1
|
Evans N, Mahfooz K, Garcia-Rates S, Greenfield S. Oxidative Stress Triggers a Pivotal Peptide Linked to Alzheimer's Disease. Int J Mol Sci 2024; 25:12413. [PMID: 39596477 PMCID: PMC11594494 DOI: 10.3390/ijms252212413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
An aberrant recapitulation of a developmental mechanism driven by a 14 mer peptide ('T14') derived from acetylcholinesterase (AChE) has been implicated in Alzheimer's disease. T14 was suggested as an upstream driver of neurodegeneration due to its ability to stimulate the production of phosphorylated tau and amyloid beta. The activation of this mechanism in adulthood is thought to be brought upon by insult to the primarily vulnerable subcortical nuclei. Here, we show that oxidative stress, induced by high glucose and confirmed by an analysis of antioxidant enzyme mRNA expression, increased the levels of T14 peptide in PC12 cells. This increase in T14 corresponded with an increase in the mRNA expression of AChE and a decrease in the cell viability. The increase in T14 could be blocked by the cyclic form of T14, NBP14, which prevented any cytotoxic effects. These observations suggest that oxidative stress can directly trigger the inappropriate activation of T14 in the adult brain through the upregulation of Ache mRNA.
Collapse
Affiliation(s)
| | - Kashif Mahfooz
- Neuro-Bio Ltd., Building F5, Culham Campus, Abingdon OX14 3DB, UK; (N.E.); (S.G.-R.); (S.G.)
| | | | | |
Collapse
|
2
|
Ranglani S, Hasan S, Komorowska J, Medina NM, Mahfooz K, Ashton A, Garcia-Ratés S, Greenfield S. A Novel Peptide Driving Neurodegeneration Appears Exclusively Linked to the α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 2024; 61:8206-8218. [PMID: 38483654 DOI: 10.1007/s12035-024-04079-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sibah Hasan
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK.
| | - Joanna Komorowska
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | | | - Kashif Mahfooz
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Anna Ashton
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sara Garcia-Ratés
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Susan Greenfield
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| |
Collapse
|
3
|
Garcia Ratés S, García‐Ayllón M, Falgàs N, Brangman SA, Esiri MM, Coen CW, Greenfield SA. Evidence for a novel neuronal mechanism driving Alzheimer's disease, upstream of amyloid. Alzheimers Dement 2024; 20:5027-5034. [PMID: 38780014 PMCID: PMC11247685 DOI: 10.1002/alz.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and β-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of β-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.
Collapse
Affiliation(s)
| | - María‐Salud García‐Ayllón
- Unidad de InvestigaciónHospital General Universitario de Elche, FISABIOElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d'AlacantSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Neus Falgàs
- Alzheimer's disease and other cognitive disorders UnitHospital Clínic de Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Sharon A. Brangman
- Department of GeriatricsUpstate Center of Excellence for Alzheimer's DiseaseSUNY Upstate Medical University 750 East Adams StreetSyracuseNew YorkUSA
| | - Margaret M Esiri
- Neuropathology DepartmentJohn Radcliffe Hospital, West WingOxford UniversityOxfordUK
| | - Clive W. Coen
- Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
4
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
5
|
Ulu E, Demirci E, Sener EF, Özmen S, Gul MK, Tahtasakal R, Dal F. Role of Glutamate Receptor-related Biomarkers in the Etiopathogenesis of ADHD. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:79-86. [PMID: 38247414 PMCID: PMC10811385 DOI: 10.9758/cpn.23.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 05/02/2023] [Indexed: 01/23/2024]
Abstract
Objective : Pathways associated with glutamate receptors are known to play a role in the pathophysiology of attention-deficit hyperactivity disorder (ADHD). However, cyclin-dependent kinase 5 (CDK5), microtubule-associated protein-2 (MAP2), guanylate kinase-associated protein (GKAP), and postsynaptic density 95 (PSD95), all of which are biomarkers involved in neurodevelopmental processes closely related to glutamatergic pathways, have not previously been studied in patients with ADHD. The main purpose of this study was to evaluate the plasma levels of CDK5, MAP2, GKAP, and PSD95 in children with ADHD and investigate whether these markers have a role in the etiology of ADHD. Methods : Ninety-six children with ADHD between 6 and 15 years of age and 72 healthy controls were included in the study. Five milliliters of blood samples were taken from all participants. The samples were stored at -80°C until analyzed by the enzyme-linked immunosorbent assay method. Results : Statistically significantly lower CDK5 levels were observed in children with ADHD than in healthy controls (p = 0.037). The MAP2, GKAP, and PSD95 levels were found to be statistically significantly higher in the ADHD group than in healthy controls (p = 0.012, p = 0.009, and p = 0.024, respectively). According to binary regression analysis, CDK5 and MAP2 levels were found to be predictors of ADHD. Conclusion : In conclusion, we found that a close relationship existed between ADHD and glutamatergic pathways, and low levels of CDK5 and high levels of MAP2 and GKAP played a role in the etiopathogenesis of ADHD.
Collapse
Affiliation(s)
- Ebru Ulu
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Esra Demirci
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Elif Funda Sener
- Erciyes University Genome and Stem Cell Center (GENKOK), Department of Medical Biology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Sevgi Özmen
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Melike Kevser Gul
- Department of Child and Adolescent Psychiatry, Kayseri City Hospital, Kayseri, Turkey
| | - Reyhan Tahtasakal
- Erciyes University Genome and Stem Cell Center (GENKOK), Department of Medical Biology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Fatma Dal
- Erciyes University Genome and Stem Cell Center (GENKOK), Department of Medical Biology, Erciyes University Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
6
|
Ranglani S, Ashton A, Mahfooz K, Komorowska J, Graur A, Kabbani N, Garcia-Rates S, Greenfield S. A Novel Bioactive Peptide, T14, Selectively Activates mTORC1 Signalling: Therapeutic Implications for Neurodegeneration and Other Rapamycin-Sensitive Applications. Int J Mol Sci 2023; 24:9961. [PMID: 37373106 PMCID: PMC10298579 DOI: 10.3390/ijms24129961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an increase in mTORC1 in PC12 cells, and ex vivo rat brain slices containing substantia nigra, but not mTORC2. The increase in mTORC1 by T30 in PC12 cells is attenuated by its blocker, NBP14. Moreover, in post-mortem human midbrain, T14 levels correlate significantly with mTORC1. Silencing mTORC1 reverses the effects of T30 on PC12 cells measured via AChE release in undifferentiated PC12 cells, whilst silencing mTORC2 does not. This suggests that T14 acts selectively via mTORC1. T14 blockade offers a preferable alternative to currently available blockers of mTOR as it would enable selective blockade of mTORC1, thereby reducing side effects associated with generalised mTOR blockade.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Anna Ashton
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Kashif Mahfooz
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Joanna Komorowska
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Alexandru Graur
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (A.G.); (N.K.)
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA; (A.G.); (N.K.)
| | - Sara Garcia-Rates
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| | - Susan Greenfield
- Neuro Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK; (A.A.); (K.M.); (J.K.); (S.G.-R.); (S.G.)
| |
Collapse
|
7
|
Greenfield SA, Ferrati G, Coen CW, Vadisiute A, Molnár Z, Garcia-Rates S, Frautschy S, Cole GM. Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease. Int J Mol Sci 2022; 23:ijms232113119. [PMID: 36361905 PMCID: PMC9654939 DOI: 10.3390/ijms232113119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
The substantia nigra is generally considered to show significant cell loss not only in Parkinson's but also in Alzheimer's disease, conditions that share several neuropathological traits. An interesting feature of this nucleus is that the pars compacta dopaminergic neurons contain acetylcholinesterase (AChE). Independent of its enzymatic role, this protein is released from pars reticulata dendrites, with effects that have been observed in vitro, ex vivo and in vivo. The part of the molecule responsible for these actions has been identified as a 14-mer peptide, T14, cleaved from the AChE C-terminus and acting at an allosteric site on alpha-7 nicotinic receptors, with consequences implicated in neurodegeneration. Here, we show that free T14 is co-localized with tyrosine hydroxylase in rodent pars compacta neurons. In brains with Alzheimer's pathology, the T14 immunoreactivity in these neurons increases in density as their number decreases with the progression of the disease. To explore the functional implications of raised T14 levels in the substantia nigra, the effect of exogenous peptide on electrically evoked neuronal activation was tested in rat brain slices using optical imaging with a voltage-sensitive dye (Di-4-ANEPPS). A significant reduction in the activation response was observed; this was blocked by the cyclized variant of T14, NBP14. In contrast, no such effect of the peptide was seen in the striatum, a region lacking the T14 target, alpha-7 receptors. These findings add to the accumulating evidence that T14 is a key signaling molecule in neurodegenerative disorders and that its antagonist NBP14 has therapeutic potential.
Collapse
Affiliation(s)
- Susan Adele Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
- Correspondence:
| | - Giovanni Ferrati
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Clive W. Coen
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK
| | - Auguste Vadisiute
- Department Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Zoltan Molnár
- Department Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Sara Garcia-Rates
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Sally Frautschy
- Department of Neurology & Medicine, David Geffen School of Medicine at UCLA and Veterans Affairs Healthcare System, Los Angeles, CA 90095, USA
| | - Gregory M. Cole
- Department of Neurology & Medicine, David Geffen School of Medicine at UCLA and Veterans Affairs Healthcare System, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
When a trophic process turns toxic: Alzheimer's disease as an aberrant recapitulation of a developmental mechanism. Int J Biochem Cell Biol 2022; 149:106260. [PMID: 35781081 DOI: 10.1016/j.biocel.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022]
Abstract
Here we review the idea that Alzheimer's disease (AD) results from aberrant activation of a normal developmental mechanism. This process operates in primarily vulnerable, subcortical nuclei with a distinguishing embryological provenance: the basal rather than the alar plate. All cells are dependent for growth on calcium influx yet these neurons retain a sensitivity to trophic factors into maturity. However, as the brain matures this action becomes detrimental such that the trophic process could turn toxic if triggered in adult brain, in retaliation to an initial insult. The signalling molecule driving this trophic-toxic mechanism is a 14mer peptide (T14) that acts on the alpha-7 receptor to enhance calcium entry, inducing excitotoxicity and proliferation of the receptor, perpetuating a feedforward cycle of neurodegeneration including production of beta-amyloid and p-tau. The T14 system has been previously unrecognised as a basic biological process, yet its pharmaceutical manipulation could have valuable clinical applications.
Collapse
|
9
|
Ferrati G, Bion G, Harris AJ, Greenfield S. Protective and reversal actions of a novel peptidomimetic against a pivotal toxin implicated in Alzheimer's disease. Biomed Pharmacother 2018; 109:1052-1061. [PMID: 30551355 DOI: 10.1016/j.biopha.2018.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022] Open
Abstract
Despite the many attempts to understand the aetiology of Alzheimer's disease, the basic mechanisms accounting for the progressive cycle of neuronal loss are still unknown. Previous work has suggested that the pivotal molecule mediating neurodegeneration could be an independently acting peptide cleaved from acetylcholinesterase. This previously unidentified agent acts as a signalling molecule in selectively vulnerable groups of cells where erstwhile developmental mechanisms are activated inappropriately to have a toxic effect in the context of the mature brain. We have previously shown that the toxic actions of this peptide, whose level is doubled in the Alzheimer brain, can be blocked by a cyclised variant (NBP14). However, the size and properties of NBP14 would render it unlikely as a feasible therapeutic candidate. Here therefore we test a synthetic peptidomimetic (NB-0193), modelled on the binding of NBP14 to the target alpha-7 nicotinic receptor, and benchmarked against it to screen for reversal effects using real-time optical imaging in rat brain slices. The blocking action of NB-0193 was confirmed by testing its effect against peptide-induced calcium influx in cell cultures, where it showed a dose-dependent profile over a trophic-toxic range. Moreover, NB-0193 presented promising pharmacokinetic characteristics and could therefore prompt a new therapeutic approach against Alzheimer's disease.
Collapse
Affiliation(s)
- Giovanni Ferrati
- Neuro-Bio Ltd, Culham Science Centre, Building F5, Abingdon, OX14 3DB, UK.
| | - Georgi Bion
- Neuro-Bio Ltd, Culham Science Centre, Building F5, Abingdon, OX14 3DB, UK
| | - Andrew J Harris
- Pharmidex, European Knowledge Centre, Hatfield, Hertfordshire, AL10 9SN, UK
| | - Susan Greenfield
- Neuro-Bio Ltd, Culham Science Centre, Building F5, Abingdon, OX14 3DB, UK
| |
Collapse
|
10
|
Brai E, Simon F, Cogoni A, Greenfield SA. Modulatory Effects of a Novel Cyclized Peptide in Reducing the Expression of Markers Linked to Alzheimer's Disease. Front Neurosci 2018; 12:362. [PMID: 29950969 PMCID: PMC6008575 DOI: 10.3389/fnins.2018.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Despite many studies attempt to identify the primary mechanisms underlying neurodegeneration in Alzheimer's disease (AD), the key events still remain elusive. We have previously shown that a peptide cleaved from the acetylcholinesterase (AChE) C-terminus (T14) can play a pivotal role as a signaling molecule in neurodegeneration, via its interaction with the α7 nicotinic acetylcholine receptor. The main goal of this study is to determine whether a cyclized variant (NBP14) of the toxic AChE-derived peptide can antagonize the effects of its linear counterpart, T14, in modulating well-known markers linked to neurodegeneration. We investigate this hypothesis applying NBP14 on ex-vivo rat brain slices containing the basal forebrain. Western blot analysis revealed an inhibitory action of NBP14 on naturally occurring T14 peptide, as well as on endogenous amyloid beta, whereas the expression of the nicotinic receptor and phosphorylated Tau was relatively unaffected. These results further confirm the neurotoxic properties of the AChE-peptide and show for the first time in an ex-vivo preparation the possible neuroprotective activity of NBP14, over a protracted period of hours, indicating that T14 pathway may offer a new prospect for therapeutic intervention in AD pathobiology.
Collapse
Affiliation(s)
- Emanuele Brai
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom
| | - Florian Simon
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom.,Department of Biotechnology, University of Nîmes, Nîmes, France
| | - Antonella Cogoni
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom
| | | |
Collapse
|
11
|
Praet J, Manyakov NV, Muchene L, Mai Z, Terzopoulos V, de Backer S, Torremans A, Guns PJ, Van De Casteele T, Bottelbergs A, Van Broeck B, Sijbers J, Smeets D, Shkedy Z, Bijnens L, Pemberton DJ, Schmidt ME, Van der Linden A, Verhoye M. Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-β-induced pathology. ALZHEIMERS RESEARCH & THERAPY 2018; 10:1. [PMID: 29370870 PMCID: PMC6389136 DOI: 10.1186/s13195-017-0329-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly population. In this study, we used the APP/PS1 transgenic mouse model to explore the feasibility of using diffusion kurtosis imaging (DKI) as a tool for the early detection of microstructural changes in the brain due to amyloid-β (Aβ) plaque deposition. METHODS We longitudinally acquired DKI data of wild-type (WT) and APP/PS1 mice at 2, 4, 6 and 8 months of age, after which these mice were sacrificed for histological examination. Three additional cohorts of mice were also included at 2, 4 and 6 months of age to allow voxel-based co-registration between diffusion tensor and diffusion kurtosis metrics and immunohistochemistry. RESULTS Changes were observed in diffusion tensor (DT) and diffusion kurtosis (DK) metrics in many of the 23 regions of interest that were analysed. Mean and axial kurtosis were greatly increased owing to Aβ-induced pathological changes in the motor cortex of APP/PS1 mice at 4, 6 and 8 months of age. Additionally, fractional anisotropy (FA) was decreased in APP/PS1 mice at these respective ages. Linear discriminant analysis of the motor cortex data indicated that combining diffusion tensor and diffusion kurtosis metrics permits improved separation of WT from APP/PS1 mice compared with either diffusion tensor or diffusion kurtosis metrics alone. We observed that mean kurtosis and FA are the critical metrics for a correct genotype classification. Furthermore, using a newly developed platform to co-register the in vivo diffusion-weighted magnetic resonance imaging with multiple 3D histological stacks, we found high correlations between DK metrics and anti-Aβ (clone 4G8) antibody, glial fibrillary acidic protein, ionised calcium-binding adapter molecule 1 and myelin basic protein immunohistochemistry. Finally, we observed reduced FA in the septal nuclei of APP/PS1 mice at all ages investigated. The latter was at least partially also observed by voxel-based statistical parametric mapping, which showed significantly reduced FA in the septal nuclei, as well as in the corpus callosum, of 8-month-old APP/PS1 mice compared with WT mice. CONCLUSIONS Our results indicate that DKI metrics hold tremendous potential for the early detection and longitudinal follow-up of Aβ-induced pathology.
Collapse
Affiliation(s)
- Jelle Praet
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | | | - Leacky Muchene
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Zhenhua Mai
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Icometrix R&D, Leuven, Belgium
| | - Vasilis Terzopoulos
- Icometrix R&D, Leuven, Belgium.,Institute for Biological and Medical Imaging, Technische Universität München, Munich, Germany
| | | | | | - Pieter-Jan Guns
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Expert Group Antwerp Molecular Imaging (EGAMI), University of Antwerp, Antwerp, Belgium
| | | | | | | | - Jan Sijbers
- imec-Vision Lab, University of Antwerp, Antwerp, Belgium
| | - Dirk Smeets
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.,Icometrix R&D, Leuven, Belgium
| | - Ziv Shkedy
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Luc Bijnens
- Janssen Research and Development, Beerse, Belgium
| | | | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Campus Drie Eiken (CDE-Uc1.14), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium.
| |
Collapse
|
12
|
Greenfield SA, Badin AS, Ferrati G, Devonshire IM. Optical imaging of the rat brain suggests a previously missing link between top-down and bottom-up nervous system function. NEUROPHOTONICS 2017; 4:031213. [PMID: 28573153 PMCID: PMC5443969 DOI: 10.1117/1.nph.4.3.031213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between "bottom-up" cellular mechanisms and "top-down" cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo, depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness.
Collapse
Affiliation(s)
- Susan A. Greenfield
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon, United Kingdom
| | - Antoine-Scott Badin
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon, United Kingdom
- University of Oxford, Department of Physiology, Anatomy & Genetics, Oxford, United Kingdom
| | - Giovanni Ferrati
- Neuro-Bio Ltd., Building F5, Culham Science Centre, Abingdon, United Kingdom
| | - Ian M. Devonshire
- Nottingham University Medical School, Queen’s Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
13
|
Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J Neurosci 2017; 36:5314-27. [PMID: 27170128 DOI: 10.1523/jneurosci.4333-15.2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/01/2016] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Acetylcholine and noradrenaline are major neuromodulators that affect sensory processing in the cortex. Modality-specific sensory information is processed in defined areas of the cortex, but it is unclear whether cholinergic neurons in the basal forebrain (BF) and noradrenergic neurons in the locus ceruleus (LC) project to and modulate these areas in a sensory modality-selective manner. Here, we mapped BF and LC projections to different sensory cortices of the mouse using dual retrograde tracing. We found that while the innervation of cholinergic neurons into sensory cortices is predominantly modality specific, the projections of noradrenergic neurons diverge onto multiple sensory cortices. Consistent with this anatomy, optogenetic activation of cholinergic neurons in BF subnuclei induces modality-selective desynchronization in specific sensory cortices, whereas activation of noradrenergic LC neurons induces broad desynchronization throughout multiple sensory cortices. Thus, we demonstrate a clear distinction in the organization and function of cholinergic BF and noradrenergic LC projections into primary sensory cortices: cholinergic BF neurons are highly selective in their projections and modulation of specific sensory cortices, whereas noradrenergic LC neurons broadly innervate and modulate multiple sensory cortices. SIGNIFICANCE STATEMENT Neuromodulatory inputs from the basal forebrain (BF) and locus ceruleus (LC) are widespread in the mammalian cerebral cortex and are known to play important roles in attention and arousal, but little is known about the selectivity of their cortical projections. Using a dual retrobead tracing technique along with optogenetic stimulation, we have identified anatomic and functional differences in the way cholinergic BF neurons and noradrenergic LC neurons project into primary sensory cortices. While BF projections are highly selective to individual sensory cortices, LC projections diverge into multiple sensory cortices. To our knowledge, this is the first definitive proof that BF and LC projections to primary sensory cortices show both anatomic and functional differences in selectivity for modulating cortical activity.
Collapse
|
14
|
Garcia-Ratés S, Morrill P, Tu H, Pottiez G, Badin AS, Tormo-Garcia C, Heffner C, Coen CW, Greenfield SA. (I) Pharmacological profiling of a novel modulator of the α7 nicotinic receptor: Blockade of a toxic acetylcholinesterase-derived peptide increased in Alzheimer brains. Neuropharmacology 2016; 105:487-499. [PMID: 26867503 DOI: 10.1016/j.neuropharm.2016.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
Abstract
The primary cause of Alzheimer's disease is unlikely to be the much studied markers amyloid beta or tau. Their widespread distribution throughout the brain does not account for the specific identity and deep subcortical location of the primarily vulnerable neurons. Moreover an unusual and intriguing feature of these neurons is that, despite their diverse transmitters, they all contain acetylcholinesterase. Here we show for the first time that (1) a peptide derived from acetylcholinesterase, with independent trophic functions that turn toxic in maturity, is significantly raised in the Alzheimer midbrain and cerebrospinal fluid; (2) a synthetic version of this peptide enhances calcium influx and eventual production of amyloid beta and tau phosphorylation via an allosteric site on the α7 nicotinic receptor; (3) a synthetic cyclic version of this peptide is neuroprotective against the toxicity not only of its linear counterpart but also of amyloid beta, thereby opening up the prospect of a novel therapeutic approach.
Collapse
Affiliation(s)
- Sara Garcia-Ratés
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom.
| | - Paul Morrill
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Henry Tu
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Gwenael Pottiez
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Antoine-Scott Badin
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Cristina Tormo-Garcia
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Catherine Heffner
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Clive W Coen
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Susan A Greenfield
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| |
Collapse
|
15
|
Badin AS, Morrill P, Devonshire IM, Greenfield SA. (II) Physiological profiling of an endogenous peptide in the basal forebrain: Age-related bioactivity and blockade with a novel modulator. Neuropharmacology 2016; 105:47-60. [PMID: 26773199 DOI: 10.1016/j.neuropharm.2016.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/06/2016] [Indexed: 01/15/2023]
Abstract
Previous studies have suggested that neurodegeneration is an aberrant form of development, mediated by a novel peptide from the C-terminus of acetylcholinesterase (AChE). Using voltage-sensitive dye imaging we have investigated the effects of a synthetic version of this peptide in the in vitro rat basal forebrain, a key site of degeneration in Alzheimer's disease. The brain slice preparation enables direct visualisation in real-time of sub-second meso-scale neuronal coalitions ('Neuronal Assemblies') that serve as a powerful index of brain functional activity. Here we show that (1) assemblies are site-specific in their activity profile with the cortex displaying a significantly more extensive network activity than the sub-cortical basal forebrain; (2) there is an age-dependency, in both cortical and sub-cortical sites, with the younger brain (p14 rats) exhibiting more conspicuous assemblies over space and time compared to their older counterparts (p35-40 rats). (3) AChE-derived peptide significantly modulates the dynamics of neuronal assemblies in the basal forebrain of the p14 rat with the degree of modulation negatively correlated with age, (4) the differential in assembly size with age parallels the level of endogenous peptide in the brain, which also declines with maturity, and (5) this effect is completely reversed by a cyclised variant of AChE-peptide, 'NBP14'. These observations are attributed to an enhanced calcium entry that, according to developmental stage, could be either trophic or toxic, and as such may provide insight into the basic neurodegenerative process as well as an eventual therapeutic intervention.
Collapse
Affiliation(s)
- Antoine-Scott Badin
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom.
| | - Paul Morrill
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Ian M Devonshire
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| | - Susan A Greenfield
- Neuro-Bio Ltd, Building F5, Culham Science Centre, Oxfordshire, OX14 3DB, United Kingdom
| |
Collapse
|
16
|
Babiloni C, Pennica A, Del Percio C, Noce G, Cordone S, Muratori C, Ferracuti S, Donato N, Di Campli F, Gianserra L, Teti E, Aceti A, Soricelli A, Viscione M, Limatola C, Andreoni M, Onorati P. Abnormal cortical sources of resting state electroencephalographic rhythms in single treatment-naïve HIV individuals: A statistical z-score index. Clin Neurophysiol 2015; 127:1803-12. [PMID: 26762948 DOI: 10.1016/j.clinph.2015.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/26/2015] [Accepted: 12/05/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study tested a simple statistical procedure to recognize single treatment-naïve HIV individuals having abnormal cortical sources of resting state delta (<4 Hz) and alpha (8-13 Hz) electroencephalographic (EEG) rhythms with reference to a control group of sex-, age-, and education-matched healthy individuals. Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values were expected to show worse cognitive status. METHODS Resting state eyes-closed EEG data were recorded in 82 treatment-naïve HIV (39.8 ys.±1.2 standard error mean, SE) and 59 age-matched cognitively healthy subjects (39 ys.±2.2 SE). Low-resolution brain electromagnetic tomography (LORETA) estimated delta and alpha sources in frontal, central, temporal, parietal, and occipital cortical regions. RESULTS Ratio of the activity of parietal delta and high-frequency alpha sources (EEG marker) showed the maximum difference between the healthy and the treatment-naïve HIV group. Z-score of the EEG marker was statistically abnormal in 47.6% of treatment-naïve HIV individuals with reference to the healthy group (p<0.05). Compared to the HIV individuals with a statistically normal EEG marker, those with abnormal values exhibited lower mini mental state evaluation (MMSE) score, higher CD4 count, and lower viral load (p<0.05). CONCLUSIONS This statistical procedure permitted for the first time to identify single treatment-naïve HIV individuals having abnormal EEG activity. SIGNIFICANCE This procedure might enrich the detection and monitoring of effects of HIV on brain function in single treatment-naïve HIV individuals.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCCS S. Raffaele Pisana, Rome, Italy.
| | - Alfredo Pennica
- Infectious Diseases, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | | | | | - Susanna Cordone
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | | | - Stefano Ferracuti
- Psychiatry, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Nicole Donato
- Psychiatry, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Francesco Di Campli
- Infectious Diseases, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Laura Gianserra
- Infectious Diseases, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Elisabetta Teti
- Infectious Diseases, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Antonio Aceti
- Infectious Diseases, Faculty of Medicine and Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Magdalena Viscione
- Clinical Infectious Diseases, University of Rome "Tor Vergata", Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Massimo Andreoni
- Clinical Infectious Diseases, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Onorati
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCCS S. Raffaele Pisana, Rome, Italy
| |
Collapse
|
17
|
Small GW, Greenfield S. Current and Future Treatments for Alzheimer Disease. Am J Geriatr Psychiatry 2015; 23:1101-5. [PMID: 26614911 DOI: 10.1016/j.jagp.2015.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior (GWS), UCLA Longevity Center, David Geffen School of Medicine, University of California, Los Angeles, CA.
| | - Susan Greenfield
- Department of Pharmacology (SG), University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Antiretroviral therapy effects on sources of cortical rhythms in HIV subjects: Responders vs. Mild Responders. Clin Neurophysiol 2015; 126:68-81. [DOI: 10.1016/j.clinph.2014.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 03/31/2014] [Indexed: 11/17/2022]
|
19
|
Chubykin AA, Roach EB, Bear MF, Shuler MGH. A cholinergic mechanism for reward timing within primary visual cortex. Neuron 2013; 77:723-35. [PMID: 23439124 DOI: 10.1016/j.neuron.2012.12.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 11/30/2022]
Abstract
Neurons in rodent primary visual cortex (V1) relate operantly conditioned stimulus-reward intervals with modulated patterns of spiking output, but little is known about the locus or mechanism of this plasticity. Here we show that cholinergic basal forebrain projections to V1 are necessary for the neural acquisition, but not the expression, of reward timing in the visual cortex of awake, behaving animals. We then mimic reward timing in vitro by pairing white matter stimulation with muscarinic receptor activation at a fixed interval and show that this protocol results in the prolongation of electrically evoked spike train durations out to the conditioned interval. Together, these data suggest that V1 possesses the circuitry and plasticity to support reward time prediction learning and the cholinergic system serves as an important reinforcement signal which, in vivo, conveys to the cortex the outcome of behavior.
Collapse
Affiliation(s)
- Alexander A Chubykin
- Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
20
|
Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. J Neurosci 2010; 30:13431-40. [PMID: 20926669 DOI: 10.1523/jneurosci.1144-10.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Both acetylcholine (ACh) and theta oscillations are important for learning and memory, but the dynamic interaction between these two processes remains unclear. Recent advances in amperometry techniques have revealed phasic ACh releases in vivo. However, it is unknown whether phasic ACh release co-occurs with theta oscillations. We investigated this issue in the CA1 region of urethane-anesthetized male rats using amperometric and electrophysiological recordings. We found that ACh release was highly correlated with the appearance of both spontaneous and induced theta oscillations. Moreover, the maximal ACh release was observed around or slightly above the pyramidal layer. Interestingly, such release lagged behind theta initiation by 25-60 s. The slow ACh release profile was matched by the slow firing rate increase of a subset of medial-septal low-firing-rate neurons. Together, these results establish, for the first time, the in vivo coupling between phasic ACh release and theta oscillations on spatiotemporal scales much finer than previously known. These findings also suggest that phasic ACh is not required for theta initiation and may instead operate synergistically with theta oscillations to promote neural plasticity in the service of learning and memory.
Collapse
|
21
|
Evaluation of a technique to identify acetylcholinesterase C-terminal peptides in human serum samples. Chem Biol Interact 2010; 187:110-4. [DOI: 10.1016/j.cbi.2010.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/20/2010] [Accepted: 02/09/2010] [Indexed: 11/20/2022]
|
22
|
Memory systems in the chick: regional and temporal control by noradrenaline. Brain Res Bull 2008; 76:170-82. [PMID: 18498929 DOI: 10.1016/j.brainresbull.2008.02.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/21/2007] [Accepted: 02/11/2008] [Indexed: 12/30/2022]
Abstract
Learning starts with the information about a situation or experience delivered to different brain areas in terms of visual, olfactory, auditory and tactile inputs. Memory processing occurs in different brain locations in a well-defined temporal sequence of physiologically based stages and biochemical cascades. Using neuropharmacological techniques in one species and a robust bead discrimination task, we have been able to chart the passage of memory from acquisition to consolidation in the chick and to dissect out the multiple roles for noradrenaline in consolidating this memory. Fortunately only a small fraction of sensory input is remembered and it is clear that modulatory neurotransmitters play a key role in determining what is remembered. We have identified roles for noradrenaline in the mesopallium or 'avian cortex', the hippocampus, medial striatum or basal ganglia and teased out the different effects of noradrenaline in each of these areas based on the receptor subtypes activated by the transmitter and the stages on which they act. Noradrenergic input from the locus coeruleus controls memory processing at two critical times after training-acquisition (0-2.5 min after training) and consolidation (25-30 min after training). We have also elucidated some of the cellular mechanisms whereby noradrenaline achieves memory modulation and finds that it has actions on both neurones and astrocytes with particularly important effects on energy metabolism in astrocytes. The memory system of the chick is very similar to that of mammals in terms of brain regions recruited in memory processing and in the ways memory is modulated by noradrenaline.
Collapse
|
23
|
|
24
|
Abstract
This study presents a new theory to explain the neural origins of human mind. This is the psychomotor theory. The author briefly analyzed the historical development of the mind-brain theories. The close relations between psychological and motor systems were subjected to a rather detailed analysis, using psychiatric and neurological examples. The feedback circuits between mind, brain, and body were shown to occur within the mind-brain-body triad, in normal states, and psycho-neural diseases. It was stated that psychiatric signs and symptoms are coupled with motor disturbances; neurological diseases are coupled with psychological disturbances; changes in cortico-spinal motor-system activity may influence mind-brain-body triad, and vice versa. Accordingly, a psychomotor theory was created to explain the psychomotor coupling in health and disease, stating that, not the mind-brain duality or unity, but the mind-brain-body triad as a functional unit may be essential in health and disease, because mind does not end in the brain, but further controls movements, in a reciprocal manner; mental and motor events share the same neural substrate, cortical, and spinal motoneurons; mental events emerging from the motoneuronal system expressed by the human language may be closely coupled with the unity of the mind-brain-body triad. So, the psychomotor theory rejects the mind-brain duality and instead advances the unity of the psychomotor system, which will have important consequences in understanding and improving the human mind, brain, and body in health and disease.
Collapse
Affiliation(s)
- Uner Tan
- Department of Physics, Cukurova University, Adana, Turkey.
| |
Collapse
|
25
|
Boonstra TW, Stins JF, Daffertshofer A, Beek PJ. Effects of sleep deprivation on neural functioning: an integrative review. Cell Mol Life Sci 2007; 64:934-46. [PMID: 17347797 PMCID: PMC2778638 DOI: 10.1007/s00018-007-6457-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research.
Collapse
Affiliation(s)
- T W Boonstra
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Caplan JB, McIntosh AR, De Rosa E. Two Distinct Functional Networks for Successful Resolution of Proactive Interference. Cereb Cortex 2006; 17:1650-63. [PMID: 16968868 DOI: 10.1093/cercor/bhl076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In proactive interference (PI) paradigms, previous learning impairs the acquisition of new, related information. In rats, efficient resolution of PI relies on cholinergic modulation from the basal forebrain (BF). To test whether humans resolve PI using a functional network dependent on the medial septum/diagonal band of Broca (MS/DB) nuclei of the BF, we analyzed functional magnetic resonance imaging signal recorded while human participants learned to respond to baseline color paired associates and then additional pairs that interfered with the baseline pairs. Multivariate, partial least-squares analysis supported a MS/DB-dependent functional network: MS/DB activity covaried with activity in areas important to selective attention, including intraparietal sulcus, and memory that are direct cholinergic efferents of the MS/DB, including the hippocampus, as well as the ventrolateral prefrontal cortex, implicated in PI resolution. This network was associated with effective PI-resolution behavior. A second network also correlated with PI resolution but appearing not to be driven by the MS/DB, included the lateral orbitofrontal cortex. Patients with compromised BF function did not engage the MS/DB-dependent network reliably; instead their PI-resolution behavior was well explained by the second network. Thus, 2 functional networks may underly a single cognitive function; when the MS/DB-dependent attention/memory integration network is compromised, an alternate network is available to maintain normal levels of performance.
Collapse
Affiliation(s)
- Jeremy B Caplan
- The Rotman Research Institute-Baycrest Centre, 3560 Bathurst St., Toronto, Ontario M6A 2E1, Canada.
| | | | | |
Collapse
|
27
|
Chance SA, Casanova MF, Switala AE, Crow TJ, Esiri MM. Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 2006; 111:459-64. [PMID: 16496164 DOI: 10.1007/s00401-005-0014-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/06/2005] [Accepted: 10/10/2005] [Indexed: 12/24/2022]
Abstract
The cerebral cortex undergoes changes during normal ageing with increasing effect on cognition. Disruption of minicolumnar organization of neurons is found with increased cognitive impairment in primates. We measured the minicolumn spacing and organization of cells in Heschl's gyrus (primary auditory cortex, A1), the Planum Temporale (Tpt, BA22), and middle temporal gyrus (MTG, BA21) of 17 normally aged human adults. Age-associated minicolumn thinning was found in temporal lobe association cortex (Tpt and MTG) but not primary auditory cortex (HG). Minicolumn thinning was also associated with greater plaque load, although this effect was present in all areas. The regional variability of age-associated minicolumn thinning reflects the regionally selective progression of tangle pathology in Alzheimer's Disease (AD). The generalized effect of plaque load persists when controlling for age. Therefore plaque load combines with age to increase minicolumn thinning, which may reflect increasing risk of AD. Since old age is the greatest risk factor for dementia, the transition to dementia may involve an extension of normal ageing processes.
Collapse
Affiliation(s)
- Steven A Chance
- Department of Neuropathology, Radcliffe Infirmary, Woodstock Road, OX2 6HE, Oxford, UK.
| | | | | | | | | |
Collapse
|
28
|
Vakalopoulos C. Neuropharmacology of cognition and memory: A unifying theory of neuromodulator imbalance in psychiatry and amnesia. Med Hypotheses 2006; 66:394-431. [PMID: 16300905 DOI: 10.1016/j.mehy.2005.09.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 12/14/2022]
Abstract
The case of HM, a man with intractable epilepsy who became amnesic following bilateral medial temporal lobe surgery nearly half a century ago has instigated ongoing research and theoretical speculation on the nature of memory and the role of the hippocampus. Neuropsychological testing showed that although HM had extensive anterograde memory loss he could still acquire motor and cognitive skills implicitly, but could not remember the context of this learning. This has lead to declarative and procedural descriptions of the memory process. Cholinergic and monoaminergic neurotransmitter systems have also been implicated in the memory process and anticholinergic drugs traditionally have been associated with impairment of declarative memory. The cholinergic hypothesis of Alzheimer's disease is a classic example of an application of these neuropharmacological findings. In schizophrenia, preattentive deficits have been amply demonstrated by unconscious priming studies. Memory processes are also impaired in these patients. Dopamine, glutamate and even cholinergic dysfunction has been implicated in the clinical picture of schizophrenia. The present paper will attempt to bring together both the anatomical and pharmacological data from these disparate fields of research under a cohesive theory of cognition and memory. A hypothesis is presented for an inverse relationship between monoaminergic and cholinergic systems in the modulation of implicit (unconscious) and explicit (conscious) cognitive processes. It is postulated that muscarinic cholinergic receptors and monoaminergic systems facilitate unconscious and conscious processes, respectively, and they disfacilitate conscious and unconscious processes, respectively (the purported inverse relationship). In fact, the muscarinic and monoaminergic modulations of a neural network are proposed to be finely balanced such that, if, the activity of one receptor system is modified then this by necessity has effects on the other system. It takes into account receptor subtypes and their effects mediated through excitatory and inhibitory G-protein complexes. For example, m1/D2 and D1/m4 paired receptor subtypes, colocalized on separate neurons would have opposing functional effects. A theory is then presented that the critical underlying pathophysiology of schizophrenia involves a hypofunctional muscarinic cholinergic system, which induces abnormal facilitation of monoaminergic subsystems such as dopamine (e.g., a decrease in m1R function would potentiate D2R function). This extends the idea of an inverted U function for optimal monoaminergic concentrations. Not only would this impair unconscious preattentive processes, but according to the hypothesis, explicit cognition as well including memory deficits and would underlie the mechanism of psychosis. Contrary to current thinking a different view is also presented for the role of the hippocampus in the memory process. It is postulated that long-term explicit memory traces in the neocortex are laid down by phasic coactivation of forebrain projecting monoaminergic systems above some basal firing rate, such as the rostral serotonergic raphe, which projects diffusely to the cortex and according to a modified Hebbian principle. This is the proposed principal function of the hippocampal theta rhythm. The phasic activation of the cholinergic basal forebrain is mediated by projections from a separate cortical structure, possibly the lateral prefrontal cortex. Phasic muscarinic receptor activation is proposed to strengthen implicit memory traces (at a synaptic level) in the neocortex. Thus, the latter are spared by medial temporal surgery explaining the dissociation of explicit from implicit memory.
Collapse
|
29
|
Greenfield S. A peptide derived from acetylcholinesterase is a pivotal signalling molecule in neurodegeneration. Chem Biol Interact 2005; 157-158:211-8. [PMID: 16297900 DOI: 10.1016/j.cbi.2005.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now widely accepted that acetylcholinesterase (AChE) also displays non-cholinergic functions, completely independent of cholinergic transmission. Indeed, AChE has been implicated in a variety of trophic and toxic actions in a range of different systems. However, it is still uncertain what part of the AChE molecule may be responsible for these actions, and indeed via what receptor. Recent work has identified a peptide towards the C-terminus of the AChE molecule that appears to have very similar effects to non-cholinergic AChE itself. This action is to enhance calcium entry, in acute and chronic preparations across a trophic-toxic spectrum, depending on concentration applied and/or duration of exposure.
Collapse
Affiliation(s)
- Susan Greenfield
- University Department of Pharmacology, Mansfield Rd., Oxford OX1 3QT, UK.
| |
Collapse
|
30
|
Greenfield S, Vaux DJ. Parkinson's disease, Alzheimer's disease and motor neurone disease: identifying a common mechanism. Neuroscience 2002; 113:485-92. [PMID: 12150769 DOI: 10.1016/s0306-4522(02)00194-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although Alzheimer's disease, Parkinson's disease, and motor neurone disease are distinct disorders, there could be a common neurodegenerative mechanism that characterises the death of selective neurone populations in each case. We propose that this mechanism could be an aberrantly activated, developmental process involving a non-classical, non-enzymatic action of acetylcholinesterase mediated via a short linear motif near the C-terminal end of the molecule. Since this motif has a highly conserved homology with part of the amyloid precursor protein, it may be particularly attractive as a target for novel therapeutic strategies in neurodegeneration.
Collapse
Affiliation(s)
- S Greenfield
- University Department of Pharmacology, Mansfield Road, OX1 3QT, Oxford, UK.
| | | |
Collapse
|
31
|
Abstract
What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule subunit proteins ("tubulins") within certain brain neurons, remain coherent, and recruit more superposed tubulins until a mass-time-energy threshold (related to quantum gravity) is reached. At that point, self-collapse, or objective reduction (OR), abruptly occurs. We equate the pre-reduction, coherent superposition ("quantum computing") phase with pre-conscious processes, and each instantaneous (and non-computable) OR, or self-collapse, with a discrete conscious event. Sequences of OR events give rise to a "stream" of consciousness. Microtubule-associated proteins can "tune" the quantum oscillations of the coherent superposed states; the OR is thus self-organized, or "orchestrated" ("Orch OR"). Each Orch OR event selects (non-computably) microtubule subunit states which regulate synaptic/neural functions using classical signaling. The quantum gravity threshold for self-collapse is relevant to consciousness, according to our arguments, because macroscopic superposed quantum states each have their own spacetime geometries. These geometries are also superposed, and in some way "separated," but when sufficiently separated, the superposition of spacetime geometries becomes significantly unstable and reduces to a single universe state. Quantum gravity determines the limits of the instability; we contend that the actual choice of state made by Nature is non-computable. Thus each Orch OR event is a self-selection of spacetime geometry, coupled to the brain through microtubules and other biomolecules. If conscious experience is intimately connected with the very physics underlying spacetime structure, then Orch OR in microtubules indeed provides us with a completely new and uniquely promising perspective on the difficult problems of consciousness.
Collapse
Affiliation(s)
- S Hameroff
- Department of Anesthesiology and Psychology, Center for Consciousness Studies, University of Arizona, Tucson, Arizona, USA. ,
| |
Collapse
|
32
|
Elevation of nerve growth factor and antisense knockdown of TrkA receptor during contextual memory consolidation. J Neurosci 2001. [PMID: 11157090 DOI: 10.1523/jneurosci.21-03-01047.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report here a series of experiments establishing a role for nerve growth factor and its high-affinity receptor TrkA in contextual memory consolidation. In all experiments, we trained rats in a novel chamber using tone and shock. Our first experiment revealed that endogenous nerve growth factor (NGF) increases in the hippocampus at a critical time during consolidation that occurs 1 week after training. NGF levels at other intervals (24 hr and 2 and 4 weeks after training) did not differ from those of naive control animals. In our second experiment, we blocked effects that NGF has at 1 week after training by infusing antisense TrkA phosphorothioate DNA oligonucleotide. Reduction of septohippocampal TrkA receptor expression selectively impaired memory consolidation for context but not for tone. Animals with antisense TrkA oligonucleotide infused into the medial septal area or CA1 of the hippocampus froze less when placed in the training chamber than did animals infused with inactive randomized oligonucleotide. At 4 weeks after training, antisense TrkA oligonucleotide had no effect on freezing. Third, we correlated levels of freezing with choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) immunohistochemistry. Antisense TrkA infused into CA1 of the hippocampus reduced cell body cross-sectional area for cholinergic cells in the medial septal area and decreased the density of hippocampal terminals labeled for ChAT and VAChT proteins. Cholinergic cell body measurements were significantly correlated with freezing. Taken together, these results indicate a role for nerve growth factor acting via the TrkA receptor on ChAT and VAChT proteins in contextual memory consolidation.
Collapse
|
33
|
Woolf NJ. Dendritic encoding: an alternative to temporal synaptic coding of conscious experience. Conscious Cogn 1999; 8:447-54. [PMID: 10600243 DOI: 10.1006/ccog.1999.0385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this commentary, arguments are made for a dendritic code being preferable to a temporal synaptic code as a model of conscious experience. A temporal firing pattern is a product of an ongoing neural computation; hence, it is based on a neural algorithm and an algorithm may not provide the most suitable model for conscious experience. Reiteration of a temporal firing code as suggested in a preceding article (Helekar, 1999) does not necessarily improve the situation. The alternative model presented here is that certain synaptic activity patterns, possibly those possessing universal features as suggested by Helekar, can become encoded in the dendritic structure. Following dendritic encoding, quantum phenomena in those specific dendrite sets could illuminate the static image of that encoded synaptic activity. It is the activation of the static image that would be equivalent to conscious experience; thus, conscious awareness would not be directly affiliated with synaptic activity. This dendrite encoding model may go farther than other models to explain the gestalt nature of consciousness, insofar as quantum entanglement could produce an interconnectedness between specific sets of dendrites-an interconnectedness that need not be based on neural computation or neural connections.
Collapse
Affiliation(s)
- N J Woolf
- Department of Psychology, University of California, Los Angeles, California 90095-1563, USA.
| |
Collapse
|
34
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
35
|
Kichigina VF, Kudina TA, Zenchenko KI, Vinogradova OS. Background activity of rabbit hippocampal neurons in conditions of functional exclusion of structures which regulate the theta rhythm. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1999; 29:377-84. [PMID: 10582218 DOI: 10.1007/bf02461072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The functional importance of theta modulation in the activity of hippocampal neurons was further analyzed using a method consisting of controlled sequential short-term (25-30 min) inclusion or exclusion of the theta rhythm by local administration of lidocaine into the median cervical nucleus and medial septal region respectively. Studies were carried out using conscious rabbits with extracellular recording of hippocampal neuron activity in field CA1. Administration of lidocaine into the medial septal nucleus and diagonal tract nucleus (MS-DT) led to complete inhibition of theta modulation in neuronal and total hippocampus activity. The mean frequency of background discharges underwent no change in most neurons, but decreased significantly in a limited group of cells with high-frequency activity (presumptive inhibitory neurons). Administration of lidocaine into the median cervical nucleus (MCN), the source of serotoninergic pathways to the MS-DT and hippocampus, was accompanied by increases in the stability and frequency of theta modulation of neuronal activity, induction of theta modulation in an additional group of neurons, and expression of a continuous theta rhythm in the electrical activity (EA) of the hippocampus. The mean frequency and regularity of discharges increased in most cells. These data support the existence of tonic inhibitory effects on the part of the MCN on the septa-hippocampal system generating the theta rhythm; in this regard, the MCN can be regarded as an antagonist of the activating reticular formation.
Collapse
Affiliation(s)
- V F Kichigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino
| | | | | | | |
Collapse
|
36
|
Woolf NJ, Zinnerman MD, Johnson GV. Hippocampal microtubule-associated protein-2 alterations with contextual memory. Brain Res 1999; 821:241-9. [PMID: 10064810 DOI: 10.1016/s0006-8993(99)01064-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Using immunohistochemistry and immunoblots, we show that alterations in hippocampal microtubule-associated protein-2 appear to be highly correlated with contextual memory as measured by significantly heightened fear responses. Compared to naive controls, rats trained in a novel context showed significantly increased immunostaining for the high molecular weight microtubule-associated protein-2a/b. This increase was observed 2 weeks after training and it was selective for hippocampal CA1 and CA2 pyramidal cells. Pre-exposure to the training context one month before training altered the hippocampal microtubule-associated protein-2 response; in these animals only the dentate gyrus showed significantly increased microtubule-associated protein-2a/b. Training-related increases in immunohistochemical staining for microtubule-associated protein-2 suggested that there was an increase in overall intact protein, an increase in immunoreactive breakdown products, or changes in protein compartmentalization. Immunoblots of hippocampal homogenates reacted with monoclonal antibodies to microtubule-associated protein-2a/b showed an increased presence of breakdown products in trained animals compared to untrained controls. Additional immunoblot studies demonstrated statistically significant decreases in the levels and/or phosphorylation state of the low molecular weight microtubule-associated protein-2c in the hippocampus of trained animals as compared to that of controls. These alterations in microtubule-associated protein-2 may reflect dendritic remodeling related to contextual memory storage.
Collapse
Affiliation(s)
- N J Woolf
- Laboratory of Chemical Neuroanatomy, and Department of Psychology, UCLA, 405 Hilgard Ave., Los Angeles, CA 90095-1563, USA.
| | | | | |
Collapse
|
37
|
Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur J Neurosci 1998; 10:2887-95. [PMID: 9758158 DOI: 10.1111/j.1460-9568.1998.00294.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cortical glutamatergic fibres and cholinergic inputs arising from large aspiny interneurons converge on striatal spiny neurons and play a major role in the control of motor activity. We have investigated the interaction between excitatory amino acids and acetylcholine (ACh) on striatal spiny neurons by utilizing intracellular recordings, both in current- and in voltage-clamp mode in rat brain slices. Muscarine (0.3-10 microM) produced a reversible and dose-dependent increase in the membrane depolarizations/inward currents induced by brief applications of N-methyl-D-aspartate (NMDA), while it did not affect the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-induced responses. These concentrations of muscarine did not alter the membrane potential and the current-voltage relationship of the recorded cells. Neostigmine (0.3-10 microM), an ACh-esterase inhibitor, mimicked this facilitatory effect. The facilitatory effects of muscarine and neostigmine were antagonized either by scopolamine (3 microM) or by pirenzepine (10-100 nM), an antagonist of M1-like muscarinic receptors, but not by methoctramine (300 nM), an antagonist of M2-like muscarinic receptor. Accordingly, these facilitatory effects were mimicked by McN-A-343 (1-10 microM), an agonist of M1-like muscarinic receptors, but not by oxotremorine (300 nM), an agonist of M2-like receptors. Tetrodotoxin (TTX) did not block the facilitatory effect produced by the activation of muscarinic receptors suggesting that this effect is postsynaptically mediated. The action of neostigmine was prevented either by the intracellular calcium (Ca2+) chelator BAPTA (200 mM) or by preincubating the slices with inhibitors of protein kinase C (PKC) (staurosporine 100 nM or calphostin C 1 microM). McN-A-343 did not alter the excitatory post synaptic potentials (EPSPs) evoked by corticostriatal stimulation in the presence of physiological concentration of magnesium (Mg2+ 1.2 mM), while it enhanced the duration of these EPSPs recorded in the absence of external magnesium. Our data show that endogenous striatal ACh exerts a positive modulatory action on NMDA responses via M1-like muscarinic receptors and PKC activation.
Collapse
Affiliation(s)
- P Calabresi
- Clinica Neurologica, Dip. Neuroscienze, Università di Roma Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
38
|
Abstract
It is proposed that altered dendrite length and de novo formation of new dendrite branches in cholinoceptive cells are responsible for long-term memory storage, a process enabled by the degradation of microtubule-associated protein-2. These memories are encoded as modality-specific associable representations. Accordingly, associable representations are confined to cytoarchitectonic modules of the cerebral cortex, hippocampus, and amygdala. The proposed sequence of events leading to long-term storage in cholinoceptive dendrites begins with changes in neuronal activity, then in neurotrophin release, followed by enhanced acetylcholine release, muscarinic response, calcium influx, degradation of microtubule-associated protein-2, and finally new dendrite structure. Hypothetically, each associable representation consists of altered dendrite segments from approximately 5000-15,000 cholinoceptive cells contained within one or a few module(s). Simultaneous restructuring during consolidation of long-term memory is hypothesized to result in a similar infrastructure among dendrite sets, facilitating co-activation of those dendrite sets by neurotransmitters such as acetylcholine, and conceivably enabling high energy interactions between those dendrites by phenomena such as quantum optical coherence. Based on the specific architecture proposed, it is estimated that the human telecephalon contains enough dendrites to encode 50 million associable representations in a lifetime, or put another way, to encode one new associable representation each minute. The implications that this proposal has regarding treatments for Alzheimer's disease are also discussed.
Collapse
Affiliation(s)
- N J Woolf
- Laboratory of Chemical Neuroanatomy, University of California, Los Angeles 90095-1563, USA. ,
| |
Collapse
|
39
|
Woolf NJ. A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Conscious Cogn 1997; 6:574-96. [PMID: 9479485 DOI: 10.1006/ccog.1997.0319] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excitation at widely dispersed loci in the cerebral cortex may represent a neural correlate of consciousness. Accordingly, each unique combination of excited neurons would determine the content of a conscious moment. This conceptualization would be strengthened if we could identify what orchestrates the various combinations of excited neurons. In the present paper, cholinergic afferents to the cerebral cortex are hypothesized to enhance activity at specific cortical circuits and determine the content of a conscious moment by activating certain combinations of postsynaptic sites in select cortical modules. It is proposed that these selections are enabled by learning-related restructuring that simultaneously adjusts the cytoskeletal matrix at specific constellations of postsynaptic sites giving all a similar geometry. The underlying mechanism of conscious awareness hypothetically involves cholinergic mediation of linkages between microtubules and microtubule-associated protein-2 (MAP-2). The first reason for proposing this mechanism is that previous studies indicate cognitive-related changes in MAP-2 occur in cholinoceptive cells within discrete cortical modules. These cortical modules are found throughout the cerebral cortex, measure 1-2 mm2, and contain approximately 10(3)-10(4) cholinoceptive cells that are enriched with MAP-2. The subsectors of the hippocampus may function similarly to cortical modules. The second reason for proposing the current mechanism is that the MAP-2 rich cells throughout the cerebral cortex correspond almost exactly with the cortical cells containing muscarinic receptors. Many of these cholinoceptive, MAP-2 rich cells are large pyramidal cell types, but some are also small pyramidal cells and nonpyramidal types. The third reason for proposing the current mechanism is that cholinergic afferents are module-specific; cholinergic axons terminate wholly within individual cortical modules. The cholinergic afferents may be unique in this regard. Finally, the tapering apical dendrites of pyramidal cells are proposed as primary sites for cholinergic mediation of linkages between MAP-2 and microtubules because especially high amounts of MAP-2 are found here. Also, the possibility is raised that muscarinic actions on MAP-2 could modulate microtubular coherence and self-collapse, phenomena that have been suggested to underlie consciousness.
Collapse
Affiliation(s)
- N J Woolf
- Department of Psychology, University of California, Los Angeles 90095-1563, USA
| |
Collapse
|