1
|
Thomson AM. Circuits and Synapses: Hypothesis, Observation, Controversy and Serendipity - An Opinion Piece. Front Neural Circuits 2021; 15:732315. [PMID: 34602985 PMCID: PMC8482872 DOI: 10.3389/fncir.2021.732315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022] Open
Abstract
More than a century of dedicated research has resulted in what we now know, and what we think we know, about synapses and neural circuits. This piece asks to what extent some of the major advances - both theoretical and practical - have resulted from carefully considered theory, or experimental design: endeavors that aim to address a question, or to refute an existing hypothesis. It also, however, addresses the important part that serendipity and chance have played. There are cases where hypothesis driven research has resulted in important progress. There are also examples where a hypothesis, a model, or even an experimental approach - particularly one that seems to provide welcome simplification - has become so popular that it becomes dogma and stifles advance in other directions. The nervous system rejoices in complexity, which should neither be ignored, nor run from. The emergence of testable "rules" that can simplify our understanding of neuronal circuits has required the collection of large amounts of data that were difficult to obtain. And although those collecting these data have been criticized for not advancing hypotheses while they were "collecting butterflies," the beauty of the butterflies always enticed us toward further exploration.
Collapse
Affiliation(s)
- Alex M. Thomson
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| |
Collapse
|
2
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
3
|
Strack B, Jacobs KM, Cios KJ. Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 2014; 24:1440002. [PMID: 24875787 PMCID: PMC9422346 DOI: 10.1142/s0129065714400024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
4
|
Du J, Vegh V, Reutens DC. MRI signal phase oscillates with neuronal activity in cerebral cortex: implications for neuronal current imaging. Neuroimage 2014; 94:1-11. [PMID: 24642284 DOI: 10.1016/j.neuroimage.2014.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/06/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022] Open
Abstract
Neuronal activity produces transient ionic currents that may be detectable using magnetic resonance imaging (MRI). We examined the feasibility of MRI-based detection of neuronal currents using computer simulations based on the laminar cortex model (LCM). Instead of simulating the activity of single neurons, we decomposed neuronal activity to action potentials (AP) and postsynaptic potentials (PSP). The geometries of dendrites and axons were generated dynamically to account for diverse neuronal morphologies. Magnetic fields associated with APs and PSPs were calculated during spontaneous and stimulated cortical activity, from which the neuronal current induced MRI signal was determined. We found that the MRI signal magnitude change (<0.1 ppm) is below currently detectable levels but that the signal phase change is likely to be detectable. Furthermore, neuronal MRI signals are sensitive to temporal and spatial variations in neuronal activity but independent of the intensity of neuronal activation. Synchronised neuronal activity produces large phase changes (in the order of 0.1 mrad). However, signal phase oscillates with neuronal activity. Consequently, MRI scans need to be synchronised with neuronal oscillations to maximise the likelihood of detecting signal phase changes due to neuronal currents. These findings inform the design of MRI experiments to detect neuronal currents.
Collapse
Affiliation(s)
- Jiaxin Du
- The University of Queensland, Centre for Advanced Imaging, Brisbane, Queensland 4072, Australia
| | - Viktor Vegh
- The University of Queensland, Centre for Advanced Imaging, Brisbane, Queensland 4072, Australia.
| | - David C Reutens
- The University of Queensland, Centre for Advanced Imaging, Brisbane, Queensland 4072, Australia
| |
Collapse
|
5
|
Strack B, Jacobs KM, Cios KJ. Simulating lesions in multi-layer, multi-columnar model of neocortex. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2013; 2013:835-838. [PMID: 36818467 PMCID: PMC9937446 DOI: 10.1109/ner.2013.6696064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paper presents results of modeling global and focal loss of layers in a multi-columnar model of neocortex. Specifically, the spread of activity across columns in conditions of inhibitory blockade is compared. With very low inhibition activity spreads through all layers, however, deep layers are critical for spread of activity when inhibition is only moderately blocked.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University School of Engineering, Richmond, VA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Krzysztof J Cios
- Department of Computer Science, Virginia Commonwealth University School of Engineering, Richmond, VA and IITiS Polish Academy of Sciences, Poland
| |
Collapse
|
6
|
Li X, Morita K, Robinson HPC, Small M. Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. J Neurophysiol 2013; 109:2739-56. [PMID: 23486202 DOI: 10.1152/jn.00397.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal apical dendrites of layer 5 pyramidal neurons receive cortico-cortical and thalamocortical top-down and feedback inputs, as well as local recurrent inputs. A prominent source of recurrent inhibition in the neocortical circuit is somatostatin-positive Martinotti cells, which preferentially target distal apical dendrites of pyramidal cells. These electrically coupled cells can fire synchronously at various frequencies, including over a relatively slow range (5∼30 Hz), thereby imposing oscillatory inhibition on the pyramidal apical tuft dendrites. We examined how such distal oscillatory inhibition influences the firing of a biophysically detailed layer 5 pyramidal neuron model, which reproduced the spatiotemporal properties of sodium, calcium, and N-methyl-D-aspartate receptor spikes found experimentally. We found that oscillatory synchronization strongly influences the impact of distal inhibition on the pyramidal cell firing. Whereas asynchronous inhibition largely cancels out the facilitatory effects of distal excitatory inputs, inhibition oscillating synchronously at around 10∼20 Hz allows distal excitation to drive axosomatic firing, as if distal inhibition were absent. Underlying this is a switch from relatively infrequent burst firing to single spike firing at every period of the inhibitory oscillation. This phenomenon depends on hyperpolarization-activated cation current-dependent membrane potential resonance in the dendrite, but also, in a novel manner, on a cooperative amplification of this resonance by N-methyl-D-aspartate-receptor-driven dendritic action potentials. Our results point to a surprising dependence of the effect of recurrent inhibition by Martinotti cells on their oscillatory synchronization, which may control not only the local circuit activity, but also how it is transmitted to and decoded by downstream circuits.
Collapse
Affiliation(s)
- Xiumin Li
- College of Automation, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
7
|
Potjans TC, Diesmann M. The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. ACTA ACUST UNITED AC 2012. [PMID: 23203991 PMCID: PMC3920768 DOI: 10.1093/cercor/bhs358] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past decade, the cell-type specific connectivity and activity of local cortical networks have been characterized experimentally to some detail. In parallel, modeling has been established as a tool to relate network structure to activity dynamics. While available comprehensive connectivity maps (
Thomson, West, et al. 2002; Binzegger et al. 2004) have been used in various computational studies, prominent features of the simulated activity such as the spontaneous firing rates do not match the experimental findings. Here, we analyze the properties of these maps to compile an integrated connectivity map, which additionally incorporates insights on the specific selection of target types. Based on this integrated map, we build a full-scale spiking network model of the local cortical microcircuit. The simulated spontaneous activity is asynchronous irregular and cell-type specific firing rates are in agreement with in vivo recordings in awake animals, including the low rate of layer 2/3 excitatory cells. The interplay of excitation and inhibition captures the flow of activity through cortical layers after transient thalamic stimulation. In conclusion, the integration of a large body of the available connectivity data enables us to expose the dynamical consequences of the cortical microcircuitry.
Collapse
Affiliation(s)
- Tobias C Potjans
- Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Juelich, Juelich, Germany
| | | |
Collapse
|
8
|
Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. J Neurosci 2012; 32:5609-19. [PMID: 22514322 DOI: 10.1523/jneurosci.5158-11.2012] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of local cortical activity in shaping neuronal responses is controversial. Among other questions, it is unknown how the diverse response patterns reported in vivo-lateral inhibition in some cases, approximately balanced excitation and inhibition (co-tuning) in others-compare to the local spread of synaptic connectivity. Excitatory and inhibitory activity might cancel each other out, or, whether one outweighs the other, receptive field properties might be substantially affected. As a step toward addressing this question, we used multiple intracellular recording in mouse primary auditory cortical slices to map synaptic connectivity among excitatory pyramidal cells and the two broad classes of inhibitory cells, fast-spiking (FS) and non-FS cells in the principal input layer. Connection probability was distance-dependent; the spread of connectivity, parameterized by Gaussian fits to the data, was comparable for all cell types, ranging from 85 to 114 μm. With brief stimulus trains, unitary synapses formed by FS interneurons were stronger than other classes of synapses; synapse strength did not correlate with distance between cells. The physiological data were qualitatively consistent with predictions derived from anatomical reconstruction. We also analyzed the truncation of neuronal processes due to slicing; overall connectivity was reduced but the spatial pattern was unaffected. The comparable spatial patterns of connectivity and relatively strong excitatory-inhibitory interconnectivity are consistent with a theoretical model where either lateral inhibition or co-tuning can predominate, depending on the structure of the input.
Collapse
|
9
|
Levy RB, Reyes AD. Coexistence of lateral and co-tuned inhibitory configurations in cortical networks. PLoS Comput Biol 2011; 7:e1002161. [PMID: 21998561 PMCID: PMC3188483 DOI: 10.1371/journal.pcbi.1002161] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/29/2011] [Indexed: 11/18/2022] Open
Abstract
The responses of neurons in sensory cortex depend on the summation of excitatory and inhibitory synaptic inputs. How the excitatory and inhibitory inputs scale with stimulus depends on the network architecture, which ranges from the lateral inhibitory configuration where excitatory inputs are more narrowly tuned than inhibitory inputs, to the co-tuned configuration where both are tuned equally. The underlying circuitry that gives rise to lateral inhibition and co-tuning is yet unclear. Using large-scale network simulations with experimentally determined connectivity patterns and simulations with rate models, we show that the spatial extent of the input determined the configuration: there was a smooth transition from lateral inhibition with narrow input to co-tuning with broad input. The transition from lateral inhibition to co-tuning was accompanied by shifts in overall gain (reduced), output firing pattern (from tonic to phasic) and rate-level functions (from non-monotonic to monotonically increasing). The results suggest that a single cortical network architecture could account for the extended range of experimentally observed response types between the extremes of lateral inhibitory versus co-tuned configurations. The cerebral cortex contains a network of electrically active cells (neurons) interconnected by synapses, which may be excitatory (tending to increase activity) or inhibitory. Network activity, i.e., the ensemble of activity patterns of the individual cells, is driven by input from the sense organs, and creates an internal representation of features of the outside world. In auditory cortex, sound frequency (pitch) is encoded by the physical location of activity in the network. Thus, connections among cells at various distances may blur or sharpen the frequency representation. Recent work in living animals has yielded conflicting results: sharpening of responses via lateral inhibition in some cases, versus balanced excitation and inhibition (co-tuning) in others. It was previously unknown whether a single cortical network architecture could account for this spectrum of findings. Here, computer simulations based on experimental data reveal that this is indeed the case. Varying input to the network causes smooth transitions between lateral inhibition and co-tuning, accompanied by changes in the strength and timing of the responses. Diverse input-dependent response patterns in a single network may be a general mechanism enabling the brain to process a wide range of sensory information under various conditions.
Collapse
Affiliation(s)
- Robert B Levy
- Center for Neural Science, New York University, New York, New York, United States of America.
| | | |
Collapse
|
10
|
Thomson AM, Armstrong WE. Biocytin-labelling and its impact on late 20th century studies of cortical circuitry. BRAIN RESEARCH REVIEWS 2011; 66:43-53. [PMID: 20399808 PMCID: PMC2949688 DOI: 10.1016/j.brainresrev.2010.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 11/15/2022]
Abstract
In recognition of the impact that a powerful new anatomical tool, such as the Golgi method, can have, this essay highlights the enormous influence that biocytin-filling has had on modern neuroscience. This method has allowed neurones that have been recorded intracellularly, 'whole-cell' or juxta-cellularly, to be identified anatomically, forming a vital link between functional and structural studies. It has been applied throughout the nervous system and has become a fundamental component of our technical armoury. A comprehensive survey of the applications to which the biocytin-filling approach has been put, would fill a large volume. This essay therefore focuses on one area, neocortical microcircuitry and the ways in which combining physiology and anatomy have revealed rules that help us explain its previously indecipherable variability and complexity.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
11
|
Fransén E, Tigerholm J. Role of A-type potassium currents in excitability, network synchronicity, and epilepsy. Hippocampus 2010; 20:877-87. [PMID: 19777555 DOI: 10.1002/hipo.20694] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound excitatory postsynaptic potentials (EPSPs). The fast activation and inactivation of K(A) lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of K(A) by synaptic inputs of different levels of synchronicity. We find that K(A) participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that K(A) suppresses input mimicking the activity of a fast ripple. Finally, we show that the degree of selectivity of K(A) can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting K(A) might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. Wealso suggest that compounds changing K(A)-kinetics may be used to pharmacologically improve epileptic status.
Collapse
Affiliation(s)
- Erik Fransén
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden.
| | | |
Collapse
|
12
|
Abstract
This review attempts to summarise some of the major areas of neocortical research as it pertains to neocortical layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated (Gonchar et al., 2007).
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy, University of London London, UK
| |
Collapse
|
13
|
Abstract
This review attempts to summarise some of the major areas of neocortical research as it pertains to neocortical layer 6. After a brief summary of the development of this intriguing layer, the major pyramidal cell classes to be found in layer 6 are described and compared. The connections made and received by these different classes of neurones are then discussed and the possible functions of these connections, with particular reference to the shaping of responses in visual cortex and thalamus. Inhibition in layer 6 is discussed where appropriate, but not in great detail. Many types of interneurones are to be found in each cortical layer and layer 6 is no exception, but the functions of each type remain to be elucidated (Gonchar et al., 2007).
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy, University of London London, UK
| |
Collapse
|
14
|
Higgs MH, Spain WJ. Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons. J Neurosci 2009; 29:1285-99. [PMID: 19193876 PMCID: PMC6666063 DOI: 10.1523/jneurosci.3728-08.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 12/10/2008] [Accepted: 12/10/2008] [Indexed: 11/21/2022] Open
Abstract
The frequency response properties of neurons are critical for signal transmission and control of network oscillations. At subthreshold membrane potential, some neurons show resonance caused by voltage-gated channels. During action potential firing, resonance of the spike output may arise from subthreshold mechanisms and/or spike-dependent currents that cause afterhyperpolarizations (AHPs) and afterdepolarizations (ADPs). Layer 2-3 pyramidal neurons (L2-3 PNs) have a fast ADP that can trigger bursts. The present study investigated what stimuli elicit bursting in these cells and whether bursts transmit specific frequency components of the synaptic input, leading to resonance at particular frequencies. We found that two-spike bursts are triggered by step onsets, sine waves in two frequency bands, and noise. Using noise adjusted to elicit firing at approximately 10 Hz, we measured the gain for modulation of the time-varying firing rate as a function of stimulus frequency, finding a primary peak (7-16 Hz) and a high-frequency resonance (250-450 Hz). Gain was also measured separately for single and burst spikes. For a given spike rate, bursts provided higher gain at the primary peak and lower gain at intermediate frequencies, sharpening the high-frequency resonance. Suppression of bursting using automated current feedback weakened the primary and high-frequency resonances. The primary resonance was also influenced by the SK channel-mediated medium AHP (mAHP), because the SK blocker apamin reduced the sharpness of the primary peak. Our results suggest that resonance in L2-3 PNs depends on burst firing and the mAHP. Bursting enhances resonance in two distinct frequency bands.
Collapse
Affiliation(s)
- Matthew H. Higgs
- Neurology Section, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, and
- Departments of Physiology and Biophysics and
| | - William J. Spain
- Neurology Section, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, and
- Departments of Physiology and Biophysics and
- Neurology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
15
|
Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvárday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Muñoz A, Packer A, Petersen CCH, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 2008; 9:557-68. [PMID: 18568015 PMCID: PMC2868386 DOI: 10.1038/nrn2402] [Citation(s) in RCA: 1084] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.
Collapse
|
16
|
Schneider SP. Local circuit connections between hamster laminae III and IV dorsal horn neurons. J Neurophysiol 2008; 99:1306-18. [PMID: 18184889 DOI: 10.1152/jn.00962.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the role of intrinsic spinal cord circuits in the integration of mechanosensory information, we studied synaptic transmission between neurons in Rexed's laminae III-IV, a major termination zone for cutaneous mechanoreceptor afferents, using dual, simultaneous whole cell electrophysiological recordings in young hamsters. Synaptic connections were detected between 32 of 106 cell pairs (linkage probability of 0.3) and were predominantly unidirectional (91%). Inhibitory connections outnumbered excitatory connections by 2:1. Amplitude of single-axon postsynaptic potentials (PSPs) was independent of postsynaptic cell input resistance. Intracellular labeling suggested that recordings were obtained from local axon interneurons. In connected cell pairs, the percentage of presynaptic action potentials that failed to evoke a postsynaptic response was 44 +/- 29%. Shape indices of PSPs suggested that synaptic contacts were widely distributed along the postsynaptic membrane. Linkage probability was unrelated to intrinsic firing properties, laminar position of the cells or the distance (<160 mum) separating them. However, PSPs in target cells following action potentials in neurons with phasic firing patterns had longer duration and lower failure rates than PSPs activated by neurons with tonic firing patterns. Thus transmission reliability at synapses between lamina III/IV interneurons overall is low, and efficacy of these connections is related to firing properties of the presynaptic cells. The observations also suggest that synaptic organization in LIII-IV is fundamentally different from the superficial dorsal horn (LI-II) where neural circuits may be composed of stereotyped units made from connections between a few functional types of neurons.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824-3320, USA.
| |
Collapse
|
17
|
Ali AB, Thomson AM. Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. Cereb Cortex 2007; 18:1260-71. [PMID: 17951598 DOI: 10.1093/cercor/bhm160] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies indicated that one class of dendrite-preferring hippocampal interneurones inhibits pyramidal cells via alpha 5 gamma-aminobutyric acid (GABA(A)) receptors whereas parvalbumin- and CCK-containing basket cells act via alpha1 and alpha2/3 GABA(A) receptors, respectively. This study asked whether there is selective insertion of different alpha subunit-containing GABA(A) receptors at neocortical inhibitory synapses innervated by specific classes of interneurones. The benzodiazepine site pharmacology of inhibitory postsynaptic potentials (IPSPs) elicited in neocortical pyramidal cells by 3 classes of interneurones was explored with dual whole-cell recordings in neocortical slices from juvenile rats (P18-23). Fast IPSPs activated by multipolar interneurones with narrow spikes and nonadapting firing patterns were powerfully enhanced by the alpha1-preferring agonist zolpidem, suggesting mediation via larger proportion of alpha1 GABA(A) receptors than those activated by multipolar, adapting interneurones, which were less strongly enhanced by zolpidem, but equally insensitive to the alpha 5-selective inverse agonist IA alpha 5 (MSD, Essex, UK) suggesting mediation predominantly via alpha2/3 GABA(A) receptors. In contrast, the IPSPs elicited by bitufted, dendrite-preferring interneurones were reduced by IA alpha 5 and by zinc and insensitive to zolpidem despite enhancement by the broad-spectrum agonist, diazepam. Thus insertion of GABA(A) receptors at synapses on neocortical pyramids is input-specific, with proximal inhibition employing alpha1 and alpha2/3 GABA(A) receptors and dendrite-preferring bitufted interneurones activating alpha 5 GABA(A) receptors.
Collapse
Affiliation(s)
- Afia B Ali
- Department of Pharmacology, School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
18
|
Thomson AM, Lamy C. Functional maps of neocortical local circuitry. Front Neurosci 2007; 1:19-42. [PMID: 18982117 PMCID: PMC2518047 DOI: 10.3389/neuro.01.1.1.002.2007] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 11/13/2022] Open
Abstract
This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided.This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized.
Collapse
Affiliation(s)
- Alex M Thomson
- The Department of Pharmacology, The School of Pharmacy, University of London, London UK.
| | | |
Collapse
|
19
|
Brémaud A, West DC, Thomson AM. Binomial parameters differ across neocortical layers and with different classes of connections in adult rat and cat neocortex. Proc Natl Acad Sci U S A 2007; 104:14134-9. [PMID: 17702864 PMCID: PMC1949494 DOI: 10.1073/pnas.0705661104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binomial model-based analysis compared excitatory connections involving different classes of neurons in different neocortical layers. Single-sweep excitatory postsynaptic potentials (EPSPs) from dual intracellular recordings in adult cat and rat slices were measured. For data subsets corresponding to first EPSPs exhibiting different degrees of posttetanic potentiation and second, third etc. EPSPs in trains at different interspike intervals, coefficient of variation (CV), transmission failure rates (F), variance (V), and V/M were plotted against mean EPSP amplitude (M). Curves derived from binomial models in which subsets varied only in p (release probability) were fit and parameters q (quantal amplitude), and n (number of release sites) were estimated. Estimates for q and n were similar for control subsets and subsets recorded during Ca(2+) channel blockade, only p varied. Estimates from the four methods were powerfully correlated, but when CV, F, V, and V/M were plotted against M, different types of connections occupied different regions of parameter space. Comparisons of linear fits to V/M against M plots and of parameter estimates indicated that these differences were significant. Connections between pyramids in different layers and inputs to different cell classes in the same layer differed markedly. Monte Carlo simulations of more complex models subjected to simple binomial model-based analysis confirmed the significance of these differences. Binomial models, either simple, in which p and q are identical at all terminals involved, or more complex, in which they differ, adequately describe many neocortical connections, but each class uses different combinations of n, mean p, and mean q.
Collapse
Affiliation(s)
- Antoine Brémaud
- Department of Pharmacology, School of Pharmacy, London University, 29–39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - David C. West
- Department of Pharmacology, School of Pharmacy, London University, 29–39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, London University, 29–39 Brunswick Square, London WC1N 1AX, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Ali AB, Bannister AP, Thomson AM. Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in neocortical slices from juvenile rats and adult rat and cat. J Physiol 2007; 580:149-69. [PMID: 17234697 PMCID: PMC2075440 DOI: 10.1113/jphysiol.2006.124214] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many studies of cortical interneurones use immature rodent tissue, while many recordings in vivo are made in adult cats. To determine the extent to which interneuronal circuitry studied with one approach can transfer to another, we compared layer 4 interneurones and their local connections across two age groups and two species and with similar connections in layers 3 and 5, using two common recording techniques: dual whole cell recordings at 20 degrees C and dual sharp electrode recordings at 35 degrees C. In each group, a range of morphological and electrophysiological characteristics was observed. In all groups, however, positive correlations were found between the width of the action potential and rise times and widths at half-amplitude of EPSPs and IPSPs and the EPSP paired pulse ratio. Multipolar interneurones with narrow spikes generated the fastest IPSPs in pyramidal cells and received the briefest, most strongly depressing EPSPs, while bitufted interneurones with broader spikes and adapting and burst firing patterns activated the broadest IPSPs and received the slowest, most strongly facilitating/augmenting EPSPs. Correlations were similar in all groups, with no significant differences between adult rat and cat, or between layers, but events were four times slower in juveniles at 20 degrees C. Comparisons with previous studies indicate that this is due in part to age, but in large part to temperature. Studies in adults were extended with detailed analysis of synaptic dynamics, which appeared to decay more rapidly than at juvenile connections. EPSPs exhibited the complexity in time course of facilitation, augmentation and depression previously described in other adult neocortical connections. That is, the time course of recovery from facilitation or depression rarely followed a simple smooth exponential decay. Facilitation and depression were not always maximal at the shortest interspike intervals, and recovery was often interrupted by peaks and troughs in mean EPSP amplitude with a periodicity around 80 Hz.
Collapse
Affiliation(s)
- Afia B Ali
- Department of Pharmacology, The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
21
|
Bannister AP, Thomson AM. Dynamic properties of excitatory synaptic connections involving layer 4 pyramidal cells in adult rat and cat neocortex. Cereb Cortex 2006; 17:2190-203. [PMID: 17116652 DOI: 10.1093/cercor/bhl126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the properties of excitatory connections between layer 4 pyramidal cells and whether these differed between rat and cat, paired intracellular recordings were made with biocytin filling in slices of adult neocortex. These connections were also compared with those from layer 4 spiny cells to layer 3 pyramids and connections between layer 3 pyramids. Connectivity ratios for layer 4 pyramid-pyramid pairs (1:14 cat, 1:18 rat) appeared lower than for the other types of connections studied in parallel, but excitatory postsynaptic potential (EPSP) amplitudes and time course were not significantly different either between species or across types of connection. Layer 4 pyramids targeted postsynaptic basal dendrites in both species, whether the pyramidal target was in layer 4 or layer 3. Within layer 4, relationships between mean EPSP amplitude, numbers of putative contacts, and distance between connected pairs indicated a rapid decline in connectivity strength with distance, equivalent to 3.4 mV and 10 synapses per 100 microm separation, from a maximum of 4 mV and 10 synapses at 0 microm. However, a subset, of burst-firing layer 4 pyramids, appeared to make no connections with other layer 4 spiny cells. Second EPSPs were depressed by 36% in rat and 28% in cat relative to first EPSPs at interspike intervals <15 ms. Subsequent EPSPs in brief trains were further depressed. Depression was predominantly presynaptic in origin. Recovery from depression could not be described adequately by a simple exponential for individual connections; it included peaks and troughs with periodicities of 10-15 ms. Complex relationships between the first 2 interspike intervals and third EPSP amplitude were also apparent in all connections so studied. Large third EPSPs followed specific combinations of first and second interspike intervals so that increasing, or decreasing, one without changing the other resulted in a smaller third EPSP. Finally, the outputs of layer 4 spiny cells to layer 3 exhibited partial recovery from depression during longer high-frequency trains, a property not apparent in the other connections studied.
Collapse
Affiliation(s)
- A Peter Bannister
- Department of Pharmacology, The School of Pharmacy, London University, London WC1N 1AX, UK
| | | |
Collapse
|
22
|
Schwabe L, Obermayer K, Angelucci A, Bressloff PC. The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model. J Neurosci 2006; 26:9117-29. [PMID: 16957068 PMCID: PMC6674516 DOI: 10.1523/jneurosci.1253-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses of neurons in sensory cortices are affected by the spatial context within which stimuli are embedded. In the primary visual cortex (V1), orientation-selective responses to stimuli in the receptive field (RF) center are suppressed by similarly oriented stimuli in the RF surround. Surround suppression, a likely neural correlate of perceptual figure-ground segregation, is traditionally thought to be generated within V1 by long-range horizontal connections. Recently however, it has been shown that these connections are too short and too slow to mediate fast suppression from distant regions of the RF surround. We use an anatomically and physiologically constrained recurrent network model of macaque V1 to show how interareal feedback connections, which are faster and longer-range than horizontal connections, can generate "far" surround suppression. We provide a novel solution to the puzzle of how surround suppression can arise from excitatory feedback axons contacting predominantly excitatory neurons in V1. The basic mechanism involves divergent feedback connections from the far surround targeting pyramidal neurons sending monosynaptic horizontal connections to excitatory and inhibitory neurons in the RF center. One of several predictions of our model is that the "suppressive far surround" is not always suppressive, but can facilitate the response of the RF center, depending on the amount of excitatory drive to the local inhibitors. Our model provides a general mechanism of how top-down feedback signals directly contribute to generating cortical neuron responses to simple sensory stimuli.
Collapse
Affiliation(s)
- Lars Schwabe
- Fakultät IV, Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, and
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| | - Klaus Obermayer
- Fakultät IV, Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, and
| | - Paul C. Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
23
|
Pockett S. The great subjective back-referral debate: do neural responses increase during a train of stimuli? Conscious Cogn 2005; 15:551-9. [PMID: 15935698 DOI: 10.1016/j.concog.2005.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Evidence is summarised for and against the hypothesis that potentiation or facilitation of neural responses during a train of threshold-level stimuli occurred in the experiments reported by . It is concluded that such potentiation probably did occur. Since the main arguments for the existence of subjective backwards referral () take it as given that such potentiation did not occur, it is further concluded that the main arguments for the existence of subjective backwards referral fail.
Collapse
Affiliation(s)
- Susan Pockett
- Neurophysics Lab, Department of Physics, University of Auckland, New Zealand.
| |
Collapse
|
24
|
Ali AB, Nelson C. Distinct Ca2+ channels mediate transmitter release at excitatory synapses displaying different dynamic properties in rat neocortex. ACTA ACUST UNITED AC 2005; 16:386-93. [PMID: 15917483 DOI: 10.1093/cercor/bhi117] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To study the type of presynaptic calcium channels controlling transmitter release at synaptic connections displaying depression or facilitation, dual whole cell recordings combined with biocytin labelling were performed in acute slices from motor cortex of 17- to 22-day-old rats. Layer V postsynaptic interneurons displayed either fast spiking (FS) (n = 12) or burst firing (BF) (n = 12) behaviour. The axons of FS cells ramified preferentially around pyramidal cell somata, while BF cell axons ramified predominately around pyramidal cell dendrites. Synapses between pyramidal cells and FS cells displayed brief train depression (n = 12). Bath application of omega-Agatoxin IVA (0.5 microM), blocking P/Q-type calcium channels, decreased mean peak amplitudes of the EPSPs to 40% of control EPSPs (n = 8). Failure rate of the EPSPs after the first presynaptic action potential increased from 9 +/- 11 to 28 +/- 15%. This was associated with an increase in paired pulse ratio of 152 +/- 44%. Omega-conotoxin GVIA (1-10 microM), selectively blocking N-type calcium channels, had no effect on peak amplitudes or frequency dependent properties of these connections (n = 5). Synapses from pyramidal cells to BF cells displayed brief train facilitation (n = 8). Application of omega-Conotoxin in these connections decreased peak amplitudes of the EPSPs to 15% of control EPSPs (n = 6) and decreased the paired pulse ratio by 41 +/- 30%. Omega-agatoxin did not have any significant effect on the EPSPs elicited in BF cells. This study indicates that P/Q-type calcium channels are associated with transmitter release at connections displaying synaptic depression, whereas N-type channels are predominantly associated with connections displaying facilitation.
Collapse
Affiliation(s)
- Afia B Ali
- University Laboratory of Physiology, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
25
|
West DC, Mercer A, Kirchhecker S, Morris OT, Thomson AM. Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. ACTA ACUST UNITED AC 2005; 16:200-11. [PMID: 15843627 DOI: 10.1093/cercor/bhi098] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The properties of the connections made by the axons of pyramidal cells with cortico-thalamic (CT)-like morphology with a range of postsynaptic layer 6 targets were studied with dual intracellular recordings in slices of adult rat and cat neocortex. The cells were filled with biocytin and identified morphologically and, where appropriate, immunofluorescently. CT-like pyramids contacted interneurons with a very high probability (up to 1:2) but contacted other layer 6 pyramidal cells only rarely (approximately 1:80). The excitatory postsynaptic potentials (EPSPs) that they elicited both in pyramidal cells and in a variety of types of interneurons (including those immunopositive for parvalbumin and for somatostatin) facilitated, the second EPSP being larger than the first over a range of interspike intervals. Facilitation was not, however, maximal at the shortest intervals; in fact, depression was apparent at some connections at short interspike intervals. Facilitation in the majority of connections peaked at intervals of 25-35 ms and then declined slowly. Nor did these connections display the augmentation typical of many other strongly facilitating connections. Third EPSPs were smaller on average than second EPSPs, and fourth and subsequent EPSPs could be depressed (relative to first EPSPs). The properties of the outputs of these CT-like pyramidal cells are therefore quite distinct from those of other pyramidal cells, both within layer 6 and in other layers, possibly reflecting their unique role as both first order thalamo-cortical recipient and cortico-thalamic output neurons.
Collapse
Affiliation(s)
- David C West
- Department of Pharmacology, The School of Pharmacy, University of London 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | | | | | |
Collapse
|
26
|
Crochet S, Chauvette S, Boucetta S, Timofeev I. Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 2005; 21:1030-44. [PMID: 15787708 DOI: 10.1111/j.1460-9568.2005.03932.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neocortical neurons integrate inputs from thousands of presynaptic neurons that fire in vivo with frequencies that can reach 20 Hz. An important issue in understanding cortical integration is to determine the actual impact of presynaptic firing on postsynaptic neuron in the context of an active network. We used dual intracellular recordings from synaptically connected neurons or microstimulation to study the properties of spontaneous and evoked single-axon excitatory postsynaptic potentials (EPSPs) in vivo, in barbiturate or ketamine-xylazine anaesthetized cats. We found that active states of the cortical network were associated with higher variability and decrease in amplitude and duration of the EPSPs owing to a shunting effect. Moreover, the number of apparent failures markedly increased during active states as compared with silent states. Single-axon EPSPs in vivo showed mainly paired-pulse facilitation, and the paired-pulse ratio increased during active states as compare to silent states, suggesting a decrease in release probability during active states. Raising extracellular Ca(2+) concentration to 2.5-3.0 mm by reverse microdialysis reduced the number of apparent failures and significantly increased the mean amplitude of individual synaptic potentials. Quantitative analysis of spontaneous synaptic activity suggested that the proportion of presynaptic activity that impact at the soma of a cortical neuron in vivo was low because of a high failure rate, a shunting effect and probably dendritic filtering. We conclude that during active states of cortical network, the efficacy of synaptic transmission in individual synapses is low, thus safe transmission of information requires synchronized activity of a large population of presynaptic neurons.
Collapse
Affiliation(s)
- Sylvain Crochet
- Department of Anatomy and Physiology, Laval University, Québec, G1K 7P4, Canada
| | | | | | | |
Collapse
|
27
|
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5:793-807. [PMID: 15378039 DOI: 10.1038/nrn1519] [Citation(s) in RCA: 2076] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
Collapse
Affiliation(s)
- Henry Markram
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G. Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features. J Neurophysiol 2004; 92:600-8. [PMID: 15056678 DOI: 10.1152/jn.01170.2003] [Citation(s) in RCA: 575] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most neuronal interactions in the cortex occur within local circuits. Because principal cells and GABAergic interneurons contribute differently to cortical operations, their experimental identification and separation is of utmost important. We used 64-site two-dimensional silicon probes for high-density recording of local neurons in layer 5 of the somatosensory and prefrontal cortices of the rat. Multiple-site monitoring of units allowed for the determination of their two-dimensional spatial position in the brain. Of the ∼60,000 cell pairs recorded, 0.2% showed robust short-term interactions. Units with significant, short-latency (<3 ms) peaks following their action potentials in their cross-correlograms were characterized as putative excitatory (pyramidal) cells. Units with significant suppression of spiking of their partners were regarded as putative GABAergic interneurons. A portion of the putative interneurons was reciprocally connected with pyramidal cells. Neurons physiologically identified as inhibitory and excitatory cells were used as templates for classification of all recorded neurons. Of the several parameters tested, the duration of the unfiltered (1 Hz to 5 kHz) spike provided the most reliable clustering of the population. High-density parallel recordings of neuronal activity, determination of their physical location and their classification into pyramidal and interneuron classes provide the necessary tools for local circuit analysis.
Collapse
Affiliation(s)
- Peter Barthó
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave., Newark, NJ 07102, USA
| | | | | | | | | | | |
Collapse
|
29
|
Fuentealba P, Crochet S, Timofeev I, Steriade M. Synaptic Interactions Between Thalamic and Cortical Inputs Onto Cortical Neurons In Vivo. J Neurophysiol 2004; 91:1990-8. [PMID: 15069096 DOI: 10.1152/jn.01105.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the interactions between thalamic and cortical inputs onto neocortical neurons, we used paired-pulse stimulation (PPS) of thalamic and cortical inputs as well as PPS of two cortical or two thalamic inputs that converged, at different time intervals, onto intracellularly recorded cortical and thalamocortical neurons in anesthetized cats. PPS of homosynaptic cortico-cortical pathways produced facilitation, depression, or no significant effects in cortical pathways, whereas cortical responses to thalamocortical inputs were mostly facilitated at both short and long intervals. By contrast, heterosynaptic interactions between either cortical and thalamic, or thalamic and cortical, inputs generally produced decreases in the peak amplitudes and depolarization area of evoked excitatory postsynaptic potentials (EPSPs), with maximal effect at ∼10 ms and lasting from 60 to 100 ms. All neurons tested with thalamic followed by cortical stimuli showed a decrease in the apparent input resistance ( Rin), the time course of which paralleled that of decreased responses, suggesting that shunting is the factor accounting for EPSP's decrease. Only half of neurons tested with cortical followed by thalamic stimuli displayed changes in Rin. Spike shunting in the thalamus may account for those cases in which decreased synaptic responsiveness of cortical neurons was not associated with decreased Rin because thalamocortical neurons showed decreased firing probability during cortical stimulation. These results suggest a short-lasting but strong shunting between thalamocortical and cortical inputs onto cortical neurons.
Collapse
Affiliation(s)
- Pablo Fuentealba
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
30
|
Scharfman HE, Sollas AL, Berger RE, Goodman JH. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. J Neurophysiol 2004; 90:2536-47. [PMID: 14534276 DOI: 10.1152/jn.00251.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mossy fiber sprouting is a form of synaptic reorganization in the dentate gyrus that occurs in human temporal lobe epilepsy and animal models of epilepsy. The axons of dentate gyrus granule cells, called mossy fibers, develop collaterals that grow into an abnormal location, the inner third of the dentate gyrus molecular layer. Electron microscopy has shown that sprouted fibers from synapses on both spines and dendritic shafts in the inner molecular layer, which are likely to represent the dendrites of granule cells and inhibitory neurons. One of the controversies about this phenomenon is whether mossy fiber sprouting contributes to seizures by forming novel recurrent excitatory circuits among granule cells. To date, there is a great deal of indirect evidence that suggests this is the case, but there are also counterarguments. The purpose of this study was to determine whether functional monosynaptic connections exist between granule cells after mossy fiber sprouting. Using simultaneous recordings from granule cells, we obtained direct evidence that granule cells in epileptic rats have monosynaptic excitatory connections with other granule cells. Such connections were not obtained when age-matched, saline control rats were examined. The results suggest that indeed mossy fiber sprouting provides a substrate for monosynaptic recurrent excitation among granule cells in the dentate gyrus. Interestingly, the characteristics of the excitatory connections that were found indicate that the pathway is only weakly excitatory. These characteristics may contribute to the empirical observation that the sprouted dentate gyrus does not normally generate epileptiform discharges.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw 10993-1195, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Dual intracellular recordings from pairs of synaptically connected neurones have demonstrated that the frequency-dependent pattern of transmitter release varies dramatically between different classes of connections. Somewhat surprisingly, these patterns are not determined by the class of neurone supplying the axon alone, but to a large degree by the class of postsynaptic neurone. A wide range of presynaptic mechanisms, some that depress the release of transmitter and others that enhance release have been identified. It is the selective expression of these different mechanisms that determines the unique frequency- and pattern-dependent properties of each class of connection. Although the molecular interactions underlying these several mechanisms have yet to be fully identified, the wealth and complexity of the protein-protein and protein-lipid interactions that have been shown to control the release of transmitter suggest many ways in which the properties of a synapse may be tuned to respond to particular patterns and frequencies.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
32
|
Mikula S, Niebur E. Synaptic depression leads to nonmonotonic frequency dependence in the coincidence detector. Neural Comput 2003; 15:2339-58. [PMID: 14511524 DOI: 10.1162/089976603322362383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this letter, we extend our previous analytical results (Mikula & Niebur, 2003) for the coincidence detector by taking into account probabilistic frequency-dependent synaptic depression. We present a solution for the steady-state output rate of an ideal coincidence detector receiving an arbitrary number of input spike trains with identical binomial count distributions (which includes Poisson statistics as a special case) and identical arbitrary pairwise cross-correlations, from zero correlation (independent processes) to perfect correlation (identical processes). Synapses vary their efficacy probabilistically according to the observed depression mechanisms. Our results show that synaptic depression, if made sufficiently strong, will result in an inverted U-shaped curve for the output rate of a coincidence detector as a function of input rate. This leads to the counterintuitive prediction that higher presynaptic (input) rates may lead to lower postsynaptic (output) rates where the output rate may fall faster than the inverse of the input rate.
Collapse
Affiliation(s)
- Shawn Mikula
- Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
33
|
Granseth B, Lindström S. Unitary EPSCs of corticogeniculate fibers in the rat dorsal lateral geniculate nucleus in vitro. J Neurophysiol 2003; 89:2952-60. [PMID: 12611977 DOI: 10.1152/jn.01160.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate unitary corticogeniculate excitatory postsynaptic currents (EPSCs), whole cell patch-clamp recordings were obtained from 20 principal cells in slices of the dorsal lateral geniculate nucleus (dLGN) of DA-HAN rats. EPSCs, evoked by electrical stimulation of corticogeniculate axons, had size distributions with one or more quantal peaks. Gaussian curves fitted to such distributions gave a mean quantal size (q) of -5.0 +/- 0.7 (SD) pA for the EPSCs. Paired-pulse ratio (EPSC2/EPSC1) was 3.3 +/- 0.9 for stimuli separated by 40 ms. The mean quantal size was similar for facilitated EPSCs (-5.2 +/- 0.8 pA), implying an increase in mean quantal content (m). Most corticogeniculate axons were capable of releasing only one or two quanta onto individual principal cells. Mean resting release probability (p) was low, 0.09 +/- 0.04. Binomial models, with the same n but increased p, could account for both the basal and facilitated EPSC size distributions in 6/8 cells. It is suggested that the low resting efficacy of corticogeniculate synapses serves to stabilize this excitatory feedback system. The pronounced facilitation in conjunction with large convergence from many corticogeniculate cells would provide a transient, potent excitation of dLGN cells, compliant with the idea of a visually driven neuronal amplifier.
Collapse
Affiliation(s)
- Björn Granseth
- Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | | |
Collapse
|
34
|
Jackson A, Gee VJ, Baker SN, Lemon RN. Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron 2003; 38:115-25. [PMID: 12691669 DOI: 10.1016/s0896-6273(03)00162-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synchronous firing of motor cortex cells exhibiting postspike facilitation (PSF) or suppression (PSS) of hand muscle EMG was examined to investigate the relationship between synchrony and output connectivity. Recordings were made in macaque monkeys performing a precision grip task. Synchronization was assessed with cross-correlation histograms of the activity from 144 pairs of simultaneously recorded neurons, while spike-triggered averages of EMG defined the muscle field for each cell. Cell pairs with similar muscle fields showed greater synchronization than pairs with nonoverlapping fields. Furthermore, cells with opposing effects in the same muscles exhibited negative synchronization. We conclude that synchrony in motor cortex engages networks of neurons directly controlling the same muscle set, while inhibitory connections exist between neuronal populations with opposing output effects.
Collapse
Affiliation(s)
- Andrew Jackson
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
35
|
Tucker TR, Katz LC. Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J Neurophysiol 2003; 89:488-500. [PMID: 12522196 DOI: 10.1152/jn.00869.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The horizontal network in visual cortex layer 2/3 is implicated in numerous psychophysical and physiological properties. To investigate the spatial and temporal distribution of excitation and inhibition evoked by this network, we used voltage-sensitive dyes to image the responses to focal electrical stimulation in tangential slices of ferret visual cortex layer 2/3. The resulting optical patterns included a diffuse zone of activation near the stimulation site and numerous ovoid domains throughout the slice. In contrast to the fixed anatomy of the horizontal connections, substantial shifts in both space and time were evident in the distribution of population-based neuronal activity during stimulus trains. Both of these shifts relied on inhibitory synaptic potentials, suggesting that inhibition driven by horizontal connections sculpts the distribution of activity in this cortical network.
Collapse
Affiliation(s)
- Thomas R Tucker
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
36
|
Thomson AM, Bannister AP, Mercer A, Morris OT. Target and temporal pattern selection at neocortical synapses. Philos Trans R Soc Lond B Biol Sci 2002; 357:1781-91. [PMID: 12626012 PMCID: PMC1693084 DOI: 10.1098/rstb.2002.1163] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We attempt to summarize the properties of cortical synaptic connections and the precision with which they select their targets in the context of information processing in cortical circuits. High-frequency presynaptic bursts result in rapidly depressing responses at most inputs onto spiny cells and onto some interneurons. These 'phasic' connections detect novelty and changes in the firing rate, but report frequency of maintained activity poorly. By contrast, facilitating inputs to interneurons that target dendrites produce little or no response at low frequencies, but a facilitating-augmenting response to maintained firing. The neurons activated, the cells they in turn target and the properties of those synapses determine which parts of the circuit are recruited and in what temporal pattern. Inhibitory interneurons provide both temporal and spatial tuning. The 'forward' flow from layer-4 excitatory neurons to layer 3 and from 3 to 5 activates predominantly pyramids. 'Back' projections, from 3 to 4 and 5 to 3, do not activate excitatory cells, but target interneurons. Despite, therefore, an increasing complexity in the information integrated as it is processed through these layers, there is little 'contamination' by 'back' projections. That layer 6 acts both as a primary input layer feeding excitation 'forward' to excitatory cells in other layers and as a higher-order layer with more integrated response properties feeding inhibition to layer 4 is discussed.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Physiology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
37
|
Granseth B, Ahlstrand E, Lindström S. Paired pulse facilitation of corticogeniculate EPSCs in the dorsal lateral geniculate nucleus of the rat investigated in vitro. J Physiol 2002; 544:477-86. [PMID: 12381820 PMCID: PMC2290595 DOI: 10.1113/jphysiol.2002.024703] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate paired pulse facilitation of corticogeniculate EPSCs, whole-cell patch-clamp recordings were made from principal cells in the rat dorsal lateral geniculate nucleus (dLGN) in vitro. Thalamic slices, oriented so that both corticogeniculate and retinogeniculate axons could be stimulated, were cut from young (16- to 37-day-old) DA-HAN rats. Corticogeniculate EPSCs displayed pronounced paired pulse facilitation at stimulus intervals up to 400 ms. The facilitation had a fast and a slow component of decay with time constants of 12 +/- 7 and 164 +/- 47 ms (means +/- S.D.), respectively. Maximum paired pulse ratio (EPSC(2) x EPSC(1)(-1)) was 3.7 +/- 1.1 at the 20-30 ms interval. Similar to other systems, the facilitation was presynaptic. Retinogeniculate EPSCs recorded in the same dLGN cells displayed paired pulse depression at intervals up to at least 700 ms. The two types of EPSCs differed in their calcium response curves. At normal [Ca(2+)](o), the corticogeniculate synapse functioned over the early rising part of a Hill function, while the retinogeniculate synapse operated over the middle and upper parts of the curve. The paired pulse ratio of corticogeniculate EPSCs was maximal at physiological [Ca(2+)](o). The facilitation is proposed to have an important role in the function of the corticogeniculate circuit as a neuronal amplifier.
Collapse
Affiliation(s)
- Björn Granseth
- Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköpings universitet, SE-581 85 Linköping, Sweden.
| | | | | |
Collapse
|
38
|
Jackson A, Spinks RL, Freeman TCB, Wolpert DM, Lemon RN. Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation. J Physiol 2002; 541:685-99. [PMID: 12068033 PMCID: PMC2290363 DOI: 10.1113/jphysiol.2001.015099] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated whether stimulation of the pyramidal tract (PT) could reset the phase of 15-30 Hz beta oscillations observed in the macaque motor cortex. We recorded local field potentials (LFPs) and multiple single-unit activity from two conscious macaque monkeys performing a precision grip task. EMG activity was also recorded from the second animal. Single PT stimuli were delivered during the hold period of the task, when oscillations in the LFP were most prominent. Stimulus-triggered averaging of the LFP showed a phase-locked oscillatory response to PT stimulation. Frequency domain analysis revealed two components within the response: a 15-30 Hz component, which represented resetting of on-going beta rhythms, and a lower frequency 10 Hz response. Only the higher frequency could be observed in the EMG activity, at stronger stimulus intensities than were required for resetting the cortical rhythm. Stimulation of the PT during movement elicited a greatly reduced oscillatory response. Analysis of single-unit discharge confirmed that PT stimulation was capable of resetting periodic activity in motor cortex. The firing patterns of pyramidal tract neurones (PTNs) and unidentified neurones exhibited successive cycles of suppression and facilitation, time locked to the stimulus. We conclude that PTN activity directly influences the generation of the 15-30 Hz rhythm. These PTNs facilitate EMG activity in upper limb muscles, contributing to corticomuscular coherence at this same frequency. Since the earliest oscillatory effect observed following stimulation was a suppression of firing, we speculate that inhibitory feedback may be the key mechanism generating such oscillations in the motor cortex.
Collapse
Affiliation(s)
- A Jackson
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK
| | | | | | | | | |
Collapse
|
39
|
Backward Referral, Flash-Lags, and Quantum Free Will: A Response to Commentaries on Articles by Pockett, Klein, Gomes, and Trevena and Miller. Conscious Cogn 2002. [DOI: 10.1006/ccog.2002.0562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Doyle MW, Andresen MC. Reliability of monosynaptic sensory transmission in brain stem neurons in vitro. J Neurophysiol 2001; 85:2213-23. [PMID: 11353036 DOI: 10.1152/jn.2001.85.5.2213] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The timing of events within the nervous system is a critical feature of signal processing and integration. In neurotransmission, the synaptic latency, the time between stimulus delivery and appearance of the synaptic event, is generally thought to be directly related to the complexity of that pathway. In horizontal brain stem slices, we examined synaptic latency and its shock-to-shock variability (synaptic jitter) in medial nucleus tractus solitarius (NTS) neurons in response to solitary tract (ST) electrical activation. Using a visualized patch recording approach, we activated ST 1-3 mm from the recorded neuron with short trains (50-200 Hz) and measured synaptic currents under voltage clamp. Latencies ranged from 1.5 to 8.6 ms, and jitter values (SD of intraneuronal latency) ranged from 26 to 764 micros (n = 49). Surprisingly, frequency of synaptic failure was not correlated with either latency or jitter (P > 0.147; n = 49). Despite conventional expectations, no clear divisions in latency were found from the earliest arriving excitatory postsynaptic currents (EPSCs) to late pharmacologically polysynaptic responses. Shortest latency EPSCs (<3 ms) were mediated by non-N-methyl-D-aspartate (non-NMDA) glutamate receptors. Longer latency responses were a mix of excitatory and inhibitory currents including non-NMDA EPSCs and GABAa receptor-mediated currents (IPSC). All synaptic responses exhibited prominent frequency-dependent depression. In a subset of neurons, we labeled sensory boutons by the anterograde fluorescent tracer, DiA, from aortic nerve baroreceptors and then recorded from anatomically identified second-order neurons. In identified second-order NTS neurons, ST activation evoked EPSCs with short to moderate latency (1.9-4.8 ms) but uniformly minimal jitter (31 to 61 micros) that were mediated by non-NMDA receptors but had failure rates as high as 39%. These monosynaptic EPSCs in identified second-order neurons were significantly different in latency and jitter than GABAergic IPSCs (latency, 2.95 +/- 0.71 vs. 5.56 +/- 0.74 ms, mean +/- SE, P = 0.027; jitter, 42.3 +/- 6.5 vs. 416.3 +/- 94.4 micros, P = 0.013, n = 4, 6, respectively), but failure rates were similar (27.8 +/- 9.0 vs. 9.7 +/- 4.4%, P = 0.08, respectively). Such results suggest that jitter and not absolute latency or failure rate is the most reliable discriminator of mono- versus polysynaptic pathways. The results suggest that brain stem sensory pathways may differ in their principles of integration compared with cortical models and that this importantly impacts synaptic performance. The unique performance properties of the sensory-NTS pathway may reflect stronger axosomatic synaptic processing in brain stem compared with dendritically weighted models typical in cortical structures and thus may reflect very different strategies of spatio-temporal integration in this NTS region and for autonomic regulation.
Collapse
Affiliation(s)
- M W Doyle
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
41
|
Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci 2001. [PMID: 11356867 DOI: 10.1523/jneurosci.21-11-03788.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To elucidate cortical mechanisms involved in higher cortical functions such as working memory, we have examined feedforward excitation transmitted by identified pyramidal cells to interneurons with predominantly horizontal axonal arbors, using dual somatic recordings in prefrontal cortical slices. Interneurons with local (narrow) axonal arbors, especially chandelier interneurons, exhibited extremely narrow action potentials and high evoked firing rates, whereas neurons identified with wide arbor axons generated wider spikes and lower evoked firing rates with considerable spike adaptation, resembling that of pyramidal cells. Full reconstruction of differentially labeled neuronal pairs revealed that local arbor cells generally received a single but functionally reliable putative synaptic input from the identified pyramidal neuron member of the pair. In contrast, more synapses (two to five) were necessary to depolarize medium and wide arbor neurons reliably. The number of putative synapses and the amplitude of the postsynaptic response were remarkably highly correlated within each class of local, medium, and wide arbor interneurons (r = 0.88, 0.95, and 0.99, respectively). Similarly strong correlations within these subgroups were also present between the number of putative synapses and variance in the EPSP amplitudes, supporting the validity of our morphological analysis. We conclude that interneurons varying in the span of their axonal arbors and hence in the potential regulation of different numbers of cortical modules differ also in their excitatory synaptic input and physiological properties. These findings provide insight into the circuit basis of lateral inhibition and functional interactions within and between cortical columns in the cerebral cortex.
Collapse
|
42
|
Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A 2001; 98:1924-9. [PMID: 11172052 PMCID: PMC29358 DOI: 10.1073/pnas.98.4.1924] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Indexed: 11/18/2022] Open
Abstract
Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs). We analyzed the nature of long-lasting periods of neuronal silence in SWS and the changes in firing rates related to ocular movements during REM sleep and waking using intracellular recordings from electrophysiologically identified neocortical neurons in nonanesthetized and nonparalyzed cats. We found that the silent periods during SWS are associated with neuronal hyperpolarizations, which are due to a mixture of K(+) currents and disfacilitation processes. Conventional fast-spiking neurons (presumably local inhibitory interneurons) increased their firing rates during REMs and eye movements in waking. During REMs, the firing rates of regular-spiking neurons from associative areas decreased and intracellular traces revealed numerous, short-lasting, low-amplitude inhibitory postsynaptic potentials (IPSPs), that were reversed after intracellular chloride infusion. In awake cats, regular-spiking neurons could either increase or decrease their firing rates during eye movements. The short-lasting IPSPs associated with eye movements were still present in waking; they preceded the spikes and affected their timing. We propose that there are two different forms of firing rate control: disfacilitation induces long-lasting periods of silence that occur spontaneously during SWS, whereas active inhibition, consisting of low-amplitude, short-lasting IPSPs, is prevalent during REMs and precisely controls the timing of action potentials in waking.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1K 7P4.
| | | | | |
Collapse
|
43
|
Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172052 PMCID: PMC29358 DOI: 10.1073/pnas.041430398] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs). We analyzed the nature of long-lasting periods of neuronal silence in SWS and the changes in firing rates related to ocular movements during REM sleep and waking using intracellular recordings from electrophysiologically identified neocortical neurons in nonanesthetized and nonparalyzed cats. We found that the silent periods during SWS are associated with neuronal hyperpolarizations, which are due to a mixture of K(+) currents and disfacilitation processes. Conventional fast-spiking neurons (presumably local inhibitory interneurons) increased their firing rates during REMs and eye movements in waking. During REMs, the firing rates of regular-spiking neurons from associative areas decreased and intracellular traces revealed numerous, short-lasting, low-amplitude inhibitory postsynaptic potentials (IPSPs), that were reversed after intracellular chloride infusion. In awake cats, regular-spiking neurons could either increase or decrease their firing rates during eye movements. The short-lasting IPSPs associated with eye movements were still present in waking; they preceded the spikes and affected their timing. We propose that there are two different forms of firing rate control: disfacilitation induces long-lasting periods of silence that occur spontaneously during SWS, whereas active inhibition, consisting of low-amplitude, short-lasting IPSPs, is prevalent during REMs and precisely controls the timing of action potentials in waking.
Collapse
|
44
|
Abstract
Cross-correlation histograms (CCHs) sometimes exhibit an isolated central peak flanked by two troughs. What can cause this pattern? The absence of CCH satellite peak makes an oscillatory common input doubtful. It is here shown using a simple counting model that a common inhibitory feedback with delay can account for this pattern.
Collapse
Affiliation(s)
- Q Pauluis
- Laboratory of Neurophysiology, School of Medicine, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Abstract
During the 1950s to 70s most of the mechanisms that control transmitter release from presynaptic nerve terminals were described at the neuromuscular junction. It was not, however, until the 1990s that the multiplicity of protein-protein interactions that govern this process began to be identified. The sheer numbers of proteins and the complexity of their interactions at first appears excessive, even redundant. However, studies of identified central synapses indicate that this molecular diversity may underlie a important functional diversity. The task of the neuromuscular junction is to relay faithfully the rate and pattern code generated by the motoneurone. To demonstrate phenomena such as facilitation and augmentation that are apparent only when the probability of release is low, experimental manipulation is required. In the cortex, however, low probability synapses displaying facilitation can be recorded in parallel with high probability synapses displaying depression. The mechanisms are largely the same as those displayed by the neuromuscular junction, but some are differentially expressed and controlled. Central synapses demonstrate exquisitely fine tuned information transfer, each of the many types displaying its own repertoire of pattern- and frequency-dependent properties. These appear tuned to match both the discharge pattern in the presynaptic neurone and the integrative requirements of the postsynaptic cell. The molecular identification of these differentially expressed frequency filters is now just coming into sight. This review attempts to correlate these two aspects of synaptic physiology and to identify the components of the release process that are responsible for the diversity of function.
Collapse
Affiliation(s)
- A M Thomson
- Department of Physiology, Royal Free and University College Medical School, UCL, Rowland Hill Street, NW3 2PF, London, UK.
| |
Collapse
|
46
|
Orzó L, Lábos E. Effects of the synaptic transmission's dynamics on possible neural codes. Biosystems 2000; 58:75-81. [PMID: 11164633 DOI: 10.1016/s0303-2647(00)00109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To examine the effects of paired pulse facilitation, long-term synaptic modifications as well as spike frequency adaptation on neural signal transmission, a simple model was applied. This way various input-output properties of the model units were described. Particularly, the transmission of the mean and S.D. of the simulated synaptic currents were studied. The results indicate that the transfer of the mean value of the membrane currents cannot be described in terms of synaptic weights. So firing rate can hardly be an efficient neural code, especially for adaptive channels of the central nervous system (CNS). On the contrary, the transfer of S.D. of synaptic currents behaves in accordance with the synaptic weights. So it is supported that S.D. of the synaptic currents is a biological relevant subclass of the variation codes [see Perkel, H., Bullock, T.H., 1968. Neurol coding. Neurosci. Res. Program Bull. 6, 221-344]. It is discussed how this code can be established and how it works.
Collapse
Affiliation(s)
- L Orzó
- Computer and Automation Research Institute, Hungarian Academy of Sciences Analogical and Neural Computing Systems, Budapest.
| | | |
Collapse
|
47
|
Abstract
Release probability (P) appears to be a major factor that influences the pattern of transmitter release. At cortical pyramidal axon inputs onto different classes of target cells, very different release patterns are observed, patterns that correlate with release probability. Simplistically, 'low P' synapses display facilitation and augmentation, whereas 'high P' synapses supplied by the same axon exhibit paired-pulse and frequency-dependent depression. Different combinations of factors probably contribute to release probability at different terminals, during development and under different experimental conditions. The recent advances made by molecular biological studies of the release machinery do, however, provide candidate proteins and protein-protein interactions whose differential distributions might be important factors in determining the patterns of transmitter release.
Collapse
Affiliation(s)
- A M Thomson
- Dept of Physiology, Royal Free and University College Medical School, London, UK
| |
Collapse
|
48
|
Wang Y, Gupta A, Markram H. Anatomical and functional differentiation of glutamatergic synaptic innervation in the neocortex. JOURNAL OF PHYSIOLOGY, PARIS 1999; 93:305-17. [PMID: 10574120 DOI: 10.1016/s0928-4257(00)80059-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyramidal neurons are the principal neurons of the neocortex and their excitatory impact on other pyramidal neurons and interneurons is central to neocortical dynamics. A fundamental principal that has emerged which governs pyramidal neuron excitation of other neurons in the local circuitry of neocortical columns is differential anatomical and physiological properties of the synaptic innervation via the same axon depending on the type of neuron targeted. In this study we derive anatomical principles for divergent innervation of pyramidal neurons of the same type within the local microcircuit. We also review data providing circumstantial and direct evidence for differential synaptic transmission via the same axon from neocortical pyramidal neurons and derive some principles for differential synaptic innervation of pyramidal neurons of the same type, of pyramidal neurons and interneurons and of different types of interneurons. We conclude that differential anatomical and physiological differentiation is a fundamental property of glutamatergic axons of pyramidal neurons in the neocortex.
Collapse
Affiliation(s)
- Y Wang
- Department of Neurobiology, The Weizmnann Institute for Science, Rehovot, Israel
| | | | | |
Collapse
|
49
|
Angulo MC, Rossier J, Audinat E. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J Neurophysiol 1999; 82:1295-302. [PMID: 10482748 DOI: 10.1152/jn.1999.82.3.1295] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glutamate-mediated synaptic responses of neocortical pyramidal cell to fast-spiking interneuron (pyramidal-FS) connections were studied by performing paired recordings at 30-33 degrees C in acute slices of 14- to 35-day-old rats (n = 39). Postsynaptic fast-spiking (FS) cells were recorded in whole cell configuration with a patch pipette, and presynaptic pyramidal cells were impaled with sharp intracellular electrodes. At a holding potential of -72 mV (near the resting membrane potential), unitary excitatory postsynaptic potentials (EPSPs) had a mean amplitude of 2.1 +/- 1.3 mV and a mean width at half-amplitude of 10.5 +/- 3.7 ms (n = 18). Bath application of the N-methyl-D-aspartate (NMDA) receptor antagonist D(-)2-amino-5-phosphonovaleric acid (D-AP5) had minor effects on both the amplitude and the duration of unitary EPSPs, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) almost completely blocked the synaptic responses. In voltage-clamp mode, the selective antagonist of AMPA receptors 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8-methylenedioxy-3, 4-dihydro-5H-2,3-benzodiazepine (GYKI 53655; 40-66 microM) blocked 96 +/- 1.9% of D-AP5-insensitive unitary excitatory postsynaptic currents (EPSCs), confirming the predominance of AMPA receptors, as opposed to kainate receptors, at pyramidal-FS connections (n = 3). Unitary EPSCs mediated by AMPA receptors had fast rise times (0.29 +/- 0.04 ms) and amplitude-weighted decay time constants (2 +/- 0.8 ms; n = 16). In the presence of intracellular spermine, these currents showed the characteristic rectifying current-voltage (I-V) curve of calcium-permeable AMPA receptors. A slower component mediated by NMDA receptors was observed when unitary synaptic currents were recorded at a membrane potential more positive than -50 mV. In response to short trains of moderately high-frequency (67 Hz) presynaptic action potentials, we observed only a limited temporal summation of unitary EPSPs, probably because of the rapid kinetics of AMPA receptors and the absence of NMDA component in these subthreshold synaptic responses. By combining paired recordings with extracellular stimulations (n = 11), we demonstrated that EPSPs elicited by two different inputs were summed linearly by FS interneurons at membrane potentials below the action potential threshold. We estimated that, in our in vitro recording conditions, 8 +/- 5 pyramidal cells (n = 18) should be activated simultaneously to make FS interneurons fire an action potential from -72 mV. The low level of temporal summation and the linear summation of excitatory inputs in FS cells favor the role of coincidence detectors of these interneurons in neocortical circuits.
Collapse
Affiliation(s)
- M C Angulo
- Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles de la ville de Paris, 75231 Paris Cedex 5, France
| | | | | |
Collapse
|
50
|
Thomson AM, Bannister AP. Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex. J Physiol 1999; 519 Pt 1:57-70. [PMID: 10432339 PMCID: PMC2269491 DOI: 10.1111/j.1469-7793.1999.0057o.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1998] [Accepted: 04/28/1999] [Indexed: 11/30/2022] Open
Abstract
1. Paired intracellular recordings were performed in slices of adult rat neocortex and hippocampus to examine presynaptic depression. A novel form of depression that occurs even in the absence of transmitter release during conditioning activity was observed at a subset of synaptic connections. 2. In each pair studied, a pyramidal neurone was presynaptic and inputs onto a range of morphologically identified postsynaptic target cells were analysed; high probability connections exhibiting the more traditional forms of release-dependent depression, as well as low probability connections exhibiting facilitation, were tested (n = 35). 3. Connections were tested with presynaptic spike pairs and trains of spikes with a range of interspike intervals. Sweeps in which the first action potential elicited no detectable response (apparent failures of transmission) and sweeps in which the first action potential elicited large EPSPs were selected. Second EPSPs that followed apparent failures were then compared with second EPSPs that followed large first EPSPs. 4. Release-independent depression was apparent when second EPSPs at brief interspike intervals (<10-15 ms) were on average smaller than second EPSPs at longer interspike intervals, even following apparent failures and when the second EPSP amplitude at these short intervals was independent of the amplitude of the first EPSP. 5. Release-independent depression appeared selectively expressed. Depressing inputs onto some interneurones, such as CA1 basket-like and bistratified cells, and facilitating inputs onto others, such as some fast spiking neocortical interneurones, exhibited this phenomenon. In contrast, depressing inputs onto 10/10 neocortical pyramids and facilitating inputs onto 7/7 oriens-lacunosum moleculare and 5/5 burst firing, sparsely spiny neocortical interneurones did not.
Collapse
Affiliation(s)
- A M Thomson
- Department of Physiology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|