1
|
Regulators of mitochondrial Ca2+ homeostasis in cerebral ischemia. Cell Tissue Res 2014; 357:395-405. [DOI: 10.1007/s00441-014-1807-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023]
|
2
|
Decrock E, De Bock M, Wang N, Gadicherla AK, Bol M, Delvaeye T, Vandenabeele P, Vinken M, Bultynck G, Krysko DV, Leybaert L. IP3, a small molecule with a powerful message. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1772-86. [PMID: 23291251 DOI: 10.1016/j.bbamcr.2012.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022]
Abstract
Research conducted over the past two decades has provided convincing evidence that cell death, and more specifically apoptosis, can exceed single cell boundaries and can be strongly influenced by intercellular communication networks. We recently reported that gap junctions (i.e. channels directly connecting the cytoplasm of neighboring cells) composed of connexin43 or connexin26 provide a direct pathway to promote and expand cell death, and that inositol 1,4,5-trisphosphate (IP3) diffusion via these channels is crucial to provoke apoptosis in adjacent healthy cells. However, IP3 itself is not sufficient to induce cell death and additional factors appear to be necessary to create conditions in which IP3 will exert proapoptotic effects. Although IP3-evoked Ca(2+) signaling is known to be required for normal cell survival, it is also actively involved in apoptosis induction and progression. As such, it is evident that an accurate fine-tuning of this signaling mechanism is crucial for normal cell physiology, while a malfunction can lead to cell death. Here, we review the role of IP3 as an intracellular and intercellular cell death messenger, focusing on the endoplasmic reticulum-mitochondrial synapse, followed by a discussion of plausible elements that can convert IP3 from a physiological molecule to a killer substance. Finally, we highlight several pathological conditions in which anomalous intercellular IP3/Ca(2+) signaling might play a role. This article is part of a Special Issue entitled:12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Elke Decrock
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 2011; 3:a004317. [PMID: 21441595 PMCID: PMC3098671 DOI: 10.1101/cshperspect.a004317] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.
Collapse
Affiliation(s)
- Djalila Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven Campus Gasthuisberg O&N I, Belgium
| | | | | | | | | |
Collapse
|
4
|
Joseph SK. Role of thiols in the structure and function of inositol trisphosphate receptors. CURRENT TOPICS IN MEMBRANES 2010; 66:299-322. [PMID: 22353485 DOI: 10.1016/s1063-5823(10)66013-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Huang CJ, Gurlo T, Haataja L, Costes S, Daval M, Ryazantsev S, Wu X, Butler AE, Butler PC. Calcium-activated calpain-2 is a mediator of beta cell dysfunction and apoptosis in type 2 diabetes. J Biol Chem 2009; 285:339-48. [PMID: 19861418 DOI: 10.1074/jbc.m109.024190] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The islet in type 2 diabetes (T2DM) and the brain in neurodegenerative diseases share progressive cell dysfunction, increased apoptosis, and accumulation of locally expressed amyloidogenic proteins (islet amyloid polypeptide (IAPP) in T2DM). Excessive activation of the Ca(2+)-sensitive protease calpain-2 has been implicated as a mediator of oligomer-induced cell death and dysfunction in neurodegenerative diseases. To establish if human IAPP toxicity is mediated by a comparable mechanism, we overexpressed human IAPP in rat insulinoma cells and freshly isolated human islets. Pancreas was also obtained at autopsy from humans with T2DM and nondiabetic controls. We report that overexpression of human IAPP leads to the formation of toxic oligomers and increases beta cell apoptosis mediated by increased cytosolic Ca(2+) and hyperactivation of calpain-2. Cleavage of alpha-spectrin, a marker of calpain hyperactivation, is increased in beta cells in T2DM. We conclude that overactivation of Ca(2+)-calpain pathways contributes to beta cell dysfunction and apoptosis in T2DM.
Collapse
Affiliation(s)
- Chang-jiang Huang
- Larry Hillblom Islet Research Center, David Geffen School of Medicine, California Nano Systems Institute, UCLA, Los Angeles, California 90024-2852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The calpain family of proteases is causally linked to postischemic neurodegeneration. However, the precise mechanisms by which calpains contribute to postischemic neuronal death have not been fully elucidated. This review outlines the key features of the calpain system, and the evidence for its causal role in postischemic neuronal pathology. Furthermore, the consequences of specific calpain substrate cleavage at various subcellular locations are explored. Calpain substrates within synapses, plasma membrane, endoplasmic reticulum, lysosomes, mitochondria, and the nucleus, as well as the overall effect of postischemic calpain activity on calcium regulation and cell death signaling are considered. Finally, potential pathways for calpain-mediated neurodegeneration are outlined in an effort to guide future studies aimed at understanding the downstream pathology of postischemic calpain activity and identifying optimal therapeutic strategies.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | |
Collapse
|
7
|
Dahl C, Haug LS, Spilsberg B, Johansen J, Ostvold AC, Diemer NH. Reduced [3H]IP3 binding but unchanged IP3 receptor levels in the rat hippocampus CA1 region following transient global ischemia and tolerance induction. Neurochem Int 2000; 36:379-88. [PMID: 10733005 DOI: 10.1016/s0197-0186(99)00129-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Changes in inositol (1,4,5)-trisphosphate (IP3) binding properties and the protein level of the IP3 receptor have been reported in different pathological conditions in the brain, e.g. cerebral ischemia, Alzheimer's disease, and Huntingtons disease. We used the 4-vessel occlusion model in rat brain to investigate the effect of transient ischemia insults on the IP3 receptor mRNA level, the IP3 receptor protein level and [3H]IP3 binding. Recirculation periods were limited (1-72 h) to avoid the development of delayed neuronal death. We found that the IP3 receptor mRNA levels were decreased after damage-inducing ischemia (9 min) in the hippocampus CA1 and CA3 regions. The mRNA levels were unaltered after tolerance-inducing ischemia (3 min). However, [3H]IP3 binding was significantly reduced after both damage- and tolerance-inducing ischemia in the hippocampus CA1 region. Furthermore, all investigated brain areas showed a decreased [3H]IP3 binding when tolerance-inducing ischemia was followed by a second ischemic insult (3 + 8.5 min ischemia). The IP3 receptor protein levels remained constant in all investigated brain areas. These results indicate that a reduced [3H]IP3 binding capability in the particularly vulnerable areas occurs as an early consequence of cerebral ischemia, before IP3 receptor protein levels are reduced in these areas. Structural or conformational changes altering IP3 binding may be of necessity on the pathway leading to down-regulation of IP3 receptor protein levels, as observed by others.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Blotting, Western
- Calcium Channels/metabolism
- Hippocampus/metabolism
- Hippocampus/pathology
- Immunohistochemistry
- In Situ Hybridization
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Ischemic Attack, Transient/metabolism
- Ischemic Attack, Transient/pathology
- Male
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/metabolism
- Tissue Distribution
- Tritium
Collapse
Affiliation(s)
- C Dahl
- Laboratory of Neuropathology, Institute of Molecular Pathology, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
8
|
Racay P, Kaplán P, Lehotský J. Ischemia-induced inhibition of active calcium transport into gerbil brain microsomes: effect of anesthetics and models of ischemia. Neurochem Res 2000; 25:285-92. [PMID: 10786714 DOI: 10.1023/a:1007587907047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The excessive increase in intracellular Ca2+ concentration is associated with events linking cerebral blood flow reduction to neuronal cell damage. We have investigated the possible effect of ischemia and ischemia-reperfusion injury on endoplasmic reticulum (ER) Ca2+ transport. Two different models of ischemia as well as two different anesthetics were used. 5 min and 15 min of global forebrain ischemia caused significant depression of the rate of microsomal Ca2+ accumulation in pentobarbital anesthetised gerbils. The Ca2+ uptake activity recovered partially after 1 hour of reperfusion. Unlike pentobarbital anesthetised gerbils, no significant changes were detected in the active microsomal Ca(2+)-transport after 10 min of global forebrain ischemia in gerbil forebrain and hippocampus under halothane anesthesia. In addition, using the model of decapitation ischemia, we observed significant changes of the Ca2+ uptake in both halothane and pentobarbital anesthetised gerbils. These findings indicate that ischemic insult alters the brain microsomal Ca2+ transport which is not due to inhibition of the Ca(2+)-ATPase activity. However, the effect of ischemia on this transport system is dependent on the model of ischemia and on the type of anesthetics.
Collapse
Affiliation(s)
- P Racay
- Comenius University, Jessenius Medical Faculty, Department of Medical Biochemistry, MARTIN, Slovak Republic
| | | | | |
Collapse
|
9
|
Nagata E, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y, Futatsugi A, Mikoshiba K. Selective inhibition of inositol 1,4,5-triphosphate-induced Ca2+ release in the CA1 region of the hippocampus in the ischemic gerbil. Neuroscience 1999; 93:995-1001. [PMID: 10473264 DOI: 10.1016/s0306-4522(99)00198-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the effect of ischemia on inositol 1,4,5-trisphosphate receptor-induced Ca2+ release by functional and morphological approaches, using the gerbil model after 6-h unilateral occlusion of the common carotid artery. Autoradiographic study revealed that the basal uptake of 45Ca2+ into the endoplasmic reticulum and caffeine-induced 45Ca2+ release from the endoplasmic reticulum were normal in the presence of ATP in each ischemic brain region, whereas inositol 1,4,5-trisphosphate receptor-induced 45Ca2+ release from the endoplasmic reticulum was inhibited only in the CA1 region of the hippocampus on the ischemic side. In moderately ischemic gerbils, electron microscopic study demonstrated aggregation of swollen endoplasmic reticulum in the CA1 region of the hippocampus, so that abundant endoplasmic reticulum assembled in close contact to form endoplasmic reticulum cisternal stacks. In severely ischemic gerbils, immunohistochemical analysis of the hippocampus showed loss of type 1 inositol 1,4,5-trisphosphate receptor protein with preservation of immunoreactivity for type 2 and 3 inositol 1,4,5-trisphosphate receptor proteins, which was confirmed by western blot analysis. Such selective inhibition of inositol 1,4,5-trisphosphate receptor-induced Ca2+ release and the loss of type 1 inositol 1,4,5-trisphosphate receptor in the CA1 region of the hippocampus in cerebral ischemia may be associated with its region-specific vulnerability to ischemia.
Collapse
Affiliation(s)
- E Nagata
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Mak DO, McBride S, Foskett JK. ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca(2+) activation. J Biol Chem 1999; 274:22231-7. [PMID: 10428789 DOI: 10.1074/jbc.274.32.22231] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.
Collapse
Affiliation(s)
- D O Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | | | |
Collapse
|
11
|
Nozaki H, Tanaka K, Gomi S, Mihara B, Nogawa S, Nagata E, Kondo T, Fukuuchi Y. Role of the ryanodine receptor in ischemic brain damage--localized reduction of ryanodine receptor binding during ischemia in hippocampus CA1. Cell Mol Neurobiol 1999; 19:119-31. [PMID: 10079971 DOI: 10.1023/a:1006924826572] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The ryanodine receptor has recently been shown to play a pivotal role in the regulation of intracellular Ca2+ concentration via Ca(2+)-induced Ca2+ release (CICR). Effects of ischemia on CICR in the brain tissue, however, remain largely unknown since only a few reports have been published on this subject. In this paper we report on work in this area by our group and review related progress in this field. 2. We examined alterations of ryanodine receptor binding and local cerebral blood flow (LCBF) at 15 min, 30 min, and 2 hr after occlusion of the right common carotid artery in the gerbil brain. A quantitative autoradiographic method permitted simultaneous measurement of these parameters in the same brain. The LCBF was significantly reduced in most of the cerebral regions on the occluded side during each time period of ischemia. In contrast, only in the hippocampus CA1 on the occluded side was a significant reduction in ryanodine binding found at 15 min, 30 min and 2 hr after the occlusion. 3. These findings suggest that suppression of ryanodine binding in the hippocampus CA1 may be attributable to a regionally specific perturbation of CICR and that this perturbation may be closely associated with the pathophysiological mechanism that leads to be selective ischemic vulnerability of this region. 4. Other recent studies have also reported an important role for ryanodine receptors in neuronal injury such as the delayed neuronal death in the hippocampus CA1. These data suggest that derangement of CICR is likely to be involved in acute neuronal necrosis as well as in delayed neuronal death in ischemia. 5. Further studies on clarifying the role of CICR in ischemic brain damage are needed in order to develop new therapeutic strategies for stroke patients.
Collapse
Affiliation(s)
- H Nozaki
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Uhm CS, Suh YS, Park JB, Sohn MB, Rhyu IJ, Kim H. MK-801, a non-competitive NMDA receptor antagonist, prevents postischemic decrease of inositol 1,4,5-trisphosphate receptor mRNA expression in mongolian gerbil brain. Neurosci Lett 1998; 255:111-4. [PMID: 9835227 DOI: 10.1016/s0304-3940(98)00727-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Changes of inositol 1,4,5-trisphosphate receptor (IP3R) mRNA expression after transient brain ischemia and the effect of MK-801, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, on the IP3R mRNA expression was studied in mongolian gerbil brain by in situ hybridization. Transient ischemia was induced by ligating left common carotid artery for 10 min, and the animals were allowed recovery from 15 min to 24 h. MK-801 was introduced intraperitoneally 30 min before ischemia. IP3R mRNA expression was decreased in dentate gyrus and hippocampus from 90 min until 24 h after ischemia. MK-801 pretreatment prevented the change of IP3R mRNA expression after ischemia. These results suggest that IP3R mRNA expression in ischemia may be related with NMDA receptor.
Collapse
Affiliation(s)
- C S Uhm
- Institute of Human Genetics and Department of Anatomy, Korea University College of Medicine, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Xia J, Simonyi A, Sun GY. Changes in IP3R1 and SERCA2b mRNA levels in the gerbil brain after chronic ethanol administration and transient cerebral ischemia-reperfusion. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 56:22-8. [PMID: 9602035 DOI: 10.1016/s0169-328x(98)00023-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite epidemiological studies indicating a positive relationship between alcohol and stroke, little is known with regard to effect of chronic alcohol on neuronal injury after stroke. In this study, we examined the effect of chronic ethanol on mRNA levels of sarcoplasmic or endoplasmic Ca2+-ATPase (SERCA2b) and inositol 1,4, 5-triphosphate receptor (IP3R1) in gerbils subjected to global cerebral ischemia induced by ligation of both common carotid arteries. Gerbils were given daily by intragastric intubation either a liquid diet containing ethanol (4 g/kg) or the same diet with an isocaloric amount of sucrose for 35 days. They were subsequently subjected to a 5 min ischemic insult followed by reperfusion for 48 h. In agreement with other studies, ischemic insult caused significant decreases (P<0.05) in mRNA levels of both IP3R1 and SERCA2b in the hippocampal CA1 region but not in the dentate gyrus. Nevertheless, despite a significant (P<0.05) decrease in SERCA2b mRNA in the Purkinje neurons, chronic ethanol did not alter the expression of this mRNA species in the hippocampal CA1 neurons nor did it alter the decrease in SERCA2b mRNA due to cerebral ischemic insult. Since IP3R1 and SERCA2b are key mediators for regulation of intracellular Ca2+ stores, the decrease in SERCA2b mRNA but not IP3R1 mRNA in cerebellar neurons may be an important mechanism underlying alteration of calcium homeostasis and cerebellar degeneration upon chronic ethanol consumption.
Collapse
Affiliation(s)
- J Xia
- Biochemistry Department, University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|
14
|
Lukácová N, Marsala M, Halát G, Marsala J. Neuroprotective effect of graded postischemic reoxygenation in spinal cord ischemia in the rabbit. Brain Res Bull 1997; 43:457-65. [PMID: 9250619 DOI: 10.1016/s0361-9230(97)00075-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Early ischemia/reperfusion-induced changes of four phospholipid compounds bound to the inner cell membrane leaflet, i.e., phosphatidic acid, inositol phospholipids, serine phospholipids, and ethanolamine plasmalogens, were studied in a model of spinal cord ischemia in the rabbit during normoxic and graded postischemic reoxygenation. Light and electron microscopic analysis after normoxic reoxygenation disclosed neuronal membrane argyrophilia of the interneuronal pool located in lamina VII of L4-L6 segments. The number of small neurons (10-25 microm in diameter) affected by somatodendritic argyrophilia was greatly reduced, and concomitantly the ultrastructure of the endoplasmic reticulum, mitochondria, and Golgi complexes remained almost undamaged when graded postischemic reoxygenation had been applied. A statistically significant increase of phosphatidylserine and ethanolamine plasmalogen levels, and a decrease of phosphatidic acid, were detected after a short-lasting graded postischemic reoxygenation. The formation of thiobarbituric acid-reactive substances was significantly reduced during 60 min of graded postischemic reoxygenation and remained close to control or ischemic levels. The present data indicate that graded postischemic reoxygenation, which is considered to be neuroprotective, can prevent neuronal argyrophilia and the development of reperfusion-induced alterations of organelles. Moreover, reoxygenation can positively modify ischemia-induced changes of some membrane-bound phospholipids.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | | | | |
Collapse
|
15
|
Nozaki H, Tanaka K, Gomi S, Mihara B, Nogawa S, Nagata E, Kondo T, Fukuuchi Y. Alteration of ryanodine receptor in the hippocampus CA1 after hemispheric cerebral ischemia. Neurochem Res 1996; 21:975-82. [PMID: 8895853 DOI: 10.1007/bf02532349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alterations in ryanodine binding and local cerebral blood flow (LCBF) were examined at 30 minutes and 2 hours post-ischemia in the gerbil brain in order to evaluate the influence of cerebral ischemia on the intracellular channels of Ca2+-induced Ca2+ release (CICR). Severe hemispheric cerebral ischemia was induced by occluding the right common carotid artery. LCBF was measured at the end of the experiment using [14C]iodoantipyrine method, and the ryanodine binding was evaluated in vitro using [3H]ryanodine as a specific ligand for CICR channels. An autoradiographic method developed in our laboratory enabled us to determine both parameters within the same brain. A group of gerbils who underwent a sham procedure served as controls. LCBF was found to be significantly reduced in most of the cerebral regions on the occluded side at both 30 minutes as well as 2 hours post-ischemia. In contrast, a significant reduction in ryanodine binding was noted only in the hippocampus CA1 on the occluded side at 30 minutes and 2 hours after the occlusion. These findings suggest that regionally specific changes of CICR may be the cause of decreased ryanodine binding in the hippocampus CA1, and that these changes may be related to the pathophysiological mechanisms that cause this region to be particularly vulnerable to ischemia.
Collapse
Affiliation(s)
- H Nozaki
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cristòfol RM, Rodríguez-Farré E, Sanfeliu C. Effects of glucose and oxygen deprivation on phosphoinositide hydrolysis in cerebral cortex slices from neonatal rats. Life Sci 1996; 59:587-97. [PMID: 8761348 DOI: 10.1016/0024-3205(96)00340-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of glucose deprivation, hypoxia and glucose-free hypoxia conditions on phosphoinositide (PI) hydrolysis were studied in cortical slices from 8-day-old rats. Only glucose-free hypoxia induced a significant increase of inositol phosphate formation. The inositol phosphate formation induced by noradrenaline, carbachol and several excitatory amino acid receptor agonists, but not the Ca2+ ionophore A23187-induced stimulation, was blocked by glucose-free hypoxia and differentially reduced by glucose and oxygen deprivation depending on the neurotransmitter receptor agonist. The stimulatory effect of glucose-free hypoxia was not reduced by the muscarinic receptor antagonist atropine or by the inhibitors of the excitatory amino acid-stimulated PI hydrolysis DL-2-amino-3-phosphono-propionic acid and L-aspartate-beta-hydroxamate, and neither by the voltage-sensitive Na+ channel tetrodotoxin. The effect of glucose-free hypoxia was partially dependent on extracellular Ca2+ and it was blocked by verapamil and amiloride, but not by nifedipine, Co2+ and neomycin. These results suggest that Ca2+ influx through the Na(+)-Ca2+ exchanger underlies the PI hydrolysis stimulation induced by combined glucose and oxygen deprivation in neonatal cerebral cortical slices.
Collapse
Affiliation(s)
- R M Cristòfol
- Departamento de Farmacología y Toxicología, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | | | | |
Collapse
|
17
|
Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshima H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K, Noda T. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 1996; 379:168-71. [PMID: 8538767 DOI: 10.1038/379168a0] [Citation(s) in RCA: 370] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor acts as an InsP3-gated Ca2+ release channel in a variety of cell types. Type 1 InsP3 receptor (IP3R1) is the major neuronal member of the IP3R family in the central nervous system, predominantly enriched in cerebellar Purkinje cells but also concentrated in neurons in the hippocampal CA1 region, caudate-putamen, and cerebral cortex. Here we report that most IP3R1-deficient mice generated by gene targeting die in utero, and born animals have severe ataxia and tonic or tonic-clonic seizures and die by the weaning period. An electroencephalogram showed that they suffer from epilepsy, indicating that IP3R1 is essential for proper brain function. However, observation by light microscope of the haematoxylin-eosin staining of the brain and peripheral tissues of IP3R1-deficient mice showed no abnormality, and the unique electrophysiological properties of the cerebellar Purkinje cells of IP3R1-deficient mice were not severely impaired.
Collapse
Affiliation(s)
- M Matsumoto
- Department of Molecular Neurobiology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang SX, Zhang JP, Fletcher DL, Zoeller RT, Sun GY. In situ hybridization of mRNA expression for IP3 receptor and IP3-3-kinase in rat brain after transient focal cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 32:252-60. [PMID: 7500836 DOI: 10.1016/0169-328x(95)00085-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Loss of intracellular calcium homeostasis has been regarded an important factor underlying neuron cell death after cerebral ischemic insult. In the brain, a major mechanism for regulation of intracellular calcium is through the signal transduction pathway involving hydrolysis of poly-phosphoinositides and release of the second messenger, inositol 1,4,5-trisphosphate (IP3). IP3 mobilizes calcium by interacting with an intracellular receptor. Upon its release after agonist stimulation, this second messenger is catabolized by a 3-kinase and a 5-phosphatase. In this study, in situ hybridization was carried out to examine the mRNA expression of IP3, receptor (IP3R) and IP3 3-kinase (IP3K) in rat brain cortex after transient focal cerebral ischemia induced by temporary occlusion of the middle cerebral artery (MCA) and the common carotid arteries (CCAs). Results indicate a large decrease (52%) in IP3R mRNA levels in the ischemic cortex as compared to that in the contralateral side at 4 h after a 45 min ischemic insult. By 16 h, practically no IP3R mRNA could be detected in the ischemic cortex. On the other hand, IP3K mRNA levels remained unaltered until 16 h after reperfusion, during which time, expression in the infarct core decreased but that surrounding the core area increased instead. Hybridization of adjacent brain sections with probes for neuron specific enolase (NSE) and beta-actin indicated also a time-dependent decrease in mRNA levels after ischemia, but these changes were less dramatic as compared to IP3R. At 16 and 24 h after reperfusion, there was an increase in beta-actin mRNA in cortical areas outside the MCA cortex, suggesting of reactive gliosis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S X Zhang
- Department of Biochemistry, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|