convulsion index and recovery latency for righting reflex in the mice excited with MES. Western blotting demonstrated that Rho translocation to plasma membrane increased in the brain homogenates obtained from PTZ-kindled mice. However, the Rho-kinase inhibitors at the given doses did not change motor coordination of the mice. CONCLUSIONS AND IMPLICATIONS Rho/Rho-kinase signalling may play a role in epilepsy induced by PTZ and MES. Furthermore, Rho-kinase inhibitors could be novel important antiepileptic agents.
Collapse
Affiliation(s)
- Sy Inan
- Department of Pharmacology, Medical Faculty, Mersin University, Mersin, Turkey
| | | |
Collapse
|
7
|
Omrani A, Ghadami M, Fathi N, Tahmasian M, Fathollahi Y, Touhidi A. Naloxone improves impairment of spatial performance induced by pentylenetetrazol kindling in rats. Neuroscience 2007; 145:824-31. [DOI: 10.1016/j.neuroscience.2006.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 12/23/2006] [Indexed: 10/23/2022]
|
8
|
Rauca C, Wiswedel I, Zerbe R, Keilhoff G, Krug M. The role of superoxide dismutase and α-tocopherol in the development of seizures and kindling induced by pentylenetetrazol - influence of the radical scavenger α-phenyl-N-tert-butyl nitrone. Brain Res 2004; 1009:203-12. [PMID: 15120598 DOI: 10.1016/j.brainres.2004.01.082] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2004] [Indexed: 11/19/2022]
Abstract
Previous experiments have shown that the generation of free hydroxyl radicals in rat brain homogenates is increased following pentylenetetrazol (PTZ) kindling. The present study was performed in order to evaluate the involvement of endogeneous radical defence systems as the superoxide dismutase (SOD) and the level of alpha-tocopherol, an important lipid-soluble and membrane-bound antioxidant in brain homogenate of rats after acute seizure and kindling induced by PTZ. The activities of the total SOD were significantly reduced after acute seizure and tend towards an enhancement in kindled animals. Western blot analysis shows an upregulation of Mn-SOD in rat brain homogenates after kindling. The level of the chain-breaking antioxidant alpha-tocopherol was reduced in acutely convulsing rats and was not modified in kindled rats. Second, we studied the influence of exogeneously supplied radical scavenger alpha-phenyl-N-tert-butyl-nitrone (PBN) on seizure and kindling following PTZ treatment. After a single injection of PTZ at a dose evoking clonic-tonic seizures, PBN did not modify either the formation of free hydroxyl radicals measured by the levels of 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA or the susceptibility to PTZ. In the kindling group, subchronic treatment with PBN (over a period of 4 weeks) prevented the increase in the formation of free hydroxyl radicals, and the susceptibility to PTZ was transiently decreased during the development of kindling, but PBN did not influence the susceptibility to PTZ in fully kindled rats. Pretreatment with PBN increased the activities of total SOD and the protein content of Mn-SOD and decreased the level of alpha-tocopherol in comparison to saline controls. The results suggest that the formation of free hydroxyl radicals is not reflected by an enhanced susceptibility to PTZ classified according to the modified RACINE scale. Additionally, it may be assumed that the increased generation of hydroxyl radicals in kindled animals is not primary caused by an exhaustion of both the defence systems measured. Adaptive mechanisms, as the induction of Mn-SOD, may be taken into consideration to counteract oxidative stress-mediated free radical formation.
Collapse
Affiliation(s)
- Christine Rauca
- Department of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Leipziger Street 44, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Li ZP, Zhang XY, Lu X, Zhong MK, Ji YH. Dynamic release of amino acid transmitters induced by valproate in PTZ-kindled epileptic rat hippocampus. Neurochem Int 2004; 44:263-70. [PMID: 14602089 DOI: 10.1016/s0197-0186(03)00148-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present communication, the dynamic release of amino acid (AA) transmitters induced by valproate (VPA) in pentylenetetrazol (PTZ)-kindled freely moving rats hippocampus has been determined. The results showed that glutamate and aspartate release were significantly increased during the seizure/interical periods, and markedly decreased after the application of 200mg/kg valproate. In contrast, gamma-aminobutyric acid and taurine release were markedly decreased during interical period, and significantly increased during the seizure period. Glycine release was similar to the case of glutamate and aspartate release. The increase of either gamma-aminobutyric acid/taurine or glycine releases during the seizure period could be inhibited by the application of valproate likewise. The results indicate that: (a) the imbalance between excitatory and inhibitory neurotransmitters is really involved in epilepsy; (b) the modulation of valproate on the major amino acid neurotransmitters certainly plays one of important roles on antiepilepsy efficacy; (c) the pentylenetetrazol-kindled epileptogenesis model is a fit one for approaching the mechanisms of valproate modulating amino acid neurotransmitters.
Collapse
Affiliation(s)
- Zhi-Ping Li
- Hua-Shan Hospital, Fu-Dan University, 12 Wulumuqi Zhong Road, 200040, Shanghai, PR China
| | | | | | | | | |
Collapse
|
10
|
Rodi D, Mazzuferi M, Bregola G, Dumont Y, Fournier A, Quirion R, Simonato M. Changes in NPY-mediated modulation of hippocampal [3H]D-aspartate outflow in the kindling model of epilepsy. Synapse 2003; 49:116-24. [PMID: 12740867 DOI: 10.1002/syn.10216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The anticonvulsant effect of NPY may depend on Y(2) and/or Y(5) receptor-mediated inhibition of glutamate release in critical areas, such as the hippocampus. However, Y(2) and Y(5) receptor levels have been reported to increase and decrease, respectively, in the epileptic hippocampus, implicating that the profile of NPY effects may change accordingly. The aim of this study was to evaluate the differential effects of NPY on glutamate release in the normal and in the epileptic hippocampus. Thus, we pharmacologically characterized the effects of NPY on the release of [(3)H]D-aspartate, a valid marker of endogenous glutamate, from synaptosomes prepared from the whole hippocampus and from the three hippocampal subregions (dentate gyrus and CA1 and CA3 subfields) of control and kindled rats, killed 1 week after the last stimulus-evoked seizure. In the whole hippocampus, NPY does not significantly affect stimulus-evoked [(3)H]D-aspartate overflow. In synaptosomes prepared from control rats, NPY significantly inhibited 15 mM K(+)-evoked [(3)H]D-aspartate overflow only in the CA1 subfield (approx. -30%). Both Y(2) and Y(5) receptor antagonists (respectively, 1 microM BIIE0246 and 1 microM CGP71683A) prevented this effect, suggesting the involvement of both receptor types. In contrast, in synaptosomes prepared from kindled rats NPY significantly inhibited 15 mM K(+)-evoked [(3)H]D-aspartate overflow in the CA1 subfield and in the dentate gyrus (approx. -30%). Only the Y(2) (not the Y(5)) antagonist prevented these effects. These data indicate a critical role for the Y(2) receptor in the inhibitory control of glutamate release in the kindled hippocampus and, thus, suggest that the anticonvulsant effect of NPY in the epileptic brain is most likely Y(2), but not Y(5), receptor-mediated.
Collapse
Affiliation(s)
- Donata Rodi
- Department of Clinical and Experimental Medicine (Section of Pharmacology), University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Matsu-ura T, Konishi Y, Aoki T, Naranjo JR, Mikoshiba K, Tamura TA. Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:198-206. [PMID: 12531529 DOI: 10.1016/s0169-328x(02)00562-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.
Collapse
Affiliation(s)
- Toru Matsu-ura
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Konishi Y, Matsu-ura T, Mikoshiba K, Tamura T. Stimulation of gene expression of NeuroD-related factor in the mouse brain following pentylenetetrazol-induced seizures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:129-36. [PMID: 11750069 DOI: 10.1016/s0169-328x(01)00308-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Various genes for transcription factors are induced in neurons involving long-lasting synaptic plasticity that is accompanied by de novo protein synthesis. In this study, we analyzed the gene expression of NeuroD-related factor (NDRF/neuroD2), a neural basic helix-loop-helix transcription factor, in the mouse hippocampus following pentylenetetrazol (PTZ)-induced seizures. Both the levels of mRNA and protein of NDRF were elevated by PTZ injection. In contrast to c-fos, a representative neuronal activation-related immediate-early gene that was induced within 1 h after PTZ administration, induction of the NDRF gene expression reached a maximum level at 7-8 h after PTZ injection and was inhibited by pretreatment with cycloheximide and MK801. In situ hybridization of the mouse hippocampus revealed that NDRF mRNA was significantly induced in the dentate gyrus. During hippocampal development, NDRF transcripts were found to be highly expressed in a juvenile period, when extensive synaptogenesis occurs. Our present results demonstrate that NDRF is a new member of the family of activation-induced transcription factors, whose expression is probably regulated by immediate-early transcription factors. NDRF is thought to be involved in long-lasting neuronal activation.
Collapse
Affiliation(s)
- Y Konishi
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
13
|
Ohkawa N, Kokura K, Matsu-Ura T, Obinata T, Konishi Y, Tamura TA. Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V. J Neurochem 2001; 78:75-87. [PMID: 11432975 DOI: 10.1046/j.1471-4159.2001.00373.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activity-dependent synaptic plasticity has been thought to be a cellular basis of memory and learning. The late phase of long-term potentiation (L-LTP), distinct from the early phase, lasts for up to 6 h and requires de novo synthesis of mRNA and protein. Many LTP-related genes are enhanced in the hippocampus during pentyrenetetrazol (PTZ)- and kainate (KA)-mediated neural activation. In this study, mice were administered intraperitoneal injections of PTZ 10 times, once every 48 h, and showed an increase in seizure indexes. Genes related to plasticity were efficiently induced in the mouse hippocampus. We used a PCR-based cDNA subtraction method to isolate genes that are expressed in the hippocampus of repeatedly PTZ-treated mice. One of these genes, neural activity-related RING finger protein (NARF), encodes a new protein containing a RING finger, B-box zinc finger, coiled-coil (RBCC domain) and beta-propeller (NHL) domain, and is predominantly expressed in the brain, especially in the hippocampus. In addition, KA up-regulated the expression of NARF mRNA in the hippocampus. This increase correlated with the activity of the NMDA receptor. By analysis using GFP-fused NARF, the protein was found to localize in the cytoplasm. Enhanced green fluorescent protein-fused NARF was also localized in the neurites and growth cones in neuronal differentiated P19 cells. The C-terminal beta-propeller domain of NARF interacts with myosin V, which is one of the most abundant myosin isoforms in neurons. The NARF protein increases in hippocampal and cerebellar neurons after PTZ-induced seizure. These observations indicated that NARF expression is enhanced by seizure-related neural activities, and NARF may contribute to the alteration of neural cellular mechanisms along with myosin V.
Collapse
Affiliation(s)
- N Ohkawa
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Rüthrich H, Grecksch G, Krug M. Development of long-lasting potentiation effects in the dentate gyrus during pentylenetetrazol kindling. Int J Dev Neurosci 2001; 19:247-54. [PMID: 11337193 DOI: 10.1016/s0736-5748(01)00008-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the present study kindling was induced in rats by repeated intraperitoneal injection of pentylenetetrazol (PTZ) once every 48 h. The resulting seizure stages were registered after each PTZ application. The development of PTZ-induced kindling and the time course of possible potentiation effects in the dentate gyrus were examined. The efficacy of perforant pathway transmission to the granule cells was tested in every second kindling session by measuring the monosynaptic evoked field potentials recorded in the dentate gyrus following single test stimuli of the perforant pathway at different times after PTZ injection in freely moving animals. The data suggest that establishment of a PTZ kindling is associated with the development of long-lasting potentiation of the field potentials. After completion of kindling it was demonstrated that kindled rats also show a diminished learning performance. The relationship between the development of potentiation phenomena in hippocampal substructures and learning impairment is discussed.
Collapse
Affiliation(s)
- H Rüthrich
- Medical Faculty, Institute of Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany.
| | | | | |
Collapse
|
15
|
Silva Brum LF, Elisabetsky E. Antiepileptogenic properties of phenobarbital: behavior and neurochemical analysis. Pharmacol Biochem Behav 2000; 67:411-6. [PMID: 11164067 DOI: 10.1016/s0091-3057(00)00400-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic in vivo models of epilepsy provide a suitable strategy for quantifying epileptogenesis, as well as investigating neurochemical changes associated with neuronal plasticity that leads to seizuring conditions. The aim of this paper was to investigate antiepileptogenic properties of phenobarbital, focusing on the neurochemical changes associated with repeated seizures induced by low convulsive dose of pentylenetetrazol (PTZ) (60 mg/kg, sc) in mice. Phenobarbital (10 and 30 mg/kg, ip) significantly diminished the severity of seizures induced by PTZ. Repeated PTZ administration was associated with an increase in [3H]glutamate binding (B(max) 196.6+/-10.2 pmol/mgxcontrol B(max) 137.7+/-17.0 pmol/mg). Regarding NMDA receptors, repeated PTZ administration was likewise associated with an increase in [3H]MK-801 binding (0.55+/-0.02 pmol/mgxcontrol 0.32+/-0.01 pmol/mg). In addition, phenobarbital (10 mg/kg) prevented the increase in [3H]glutamate binding (B(max) 133.7+/-11.4 pmol/mg), as well as in [3H]MK-801 binding (phenobarbital 10 and 30 mg/kg, 0.33+/-0.01 and 0.34+/-0.01 pmol/mg, respectively). This study reveals an interesting capability of phenobarbital in interfering with the establishment of both the behavioral expression and associated neurochemical changes induced by the repeated administration of low convulsive dose of PTZ, which may be important in the context of preventing epileptogenesis.
Collapse
Affiliation(s)
- L F Silva Brum
- Laboratório de Etnofarmacologia, Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, RS 90050-170, Porto Alegre, Brazil
| | | |
Collapse
|
16
|
Rössler AS, Schröder H, Dodd RH, Chapouthier G, Grecksch G. Benzodiazepine receptor inverse agonist-induced kindling of rats alters learning and glutamate binding. Pharmacol Biochem Behav 2000; 67:169-75. [PMID: 11113497 DOI: 10.1016/s0091-3057(00)00312-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kindling, recognized as a model of epilepsy, can be obtained by applications of repeated nonconvulsive stimulations that finally lead to generalized seizures. Epileptics often show cognitive impairments. The present work analyzed the learning performance of male Wistar rats kindled with a convulsant inverse agonist of the GABA(A)-benzodiazepine receptor complex, methyl beta-carboline-3-carboxylate (beta-CCM). This compound is also known to have an action on learning processes. It was thus interesting to verify if beta-CCM kindling had the same impairing action on learning as other kindling agents, such as pentylenetetrazol (PTZ). A two-way active-avoidance shuttle-box learning task was chosen, because a deficit was found after PTZ kindling in this learning model. On the other hand, hippocampal glutamate binding, has previously been shown to be modified by both seizures and learning. Thus, the level of glutamate binding was also measured in the present study. Results showed that fully kindled rats had poorer learning performance after the third day of test than controls or not fully kindled animals. L-[3H] glutamate binding to hippocampal membrane fractions of the fully kindled animals was significantly higher when compared with controls, whereas L-[3H] glutamate binding of not fully kindled subjects did not differ from that of controls. Neuronal plasticity changes are a possible explanation for the correlation between kindling, learning deficits, and increased glutamate binding.
Collapse
Affiliation(s)
- A S Rössler
- Hôpital Pitié-Salpêtrière, UMR 7593, CNRS, 91 Boulevard Hôpital, 75634 Cedex 13, Paris, France.
| | | | | | | | | |
Collapse
|
17
|
Becker A, Grecksch G, Thiemann W, Höllt V. Pentylenetetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacol Biochem Behav 2000; 66:425-8. [PMID: 10880700 DOI: 10.1016/s0091-3057(99)00264-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kindling-induced activation of dopaminergic neurones in the nucleus accumbens in pentylenetetrazol (PTZ)-kindled rats was studied using microdialysis. Dopamine (DA) release after PTZ challenge was measured: (1) two weeks and (2) ten weeks after kindling completion and (3) two weeks after a kindling procedure with diazepam (DZP) treatment. In (1) a significant increase in DA concentration was found after PTZ challenge and this increase was still evident 10 weeks after kindling completion (2). Coadministration of DZP in the course of kindling development inhibited the increase in sensitivity of the accumbens dopaminergic system (3).
Collapse
Affiliation(s)
- A Becker
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | | | | |
Collapse
|
18
|
Atack JR, Cook SM, Hutson PH, File SE. Kindling induced by pentylenetetrazole in rats is not directly associated with changes in the expression of NMDA or benzodiazepine receptors. Pharmacol Biochem Behav 2000; 65:743-50. [PMID: 10764932 DOI: 10.1016/s0091-3057(99)00267-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Repeated injections of a subconvulsant dose of pentylenetetrazole (PTZ, 30 mg/kg IP three times weekly for 13 injections) in Wistar and hooded Lister rats resulted in kindled seizures, the extent of which varied between strains. Wistar rats achieved stage 4 of clonic-tonic seizures, whereas hooded Lister rats only reached stage 2 of convulsive waves axially through the body. Rats were killed 10 days after their final injection, and radioligand binding was used to measure the expression of NMDA receptors in cortex and hippocampus using [3H]MK-801 and [3H]L-689,560, the latter binding specifically to the NR1 subunit. [3H]Ro 15-1788 measured expression of GABA(A)-benzodiazepine binding sites containing alpha1, alpha2, alpha3, or alpha5 subunits. Specific analysis of GABA(A) receptors containing the alpha5 subunit, which are preferentially localized in the hippocampus, was assessed with [3H]L-655,708. In the cortex, there was no effect of strain or treatment on the K(D) or B(max) of any of the ligands. Similarly, there was no effect of strain or treatment on hippocampal [3H]L-689,560 or [3H]Ro 15-1788 binding. However, in the hippocampus there was a significant, albeit modest, effect of treatment on the B(max) of [3H]MK-801 binding and the B(max) and K(D) of [3H]L-655,708 binding, i.e., PTZ-treated rats had fewer [3H]MK-801 and [3H]L-655,708 binding sites (NMDA and alpha5-containing GABA(A) receptors, respectively), but, these reductions were significant only in the relatively seizure-insensitive hooded Lister strain. This suggests that the increased susceptibility to kindling in Wistar rats is not directly related to alterations in the expression of NMDA or GABA(A) receptors.
Collapse
Affiliation(s)
- J R Atack
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, UK
| | | | | | | |
Collapse
|
19
|
Ekonomou A, Angelatou F. Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced "kindling" model of epilepsy. Neurochem Res 1999; 24:1515-22. [PMID: 10591400 DOI: 10.1023/a:1021143813935] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
"Kindling" is a phenomenon of epileptogenesis, which has been widely used as an experimental model of temporal lobe epilepsy. At the present work we investigated the contribution of NMDA receptors in the Pentylenetetrazol-induced "kindling" model in the mouse brain, by using quantitative autoradiography and the radioactive ligands [3H]MK801 and [3H]L-glutamate (NMDA-sensitive component). One week after establishment of kindling, a small but significant increase in [3H]MK801 as well as NMDA-sensitive [3H]glutamate binding was seen, being restricted to the molecular layer (ML) of the dentate gyrus (DG) and the CA3 region of the hippocampus. These binding augmentations persisted one month after establishment of kindling. A significant increase of NMDA receptor binding was also observed in the cortex-somatosensory and temporal one week after acquisition of the kindled state. The upregulation of NMDA receptors seen in DG and CA3 region of the hippocampus could be associated with the kindling process of this model especially with its maintenance phase, since it persists at long term, is area-specific and consistent with electrophysiological data. The increase of NMDA receptors seen in the cortex of the kindled animals could underlie the hyperexcitability detected by electrophysiological studies in this area.
Collapse
Affiliation(s)
- A Ekonomou
- Department of Physiology, School of Medicine, University of Patras, Greece
| | | |
Collapse
|
20
|
Hassan H, Grecksch G, Rüthrich H, Krug M. Effects of nicardipine, an antagonist of L-type voltage-dependent calcium channels, on kindling development, kindling-induced learning deficits and hippocampal potentiation phenomena. Neuropharmacology 1999; 38:1841-50. [PMID: 10608279 DOI: 10.1016/s0028-3908(99)00067-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kindling is considered to be a useful experimental model for investigating drug effects on the convulsive component of epilepsy and related alterations at the behavioural level. It was demonstrated that pentylenetetrazol (PTZ)-kindled rats show diminished learning performance in shuttle-box training. We used this model to study the influence of nicardipine, an antagonist of L-type voltage-dependent calcium channels, on kindling seizure development as well as related learning impairments. Additionally, we tested the influence of nicardipine on kindling-induced potentiation, a special form of long-term enhancement of evoked potentials in the dentate gyrus after kindling. Therefore, monosynaptic evoked field potentials in the dentate area upon test stimuli to the perforant pathway were recorded in freely moving kindled and control rats at different times after injection of PTZ. The results indicate that the blockade of L-type voltage-dependent Ca2+-channels during the kindling procedure attenuates PTZ-kindling, antagonizes a kindling-induced learning deficit in an active avoidance test and decreases a novel form of kindling-related potentiation, the long-lasting amplitude enhancement of the monosynaptic evoked field potential in the dentate gyrus after injection of a small test dose of PTZ. This potentiation can also be prevented in kindled animals by nicardipine injection in an acute experiment.
Collapse
Affiliation(s)
- H Hassan
- Institute of Pharmacology and Toxicology, Medical Faculty of Otto-von-Guericke University Magdeburg, Germany.
| | | | | | | |
Collapse
|
21
|
Davidson M, Chen W, Wilce PA. Behavioral analysis of PTZ-kindled rats after acute and chronic ethanol treatments. Pharmacol Biochem Behav 1999; 64:7-13. [PMID: 10494991 DOI: 10.1016/s0091-3057(99)00093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was designed to examine the response of PTZ-kindled and saline-injected animals to both acute and chronic ethanol treatment. Acute injection of ethanol (3.0 g/kg; IP) resulted in a rapid onset of loss of righting reflex (LORR) in both PTZ-kindled and saline-injected animals. However, the PTZ-kindled animals recovered from LORR significantly more quickly than control animals. Using a tilt-plane test as a measure of motor incoordination, the PTZ-kindled animals had significantly less motor incoordination compared to controls. Blood alcohol levels (BAL) were not significantly different between the groups. We also compared the degree of tolerance and dependence in chronic ethanol-treated, PTZ-kindled, and control animals. PTZ-kindled, saline-injected and naive control animals were chronically treated with ethanol vapor. The PTZ-kindled group tolerated high vapor concentrations (in terms of food consumed/rat) and, at the end of the treatment, displayed intoxication characteristics different from those of the control groups despite having similar blood alcohol levels. The PTZ-kindled group also displayed withdrawal behavior that was similar to a group of ethanol-treated animals that had experienced a prior cycle of dependency and withdrawal. These data show many intriguing similarities between animals that are PTZ-kindled and chronically treated with ethanol and suggest the use of PTZ-kindled animals as a model for alcohol withdrawal kindling.
Collapse
Affiliation(s)
- M Davidson
- Department of Biochemistry, The University of Queensland, Australia
| | | | | |
Collapse
|
22
|
Bregola G, Varani K, Gessi S, Beani L, Bianchi C, Borea PA, Regoli D, Simonato M. Changes in hippocampal and cortical B1 bradykinin receptor biological activity in two experimental models of epilepsy. Neuroscience 1999; 92:1043-9. [PMID: 10426544 DOI: 10.1016/s0306-4522(99)00075-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An increased response to the activation of receptors mediating excitatory effects may be involved in some forms of epilepsy. In this study, it has been tested whether B1 bradykinin receptors (which mediate excitatory effects in the peripheral nervous system and have little constitutional expression in the central nervous system) may be proposed in this role. Two experimental models of epilepsy (kindling and kainate) have been employed, and glutamate outflow experiments have been performed in hippocampal and cortical slices taken from control, kindled and kainate-treated rats. The endogenous B1 receptor agonist Lys-des-Arg9-bradykinin (10(-7) M) did not affect electrically-evoked glutamate overflow in control animals, but concentration-dependently increased it in kindled rats (maximal effect +40 to + 50%) and, to a lesser extent (+20%), in kainate-treated rats. These effects were fully prevented by the selective B1 receptor antagonist R-715 (10(-6) M), but not by the selective B2 receptor antagonist Hoe 140 (10(-6) M). The observed changes in B1 bradykinin receptor biological activity may play a role in epileptic hyperexcitability.
Collapse
Affiliation(s)
- G Bregola
- Department of Clinical and Experimental Medicine, University of Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Reiser M, Keilhoff G, Wolf G. Effect of arginine on basal and high potassium-induced efflux of [3H]D-aspartate from rat striatal slices. Neuroscience 1999; 88:1177-86. [PMID: 10336128 DOI: 10.1016/s0306-4522(98)00307-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are conflicting reports in the literature regarding the effects of nitric oxide as well as the involvement of the cyclic GMP pathway on the transmitter release. To study the influence of the availability of the nitric oxide precursor arginine on the glutamate transmission process, rat striatal slices preloaded with the tritiated glutamate analogue D-aspartate were used. L-Arginine stimulated in a concentration-dependent way (0.01-10.0 mM) the high potassium-induced efflux of [3H]D-aspartate. The basal release was increased only by 10 mM L-arginine. Neither the basal nor the depolarization-induced efflux of [3H]D-aspartate was affected by D-arginine. The L-arginine effect was abolished by the nitric oxide synthase inhibitor L-arginine methyl ester and was not modified by cyclic GMP. Only at high concentrations of L-arginine (10 mM) could an elevation of cyclic GMP level be demonstrated. The results are discussed in terms of direct presynaptic action of nitric oxide on [3H]D-aspartate efflux and a possible modulation of glutamate release by the availability of arginine.
Collapse
Affiliation(s)
- M Reiser
- Institute of Medical Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
24
|
Schröeder H, Becker A, Schröeder U, Hoellt V. 3H-L-glutamate binding and 3H-D-aspartate release from hippocampal tissue during the development of pentylenetetrazole kindling in rats. Pharmacol Biochem Behav 1999; 62:349-52. [PMID: 9972703 DOI: 10.1016/s0091-3057(98)00170-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previous studies have proposed that there is an increase in the density of glutamate binding sites after pentylenetetrazol (PTZ) kindling, whereas the glutamate release is not altered. Little is known about the time course of these changes. Therefore, we studied 3H-L-glutamate binding to hippocampal membranes and K+-stimulated 3H-D-aspartate release from hippocampal slices of rats given PTZ 3, 7, and 13 times up to a fully kindling state. After three PTZ injections, amino acid release from hippocampal tissue slices was significantly enhanced in comparison to controls, whereas 3H-L-glutamate binding was not altered. After seven injections of PTZ, specific glutamate binding to hippocampal membranes tended to increase, and K+-stimulated 3H-D-aspartate release from rat hippocampal slices was normalized. The kindled state characterized by generalized clonic-tonic seizures was reached after 13 PTZ injections, and it was accompanied by an enhancement in the density of glutamate binding sites, whereas the chemically evoked amino acid release remained unchanged. It can be concluded that the amino acid release is increased in the early phase of PTZ kindling development, whereas after completion of kindling, the density of excitatory amino acid binding sites is enhanced.
Collapse
Affiliation(s)
- H Schröeder
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | |
Collapse
|
25
|
Schroeder H, Becker A, Grecksch G, Schroeder U, Hoellt V. The effect of pentylenetetrazol kindling on synaptic mechanisms of interacting glutamatergic and opioid system in the hippocampus of rats. Brain Res 1998; 811:40-6. [PMID: 9804884 DOI: 10.1016/s0006-8993(98)00929-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endogenous opioids modulate processes of central excitability such as long-term potentiation and electrical kindling. Little is known about the neurochemical alterations in the interaction of the glutamatergic and opioid system in the development of pentylenetetrazol (PTZ) kindling in rats. Therefore, in the present study we investigated glutamate, DAMGO and naltrindole receptor binding, receptor protein expression by Western blot and ex vivo glutamate transmitter release in PTZ kindled rats. The specific 3H-DAMGO and -naltrindole binding to hippocampal membranes displayed no significant changes in kindled rats compared to controls. In contrast, the 3H-l-glutamate binding was significantly enhanced after completion of PTZ kindling. The expression of receptor protein for glutamate as well as the naloxone- and naltrindole-induced 3H-d-aspartate release from hippocampal slices did not alter in any case as a consequence of PTZ kindling. The PTZ induced enhancement of the glutamate binding sites in the hippocampus was downregulated to control level by natrindole treatment of rats prior to each PTZ application. Furthermore, naltrindole pretreatment of rats significantly inhibited the development of seizure susceptibility. In contrast, naloxone was not able to alter the seizure activity induced by PTZ as well as the transmitter receptor binding. The results are discussed in the light of a modulating role of delta-opioid receptors in PTZ kindling.
Collapse
Affiliation(s)
- H Schroeder
- Institute of Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University, D-39120-, Magdeburg, Leipziger Str. 44, Germany
| | | | | | | | | |
Collapse
|
26
|
Getova D, Froestl W, Bowery NG. Effects of GABAB receptor antagonism on the development of pentylenetetrazol-induced kindling in mice. Brain Res 1998; 809:182-8. [PMID: 9853109 DOI: 10.1016/s0006-8993(98)00864-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pentylenetetrazol (PTZ) administered chronically in rodents induces kindling which is considered to be a model of chronic epilepsy mediated through a specific interaction with the GABA-gated chloride ionophore. PTZ kindling also impairs shuttle-box learning indicating a possible modulation of memory storage [A. Becker, G. Grecksch, H. Mathies. The influence of diazepam on learning processes impaired by pentylenetetrazol kindling. Naunyn-Schmiedeberg's Arch. Pharmacol. 349 (1994) 429-496]. Since GABAB receptor antagonism has been shown to improve cognitive performance in rodents and primates we have examined the effects of 3 antagonists; CGP 36742 (3-amino-propyl-n-butyl-phosphinic acid), CGP 56433 ([3-¿1-(S)-[¿3-(cyclohexylmethyl) hydroxyphosphinyl]-2-(S)-hydroxypropyl]-amino]ethyl]benzoic acid) and CGP 61334 ([3-¿[3[(diethoxymethyl)hydroxyphosphinyl]-propyl-amino¿meth yl]-benzoic acid) on the induction of PTZ kindling in mice at 48 h intervals for 8 weeks. Subsequently the mice were tested in an active avoidance paradigm. At the end of the experiment GABAB receptor autoradiography was performed on brain sections from these animals. Seizure intensity increased progressively in control mice reaching by 8 weeks a mean score which corresponded to clonic seizures. The GABAB antagonists suppressed kindling during the first 4 weeks and after that restored the seizure intensity to the level of control animals. The level of kindling was proportional to the avoidance score. The density of GABAB receptor binding in brain sections from PTZ kindled mice was significantly greater than in controls. This was not altered by pretreatment with the GABAB antagonists except in the cerebellum.
Collapse
Affiliation(s)
- D Getova
- Department of Pharmacology and Toxicology, Higher Medical School Plovdiv, Bulgaria
| | | | | |
Collapse
|
27
|
Braun H, Schulz S, Becker A, Schröder H, Höllt V. Protective effects of cortistatin (CST-14) against kainate-induced neurotoxicity in rat brain. Brain Res 1998; 803:54-60. [PMID: 9729275 DOI: 10.1016/s0006-8993(98)00609-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cortistatin (CST-14) is a recently discovered endogenous peptide which shares similarity to somatostatin and binds to somatostatin receptors. In this study, we show that CST-14 exhibits anticonvulsive and neuroprotective effects in rats. Injection of rats with kainic acid (KA; 10 mg/kg; i.p.) generated a strong seizure activity which was attenuated by the i.c.v. application of 1 and 10 nmol CST-14 when given 10 min before KA. Moreover, 3 days after KA injection, a marked loss of neurons in cortex and hippocampus of rats was observed which was inhibited by pretreatment with CST-14. An immunohistochemical analysis using specific antibodies revealed that KA reduced immunoactive sst2A and sst3 somatostatin receptors in the hippocampus-an effect which was largely prevented by pretreatment with CST-14. Superfusion of hippocampal slices with CST-14 also reduced the stimulated release of 3H-d-aspartate. We conclude that CST-14 exerts neuroprotective effects by binding to somatostatin receptors which in turn leads to a reduced release of excitotoxic neurotransmitters.
Collapse
Affiliation(s)
- H Braun
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Leipziger Str.44, D-39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Krug M, Koch M, Grecksch G, Schulzeck K. Pentylenetetrazol kindling changes the ability to induce potentiation phenomena in the hippocampal CA1 region. Physiol Behav 1997; 62:721-7. [PMID: 9284490 DOI: 10.1016/s0031-9384(97)00167-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study describes changes of response enhancement of hippocampal field potentials in slices of kindled rats using different methods to induce long-lasting potentiation. Eight-week-old male Wistar rats were subjected to pentylenetetrazol (PTZ) kindling induced by intraperitoneal injection of 45 mg/kg once every 48 h until the occurrence of seizure stages 4-5. Eight to 12 days after the last kindling session, transverse hippocampus slices were prepared and maintained in an artificial medium. Evoked-field potentials were recorded in the CA1 region upon stimulation of the Schaffer collaterals. Potentiation was induced: 1. By moderate tetanic stimulation of the Schaffer collaterals, 2. by changing the perfusion medium to 0-magnesium for 30 min, and 3. by changing the medium to 4 mM Ca2+ for 7 min. In slices from kindled rats, long-term potentiation (LTP) after tetanic stimulation and increase of the evoked potential by 0-magnesium were significantly enhanced in comparison to slices from sham-kindled rats. However, Ca(2+)-induced LTP could not be induced in slices from kindled rats. The results support the assumption that PTZ kindling also induces lasting changes in the responsiveness of hippocampal structures, expressed as an enhanced ability to induce potentiation. An alteration of N-methyl-D-aspartate (NMDA) receptor-coupled processes can be assumed. The inability to induce Ca(2+)-induced LTP points to more complex effects of PTZ, perhaps also on nonNMDA coupled ionic channels.
Collapse
Affiliation(s)
- M Krug
- Otto-von-Guericke University Magdeburg, Medical Faculty, Institute of Pharmacology and Toxicology, Germany
| | | | | | | |
Collapse
|
29
|
Becker A, Krug M, Schröder H. Strain differences in pentylenetetrazol-kindling development and subsequent potentiation effects. Brain Res 1997; 763:87-92. [PMID: 9272832 DOI: 10.1016/s0006-8993(97)00409-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rats from two different strains, i.e. Wistar rats and Lister hooded rats, were investigated for their ability to acquire the kindling syndrome. After having received 13 kindling stimulations (injection of pentylenetetrazol), the animals were tested for subsequent alterations in induction and maintenance of hippocampal long-term potentiation (LTP) and, moreover in glutamate binding. It was found that rats from both strains did not differ in the response to the initial injection of pentylenetetrazol (PTZ) and the amplitude of the population spike. This suggests that some aspects of basic central excitability are equivalent. Wistar rats acquired the kindling syndrome rapidly whereas seizure outcome was poor in Lister rats. As regards hippocampal LTP, the population spike was only dramatically increased in Wistar rats after kindling completion. Glutamate binding was not altered in animals from the Lister strain. The results suggest that changes in glutamate binding and the increase in the population spike are characteristic consequences of kindling.
Collapse
Affiliation(s)
- A Becker
- Otto-von-Guericke University, Faculty of Medicine, Institute of Pharmacology and Toxicology, Magdeburg, Germany.
| | | | | |
Collapse
|
30
|
Folbergrová J, Lisý V, Haugvicová R, Stastný F. Specific [3H]glutamate binding in the cerebral cortex and hippocampus of rats during development: effect of homocysteine-induced seizures. Neurochem Res 1997; 22:637-46. [PMID: 9131644 DOI: 10.1023/a:1022434406400] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Specific [3H]glutamate binding to synaptic membranes from the cerebral cortex and hippocampus of 7-, 12- and 18-day-old rats was examined, both in control animals and during seizures induced by homocysteine. In the cerebral cortex a transient peak of glutamate binding was observed in 7-day-old group, whereas in the hippocampus it occurred in 12-day-old animals. Total specific [3H]glutamate binding was not influenced by preceding seizure activity in either of the age groups and both the studied regions. NMDA- and QA-sensitive glutamate bindings represent the highest portion of the total binding. Moreover, NMDA-sensitive binding in the cerebral cortex of 7-day-old rats is significantly higher as compared to the two more mature groups. The proportion of individual receptor subtypes on total binding in each age group was not influenced by preceding seizure activity. However, NMDA-sensitive binding in the hippocampus of 12-day-old rats, sacrificed during homocysteine-induced seizures, was significantly increased as compared to corresponding controls. In contrast to the effect of NMDA, AMPA, kainate and quisqualate which displaced to a different extent [3H]glutamate binding, homocysteine had no effect when added to membrane preparations. Similarly, [3H]CPP and [3H]AMPA bindings were not affected in the presence of homocysteine. It thus seems unlikely that homocysteine is an effective agonist for conventional ionotropic glutamate receptors. Its potential activity at some of the modulatory sites at the NMDA receptor channel complex or at metabotropic receptors has to be clarified in further experiments.
Collapse
Affiliation(s)
- J Folbergrová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
31
|
Ruethrich H, Grecksch G, Becker A, Krug M. Potentiation effects in the dentate gyrus of pentylenetetrazol-kindled rats. Physiol Behav 1996; 60:455-62. [PMID: 8840906 DOI: 10.1016/s0031-9384(96)80019-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The study examines changes in the function of perforant pathway dentate granule cell synapses after pentylenetetrazol (PTZ) kindling. Field potentials evoked in the dentate area by test stimuli to the perforant pathway were recorded in freely moving rats at different times after injection of PTZ. In fully kindled animals, but not in sham-kindled controls, subconvulsive test doses of PTZ induced long-lasting potentiation of the population spike. Also, potentiation was not induced in naive controls injected with equieffective doses of the convulsant. The slope function of the field EPSP was depressed 90-120 min after PTZ administration, in both kindled and control animals, indicating that this was an effect of acute-injected PTZ. Later on, only in kindled animals that showed seizure stages 4 or 5 did it increase in parallel with the population spike potentiation. Finally, when compared to controls the kindled animals showed a greater pop spike potentiation induced by moderate tetanization of the perforant pathway. The model offers the possibility of differentiating between acute effects of the convulsant drug and kindling-related changes in neuronal plasticity.
Collapse
Affiliation(s)
- H Ruethrich
- Otto-von-Guericke-University Magdeburg, Medical Faculty, Institute of Pharmacology and Toxicology, Germany
| | | | | | | |
Collapse
|
32
|
Reilly MA, Lajtha A. Glutamatergic receptor kinetics are not altered by perinatal exposure to aspartame. Neurochem Int 1995; 26:217-22. [PMID: 7787768 DOI: 10.1016/0197-0186(94)00132-e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Observation of reduced levels of glutamic acid and aspartic acid in brain of weanling rats exposed perinatally to aspartame prompted a study of the effect of this food additive on glutamatergic receptor kinetics. Aspartame 500 mg/kg/day in drinking water was administered to Sprague-Dawley rats throughout gestation and lactation. Brain was excised from weanlings 20-22 days old, and kinetics of the N-methyl-D-aspartate receptor and total glutamatergic binding in cerebral cortex and hippocampus were found to be unaffected by perinatal exposure to high levels of aspartame. Glutamic acid was decreased in both brain regions studied, and aspartic acid was decreased in hippocampus following perinatal aspartame exposure. These changes were reversible when aspartame administration was terminated. It is concluded that perinatal exposure to high doses of aspartame does not alter glutamatergic neurotransmission in cerebral cortex or hippocampus from weanling rats.
Collapse
Affiliation(s)
- M A Reilly
- N.S. Kline Institute for Psychiatric Research, Center for Neurochemistry, Orangeburg, NY 10962, USA
| | | |
Collapse
|