1
|
Marchese NA, Ríos MN, Guido ME, Valdez DJ. Three different seasonally expressed opsins are present in the brain of the Eared Dove, an opportunist breeder. ZOOLOGY 2024; 162:126147. [PMID: 38277721 DOI: 10.1016/j.zool.2024.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Birds living at high latitudes perceive the photoperiod through deep-brain photoreceptors (DBP) located in deep-brain neurons. During long photoperiods the information transmitted by these photoreceptors increases the activity of the hypothalamic-pituitary-gonadal (HPG) axis, leading to gonadal development. The presence of photopigments such as VA-Opsin, Opn4, Opn5 and Opn2 in brain areas implicated in reproductive behaviors has been firmly established in several avian species with seasonal breeding, whereas their existence in opportunistic breeding birds remains unconfirmed. The Eared Dove is an urban and peri-urban dove that breeds throughout the year. Males of this species do not exhibit the typical gonadal regression/recrudescence cycle, thus posing the question of what occurs upstream of the HPG axis. We addressed this issue by first studying the presence of diverse opsins located in DBP in the brains of Eared Dove males and whether these photopigments changed their expression throughout the year. We carried out an immunohistochemistry analysis on three different opsins: Opn2 (rhodopsin), Opn3 and Opn5. Our results demonstrate the discrete neuroanatomical distribution of these opsins in the brain of Eared Dove males and strongly indicate different seasonal expressions. In the anterior region of the hypothalamus, Opn2-positive cells were detected throughout the year. By contrast, Opn5 was found to be strongly and seasonally expressed during winter in the anterior and the hypothalamic region. Opn3 was also found to be significantly and seasonally expressed during winter in the hypothalamic region. We thus demonstrate for the first time that males of the Eared Dove, have three different deep-brain opsin-expressing photoreceptors with differential location/distribution in the anterior and hypothalamic region and differential seasonality. The persistence of Opn2 and the strong seasonal expression of nonvisual photopigments Opn3 and Opn5 in two areas of the avian brain, which are associated with reproduction, could be the primary distinction between seasonal and opportunistic breeders.
Collapse
Affiliation(s)
- Natalia A Marchese
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maximiliano N Ríos
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario E Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Biológica "Ranwel Caputto" Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Diego J Valdez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Centro de Zoología Aplicada, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
2
|
Liu JA, Meléndez-Fernández OH, Bumgarner JR, Nelson RJ. Effects of light pollution on photoperiod-driven seasonality. Horm Behav 2022; 141:105150. [PMID: 35304351 PMCID: PMC10137835 DOI: 10.1016/j.yhbeh.2022.105150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
Changes to photoperiod (day length) occur in anticipation of seasonal environmental changes, altering physiology and behavior to maximize fitness. In order for photoperiod to be useful as a predictive factor of temperature or food availability, day and night must be distinct. The increasing prevalence of exposure to artificial light at night (ALAN) in both field and laboratory settings disrupts photoperiodic time measurement and may block development of appropriate seasonal adaptations. Here, we review the effects of ALAN as a disruptor of photoperiodic time measurement and season-specific adaptations, including reproduction, metabolism, immune function, and thermoregulation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA.
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| |
Collapse
|
3
|
Molecular and epigenetic regulation of seasonal reproduction in Terai tree frog (Polypedates teraiensis). Photochem Photobiol Sci 2022; 21:1067-1076. [PMID: 35262895 DOI: 10.1007/s43630-022-00195-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
Seasonal breeders predominantly use photoperiod as the predictable environmental cue to time their reproduction. Terai tree frogs are long-day seasonal breeders, but the molecular mechanism is unknown. We tested the role of different photoperiodic conditions on expression levels of candidate genes involved in seasonal reproduction and epigenetic regulation. Four experiments were performed. In experiment 1, frogs were exposed to long (LD: 16L:8D) or short photoperiod (SD: 8L:16D). In experiment 2, animals were procured at four different phases of breeding, i.e., during April (emergence just after hibernation), June (breeding phase), August (post-breeding), and October (just before hibernation). In experiments 3 and 4, frogs were exposed to equinox photoperiod but different (10, 100, or 500 lx) light intensities (exp. 3) or wavelength (red: 640 nm, green: 540 nm, blue: 450 nm or white; exp. 4). After 2 weeks, animals were euthanized, and their brain was harvested. mRNA levels of transcripts involved in photoperiodic transduction (Eya3 and Opn5), reproduction (Tshß, GnRH, Dio2, and Dio3), and epigenetics regulation (Dnmt1, Dnmt3a, Hdac1, Hdac3, and Tet2) were measured. Results show that LD promotes the upregulation of Eya3, Opn5, Tshß, GnRH, and Dio2. Differential expression of Opn5 during LD and SD suggests its involvement in light perception. Dio3 levels were upregulated in SD (exp.1) and during the post-breeding phase (exp. 2). These results employ the limited role of light intensity and spectrum in reproduction. This is the first study showing molecular machinery involved in the amphibian system's seasonal reproduction and epigenetic regulation.
Collapse
|
4
|
Kingsbury MA, Wilson LC. The Role of VIP in Social Behavior: Neural Hotspots for the Modulation of Affiliation, Aggression, and Parental Care. Integr Comp Biol 2018; 56:1238-1249. [PMID: 27940615 DOI: 10.1093/icb/icw122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although the modulation of social behaviors by most major neurochemical systems has been explored, there are still standouts, including the study of vasoactive intestinal polypeptide (VIP). VIP is a modulator of circadian, reproductive, and seasonal rhythms and is well known for its role in reproductive behavior, as it is the main vertebrate prolactin-releasing hormone. Originally isolated as a gut peptide, VIP and its cognate receptors are present in virtually every brain area that is important for social behavior, including all nodes of the core "social behavior network" (SBN). Furthermore, VIP cells show increased transcriptional activity throughout the SBN in response to social stimuli. Using a combination of comparative and mechanistic approaches in socially diverse species of estrildid finches and emberizid sparrows, we have identified neural "hotspots" in the SBN that relate to avian affiliative behavior, as well as neural "hotspots" that may represent critical nodes underlying a trade-off between aggression and parental care. Specifically, we have found that: (1) VIP fiber densities and VIP receptor binding in specific brain sites, such as the lateral septum, medial extended amygdala, arcopallium, and medial nidopallium, correlate with species and/or seasonal differences in flocking behavior, and (2) VIP cells and fibers within the anterior hypothalamus-caudocentral septal circuit relate positively to aggression and negatively to parental care while VIP elements in the mediobasal hypothalamus relate negatively to aggression and positively to parental care. Thus, while a given behavior or social context likely activates VIP circuitry throughout the SBN and beyond, key brain sites emerge as potential "hotspots" for the modulation of affiliation, aggression, and parental care.
Collapse
Affiliation(s)
- Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Leah C Wilson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Yang Y, Yu Y, Yang B, Zhou H, Pan J. Physiological responses to daily light exposure. Sci Rep 2016; 6:24808. [PMID: 27098210 PMCID: PMC4838836 DOI: 10.1038/srep24808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/05/2016] [Indexed: 11/21/2022] Open
Abstract
Long daylength artificial light exposure associates with disorders, and a potential physiological mechanism has been proposed. However, previous studies have examined no more than three artificial light treatments and limited metabolic parameters, which have been insufficient to demonstrate mechanical responses. Here, comprehensive physiological response curves were established and the physiological mechanism was strengthened. Chicks were illuminated for 12, 14, 16, 18, 20, or 22 h periods each day. A quadratic relationship between abdominal adipose weight (AAW) and light period suggested that long-term or short-term light exposure could decrease the amount of AAW. Quantitative relationships between physiological parameters and daily light period were also established in this study. The relationships between triglycerides (TG), cholesterol (TC), glucose (GLU), phosphorus (P) levels and daily light period could be described by quadratic regression models. TG levels, AAW, and BW positively correlated with each other, suggesting long-term light exposure significantly increased AAW by increasing TG thus resulting in greater BW. A positive correlation between blood triiodothyronine (T3) levels and BW suggested that daily long-term light exposure increased BW by thyroid hormone secretion. Though the molecular pathway remains unknown, these results suggest a comprehensive physiological mechanism through which light exposure affects growth.
Collapse
Affiliation(s)
- Yefeng Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yonghua Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhou
- Department of Instrument Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Kingsbury MA. New perspectives on vasoactive intestinal polypeptide as a widespread modulator of social behavior. Curr Opin Behav Sci 2015; 6:139-147. [PMID: 26858968 DOI: 10.1016/j.cobeha.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In terms of reproductive and social functions, vasoactive intestinal polypeptide (VIP) is best known as a major regulator of prolactin secretion in vertebrates and hence, as an essential contributor to parental care. However, VIP and its cognate VPAC receptors are distributed throughout the social behavior network in the brain, suggesting that VIP circuits may play important roles in a variety of behaviors. With the exception of VIP neuronal populations in the suprachiasmatic nucleus and tuberal hypothalamus (which regulate circadian rhythms and prolactin secretion, respectively), we have known very little about the functional properties of VIP circuits until recently. The present review highlights new roles for VIP signaling in avian social behaviors such as affiliation, gregariousness, pair bonding and aggression, and discusses recent advances in VIP's role as a regulator of biological rhythms, including the potential timing of ovulation, photoperiodic response and seasonal migration.
Collapse
|
7
|
Kumar V. Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen Comp Endocrinol 2015; 220:13-22. [PMID: 24929229 DOI: 10.1016/j.ygcen.2014.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Birds time their activities in synchronization with daily and seasonal periodicities in the environment, which is mainly provided by changes in day length (=photoperiod). Photoperiod appears to act at different levels than simply entraining the hypothalamic clock via eyes in birds. Photoreceptor cells that transmit light information to an avian brain are localized in three independent structures, the retina of eyes, pineal gland and hypothalamus, particularly in the paraventricular organ and lateral septal area. These hypothalamic photoreceptors are commonly referred to as encephalic or deep brain photoreceptors, DBPs. Eyes and pineal are known to contribute to the circadian regulation of behavior and physiology via rhythmic melatonin secretion in several birds. DBPs have been implicated in the regulation of seasonal physiology, particularly in photoperiod induced gonadal growth and development. Here, we briefly review limited evidence that is available on the roles of these photoreceptors in the regulation of circadian and seasonal physiology, with particular emphasis placed on the DBPs.
Collapse
Affiliation(s)
- Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo US Center for Biological Timing, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
8
|
Kuenzel WJ, Kang SW, Zhou ZJ. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult Sci 2015. [PMID: 25828571 DOI: 10.3382/ps.2014-04370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin, and vertebrate ancient opsin) in more than one neural site in the septal-hypothalamic area are involved in reproductive function. The neural response to light of at least 2 of the proposed DBP in the septal/hypothalamic region resembles the primitive, functional, sensory ipRGC well characterized in mammals.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | - Seong W Kang
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| | - Z Jimmy Zhou
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
9
|
Kuenzel WJ, Kang SW, Zhou ZJ. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development. Poult Sci 2015; 94:786-98. [DOI: 10.3382/ps.2014-4370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
10
|
Kang SW, Kuenzel WJ. Deep-brain photoreceptors (DBPs) involved in the photoperiodic gonadal response in an avian species, Gallus gallus. Gen Comp Endocrinol 2015; 211:106-13. [PMID: 25486342 DOI: 10.1016/j.ygcen.2014.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
Three primitive photoreceptors [melanopsin (Opn4), neuropsin/opsin5 (Opn5) and vertebrate ancient opsin (VAOpn)] were reported as possible avian deep-brain photoreceptors (DBPs) involved in the perception of photoperiodic information affecting the onset and development of reproduction. The objective of this study was to determine the effect of long-day photostimulation and/or sulfamethazine treatment (SMZ, a compound known to advance light-induced testes development) on gene expression of DBPs and key hypothalamic and pituitary genes involved in avian reproductive function. Two-week old chicks were randomly selected into four experimental groups: short-day control (SC, LD8:16), short-day+SMZ (SS, LD8:16, 0.2% diet SMZ), long-day control (LC, LD16:8), and long-day+SMZ (LS, LD16:8, 0.2% diet SMZ). Birds were sampled on days 3, 7, and 28 after initiation of a long-day photoperiod and/or SMZ dietary treatments. Three brain regions [septal-preoptic, anterior hypothalamic (SepPre/Ant-Hypo) region, mid-hypothalamic (Mid-Hypo) region, posterior-hypothalamic (Post-Hypo) region], and anterior pituitary gland were dissected. Using quantitative real-time RT-PCR, we determined changes of expression levels of genes in distinct brain regions; Opn4 and Opn5 in SepPre/Ant-Hypo and Post-Hypo regions and, VAOpn in the Mid-Hypo region. Long-day treatment resulted in a significantly elevated testes weight on days 7 and 28 compared to controls, and SMZ augmented testes weight in both short- and long-day treatment after day 7 (P<0.05). Long-day photoperiodic treatment on the third day unexpectedly induced a large 8.4-fold increase of VAOpn expression in the Mid-Hypo region, a 15.4-fold increase of Opn4 and a 97.8-fold increase of Opn5 gene expression in the Post-Hypo region compared to SC birds (P<0.01). In contrast, on days 7 and 28, gene expression of the three DBPs was barely detectable. LC group showed a significant increase in GnRH-1 and TRH mRNA in the Mid-Hypo compared to SC on day 3. Pituitary LHβ and FSHβ mRNA were significantly elevated in LC and LS groups compared to SC on days 3 and 7 (P<0.05). On days 3 and 7, TSHβ mRNA level was significantly elevated by long-day treatment compared to the SC groups (P<0.05). Results suggest that long-day photoperiodic activation of DBPs is robust, transient, and temporally related with neuroendocrine genes involved in reproductive function. Additionally, results indicate that two subsets of GnRH-1 neurons exist based upon significantly different gene expression from long-day photostimulation and long-day plus SMZ administration. Taken together, the data indicate that within 3 days of a long-day photoperiod, an eminent activation of all three types of DBPs might be involved in priming the neuroendocrine system to activate reproductive function in birds.
Collapse
Affiliation(s)
- Seong W Kang
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| | - Wayne J Kuenzel
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
11
|
Pan J, Yang Y, Yang B, Yu Y. Artificial polychromatic light affects growth and physiology in chicks. PLoS One 2014; 9:e113595. [PMID: 25469877 PMCID: PMC4254831 DOI: 10.1371/journal.pone.0113595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Despite the overwhelming use of artificial light on captive animals, its effect on those animals has rarely been studied experimentally. Housing animals in controlled light conditions is useful for assessing the effects of light. The chicken is one of the best-studied animals in artificial light experiments, and here, we evaluate the effect of polychromatic light with various green and blue components on the growth and physiology in chicks. The results indicate that green-blue dual light has two side-effects on chick body mass, depending on the various green to blue ratios. Green-blue dual light with depleted and medium blue component decreased body mass, whereas enriched blue component promoted body mass in chicks compared with monochromatic green- or blue spectra-treated chicks. Moreover, progressive changes in the green to blue ratios of green-blue dual light could give rise to consistent progressive changes in body mass, as suggested by polychromatic light with higher blue component resulting in higher body mass. Correlation analysis confirmed that food intake was positively correlated with final body mass in chicks (R2 = 0.7664, P = 0.0001), suggesting that increased food intake contributed to the increased body mass in chicks exposed to higher blue component. We also found that chicks exposed to higher blue component exhibited higher blood glucose levels. Furthermore, the glucose level was positively related to the final body mass (R2 = 0.6406, P = 0.0001) and food intake (R2 = 0.784, P = 0.0001). These results demonstrate that spectral composition plays a crucial role in affecting growth and physiology in chicks. Moreover, consistent changes in spectral components might cause the synchronous response of growth and physiology.
Collapse
Affiliation(s)
- Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yefeng Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- * E-mail:
| |
Collapse
|
12
|
Baxter M, Joseph N, Osborne V, Bédécarrats G. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye. Poult Sci 2014; 93:1289-97. [DOI: 10.3382/ps.2013-03799] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Mobarkey N, Avital N, Heiblum R, Rozenboim I. The Effect of Parachlorophenylalanine and Active Immunization Against Vasoactive Intestinal Peptide on Reproductive Activities of Broiler Breeder Hens Photostimulated with Green Light1. Biol Reprod 2013; 88:83. [DOI: 10.1095/biolreprod.112.103697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
14
|
Salvante KG, Dawson A, Aldredge RA, Sharp PJ, Sockman KW. Prior Experience with Photostimulation Enhances Photo-Induced Reproductive Response in Female House Finches. J Biol Rhythms 2013; 28:38-50. [DOI: 10.1177/0748730412468087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vertebrates, reproductive output often increases with age. Unlike older birds, first-year photoperiodic birds lack experience with the reproductively stimulatory effects of long day lengths (photostimulation). We examined whether age-related differences in annual reproductive development could be partially attributed to previous experience with photostimulation in the photoperiodic house finch ( Carpodacus mexicanus). By manipulating photoperiod, we generated 2 groups of first-year females: a photo-experienced group that underwent 1 photoperiodically induced cycle of gonadal development and regression and a photo-naïve group exposed to long days since hatch. We transferred both groups from long to short days and then photostimulated and exposed them to male birdsong prior to sacrifice. Following concurrent photostimulation, both groups exhibited similar plasma luteinizing hormone surges and hypothalamic vasoactive intestinal polypeptide immunoreactivity. In contrast, hypothalamic gonadotropin-releasing hormone immunoreactivity and circulating vitellogenin levels were higher in photo-experienced birds, and yolk deposition occurred in only 2 females, both of which were photo-experienced. Our results demonstrate that photo-experience enhances some aspects of early photo-induced reproductive development and raise the hypothesis that photo-experience may account for at least some age-related variation in reproductive output.
Collapse
Affiliation(s)
- Katrina G. Salvante
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alistair Dawson
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK
| | - Robert A. Aldredge
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peter J. Sharp
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Keith W. Sockman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- §Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
15
|
Research progress in molecular mechanism of animal seasonal reproduction. YI CHUAN = HEREDITAS 2011; 33:695-706. [DOI: 10.3724/sp.j.1005.2011.00695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Wang G, Wingfield JC. Immunocytochemical study of rhodopsin-containing putative encephalic photoreceptors in house sparrow, Passer domesticus. Gen Comp Endocrinol 2011; 170:589-96. [PMID: 21118688 DOI: 10.1016/j.ygcen.2010.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/03/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022]
Abstract
In seasonally breeding birds, encephalic photoreceptors (EPs) play an important role in regulating photoperiodic gonadal responses. Multiple photopigments have been suggested as the putative EPs, including rhodopsin, melanopsin, VA opsin and the cryptochromes. As for rhodopsin, two potential brain sites, the lateral septum (SL) and the infundibulum (INF) have been reported to co-express rhodopsin immunoreactivity (rhodopsin-ir) with vasoactive intestinal polypeptide immunoreactivity (VIP-ir) in groups of cerebrospinal fluid-contacting (CSF) cells, hypothesized to be the EPs for gonadal responses. In order to confirm the presence of rhodopsin in seasonally breeding birds and examine whether these EPs show daily change as do the photopigments in the retina and pineal gland, the present study immunocytochemically investigated: (1) the presence of rhodopsin expression in the deep brain of the house sparrow, Passer domesticus maintained in short days, and (2) rhythmic expression of rhodopsin and VIP in both SL and INF at Zeitgeber time (ZT) 1 and ZT 17 in house sparrows. Rhodopsin-ir and VIP-ir were observed in both areas of sparrow brains as previously described in other avian species but with a novel rod-like rhodopsin-ir cell type in the INF and novel expression of rhodopsin-ir fiber close to the preoptic area. Daily changes of rhodopsin-ir and VIP-ir cell number were revealed in the INF, but not in the SL. More rhodopsin-ir and fewer VIP-ir cells were found at ZT 17 than at ZT 1. In the median eminence, rhodopsin-ir fibers were only observed at ZT 1, and the relative optic density (ROD) of VIP-ir fibers was higher at ZT 1 than ZT 17. The results indicate daily changes of EPs in the IN and ME, suggesting a role of EPs in the orchestration of photoperiodic gonadal recrudesence.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
17
|
Abstract
In temperate zones, animals use changes in day length as a calendar to time their breeding season. However, the photoreceptive and neuroendocrine mechanisms of seasonal reproduction are considered to differ markedly between birds and mammals. This can be understood from the fact that the eye is the only photoreceptive organ, and melatonin mediates the photoperiodic information in mammals, whereas in birds, photoperiodic information is directly received by the deep brain photoreceptors and melatonin is not involved in seasonal reproduction. Recent molecular and functional genomics analysis uncovered the gene cascade regulating seasonal reproduction in birds and mammals. Long day-induced thyroid stimulating hormone in the pars tuberalis of the pituitary gland regulates thyroid hormone catabolism within the mediobasal hypothalamus. Further, this local thyroid hormone catabolism appears to regulate seasonal gonadotropin-releasing hormone secretion. These findings suggest that although the light input pathway is different between birds and mammals (i.e. light or melatonin), the core mechanisms are conserved in these vertebrates.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan.
| |
Collapse
|
18
|
Mobarkey N, Avital N, Heiblum R, Rozenboim I. The role of retinal and extra-retinal photostimulation in reproductive activity in broiler breeder hens. Domest Anim Endocrinol 2010; 38:235-43. [PMID: 20022445 DOI: 10.1016/j.domaniend.2009.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022]
Abstract
Photostimulation of retinal photoreceptors, which are sensitive to green light, appears to inhibit reproductive activity in birds, whereas photostimulation of extra-retinal photoreceptors, which are sensitive to red light, accelerates it. The objective of this study was to determine the effect of either retinal or extra-retinal photostimulation on reproductive activities of broiler breeder hens. At 23 wk of age, Cobb hens (N=135) were divided into 9 rooms with individual cages (n=15). At 24 wk of age, 3 rooms were photostimulated (14L:10D) with white light (Control, n=45). Six rooms had 2 parallel lighting systems, red (660 nm) and green (560 nm), which were both on during 6 out of 14 h of the light period. Then, in 3 of these rooms, the green light was turned off and hens were exposed to a total of 14 h of red light (Red, n=45), and in the other 3, the red light was turned off and green lighting continued for a total of 14 h (Green, n=45). The Green group had reduced egg production; reduced plasma concentrations of ovarian steroids; reduced luteinizing hormone (LH)-beta, vasoactive intestinal peptide (VIP), and prolactin mRNA expression; and greater retinal green opsin mRNA expression (P < or = 0.05). The Red group had greater egg production; greater gonadotropin-releasing hormone-I (GnRH-I) and red opsin gene expression in the hypothalamus; and lesser green opsin gene expression in the retina (P < or = 0.05). We suggest that selective photostimulation of extra-retinal photostimulation as opposed to retinal photostimulation is a key factor in the determination of successful reproduction of broiler breeder hens.
Collapse
Affiliation(s)
- N Mobarkey
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | |
Collapse
|
19
|
Li H, Kuenzel WJ. A possible neural cascade involving the photoneuroendocrine system (PNES) responsible for regulating gonadal development in an avian species, Gallus gallus. Brain Res Bull 2008; 76:586-96. [PMID: 18598849 DOI: 10.1016/j.brainresbull.2008.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/13/2008] [Accepted: 04/21/2008] [Indexed: 02/06/2023]
Abstract
Neurons located in the lateral septal organ (LSO) and medial basal hypothalamus (MBH) have been proposed to be encephalic photoreceptors (EPRs), which sense photoperiodic time and initiate avian gonadal development. Controversy continues regarding the location of EPRs serving the PNES and their signal transduction pathway. Using quantitative real-time RT-PCR we determined activation of key genes following prolonged light periods and sulfamethethazine (compound known to advance light-induced testes development) in 21-day old chicks. Earliest activation occurred in genes of vasoactive intestinal polypeptide (VIP) and type 6 phosphodiesterase beta subunit (PDE-6 beta) in the LSO at 4 and 6h, respectively, after onset of light and sulfamethazine intake. In contrast, no change was detected in the MBH during the first 8h of that treatment. Thereafter, significant increases in gonadotropin releasing hormone (GnRH-1) and VIP receptor (VIPR) mRNA transcripts were detected in the bed nucleus of the pallial commissure (NCPa). Hours later, activation of all four genes (VIP, PDE-6 beta, GnRH-1, VIPR) were induced solely by photostimulation. Deiodinase 2 and tyrosine hydroxylase in the MBH did not show increased gene expression until 12h of photostimulation. Prolactin mRNA transcripts showed significant increases at 4h due to SMZ intake and at 24, 36 and 48 h due to long-day photoperiodic effects. Data suggest that VIP neurons in the LSO may serve as EPRs and utilize PDE, present in the phototransduction cascade of known photoreceptors. Additionally, VIP released from the LSO may modulate GnRH-1 neurons in the NCPa via VIP receptors by increasing GnRH-1 gene expression.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/administration & dosage
- Anti-Infective Agents/pharmacology
- Brain/drug effects
- Brain/growth & development
- Brain/metabolism
- Chickens/genetics
- Chickens/growth & development
- Cyclic Nucleotide Phosphodiesterases, Type 6/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/radiation effects
- Gonadotropin-Releasing Hormone/genetics
- Iodide Peroxidase/genetics
- Male
- Photoperiod
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/growth & development
- Pituitary Gland, Anterior/metabolism
- Prolactin/genetics
- Receptors, Vasoactive Intestinal Peptide/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfamethazine/administration & dosage
- Sulfamethazine/pharmacology
- Testis/growth & development
- Testis/metabolism
- Tyrosine 3-Monooxygenase/genetics
- Vasoactive Intestinal Peptide/genetics
- Vision, Ocular/drug effects
- Vision, Ocular/genetics
- Vision, Ocular/radiation effects
- Iodothyronine Deiodinase Type II
Collapse
Affiliation(s)
- Hongyan Li
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, United States.
| | | |
Collapse
|
20
|
Ball GF, Ketterson ED. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos Trans R Soc Lond B Biol Sci 2008; 363:231-46. [PMID: 17638693 PMCID: PMC2606748 DOI: 10.1098/rstb.2007.2137] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although it is axiomatic that males and females differ in relation to many aspects of reproduction related to physiology, morphology and behaviour, relatively little is known about possible sex differences in the response to cues from the environment that control the timing of seasonal breeding. This review concerns the environmental regulation of seasonal reproduction in birds and how this process might differ between males and females. From an evolutionary perspective, the sexes can be expected to differ in the cues they use to time reproduction. Female reproductive fitness typically varies more as a function of fecundity selection, while male reproductive fitness varies more as a function sexual selection. Consequently, variation in the precision of the timing of egg laying is likely to have more serious fitness consequences for females than for males, while variation in the timing of recrudescence of the male testes and accompanying territory establishment and courtship are likely to have more serious fitness consequences for males. From the proximate perspective, sex differences in the control of reproduction could be regulated via the response to photoperiod or in the relative importance and action of supplementary factors (such as temperature, food supply, nesting sites and behavioural interactions) that adjust the timing of reproduction so that it is in step with local conditions. For example, there is clear evidence in several temperate zone avian species that females require both supplementary factors and long photoperiods in order for follicles to develop, while males can attain full gonadal size based on photoperiodic stimulation alone. The neuroendocrine basis of these sex differences is not well understood, though there are many candidate mechanisms in the brain as well as throughout the entire hypothalamo-pituitary-gonadal axis that might be important.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
21
|
Thayananuphat A, Kang SW, Bakken T, Millam JR, El Halawani ME. Rhythm-dependent light induction of the c-fos gene in the turkey hypothalamus. J Neuroendocrinol 2007; 19:407-17. [PMID: 17388817 DOI: 10.1111/j.1365-2826.2007.01544.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Day length (photoperiod) is a powerful synchroniser of seasonal changes in the reproductive neuroendocrine activity in temperate-zone birds. When exposed to light during the photoinducible phase, reproductive neuroendocrine responses occur. However, the neuroendocrine systems involved in avian reproduction are poorly understood. We investigated the effect of light exposure at different circadian times upon the hypothalamus and components of the circadian system, using c-fos mRNA expression, measured by in situ hybridisation, as an indicator of light-induced neuronal activity. Levels of c-fos mRNA in these areas were compared after turkey hens (on a daily 6-h light period) had been exposed to a 30-min period of light occurring at 8, 14, or 20 h after the onset of first light of the day (subjective dawn). Non-photostimulated control birds were harvested at the same times. In birds, photostimulated within the photoinducibile phase (14 h), in contrast to before or after, c-fos mRNA was significantly increased in the nucleus commissurae pallii (nCPa), nucleus premamillaris (PMM), eminentia mediana (ME), and organum vasculosum lamina terminalis (OVLT). Photostimulation increased c-fos mRNA expression in the pineal gland, nucleus suprachiasmaticus, pars visualis (vSCN) and nucleus inferioris hypothalami compared to that of their corresponding nonphotostimulated controls. However, the magnitudes of the responses in these areas were similar irrespective of where in the dark period the pulses occurred. No c-fos mRNA was induced in the nucleus infundibulari, in response to the 30-min light period at any of the circadian times tested. The lack of c-fos up-regulation in the pineal gland and vSCN following photostimulation during the photoinducible phase lends credence to the hypothesis that these areas are not involved in the photic initiation of avian reproduction. On the other hand, c-fos mRNA increases in the nCPa, ME, and OVLT support other studies showing that these areas are involved in the onset of reproductive behaviour initiated by long day lengths. The present study provides novel data showing that the PMM in the caudal hypothalamus is involved in the neuronally mediated, light-induced initiation of reproductive activity in the turkey hen.
Collapse
Affiliation(s)
- A Thayananuphat
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
22
|
Yasuo S, Watanabe M, Iigo M, Yamamura T, Nakao N, Takagi T, Ebihara S, Yoshimura T. Molecular mechanism of photoperiodic time measurement in the brain of Japanese quail. Chronobiol Int 2006; 23:307-15. [PMID: 16687304 DOI: 10.1080/07420520500521913] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In most organisms living in temperate zones, reproduction is under photoperiodic control. Although photoperiodic time measurement has been studied in organisms ranging from plants to vertebrates, the underlying molecular mechanism is not well understood. The Japanese quail (Coturnix japonica) represents an excellent model to study this problem because of the rapid and dramatic photoperiodic response of its hypothalamic-pituitary-gonadal axis. Recent investigations of Japanese quail show that long-day-induced type 2 deiodinase (Dio2) expression in the mediobasal hypothalamus (MBH) plays an important role in the photoperiodic gonadal regulation by catalyzing the conversion of the prohormone thyroxine (T(4)) to bioactive 3,5,3'-triiodothyronine (T3). The T3 content in the MBH is approximately 10-fold higher under long than short days and conditions, and the intracerebroventricular infusion of T3 under short days and conditions mimics the photoperiodic gonadal response. While Dio2 generates active T3 from T4 by outer ring deiodination, type 3 deiodinase (Dio3) catalyzes the conversion of both T3 and T4 into inactive forms by inner ring deiodination. In contrast to Dio2 expression, Dio3 expression in the MBH is suppressed under the long-day condition. Photoperiodic changes in the expression of both genes during the photoinduction process occur before the changes in the level of luteinizing hormone (LH) secretion, suggesting that the reciprocal changes in Dio2 and Dio3 expression act as gene switches of the photoperiodic molecular cascade to trigger induction of LH secretion.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Division of Biomodeling, Graduate School of Bioagricultural Sciences & Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Goodson JL, Saldanha CJ, Hahn TP, Soma KK. Recent advances in behavioral neuroendocrinology: insights from studies on birds. Horm Behav 2005; 48:461-73. [PMID: 15896792 PMCID: PMC2570788 DOI: 10.1016/j.yhbeh.2005.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 01/16/2023]
Abstract
Ever since investigations in the field of behavioral endocrinology were hatched with experiments on roosters, birds have provided original insights into issues of fundamental importance for all vertebrate groups. Here we focus on more recent advances that continue this tradition, including (1) environmental regulation of neuroendocrine and behavioral systems, (2) steroidogenic enzyme functions that are related to intracrine processes and de novo production of neurosteroids, and (3) hormonal regulation of neuroplasticity. We also review recent findings on the anatomical and functional organization of steroid-sensitive circuits in the basal forebrain and midbrain. A burgeoning body of data now demonstrates that these circuits comprise an evolutionarily conserved network, thus numerous novel insights obtained from birds can be used (in a relatively straightforward manner) to generate predictions for other taxa as well. We close by using birdsong as an example that links these areas together, thereby highlighting the exceptional opportunities that birds offer for integrative studies of behavioral neuroendocrinology and behavioral biology in general.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California, 5212 McGill Hall, San Diego, La Jolla, CA 92093-0109, USA.
| | | | | | | |
Collapse
|
24
|
Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I. Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 2005; 92:158-70. [PMID: 15606905 DOI: 10.1111/j.1471-4159.2004.02874.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its expression in retina, brain and pineal gland. Like the melanopsins identified in amphibians and mammals, chicken melanopsin is more similar to the invertebrate retinaldehyde-based photopigments than the retinaldehyde-based photopigments typically found in vertebrates. In retina, melanopsin mRNA is expressed in cells of all retinal layers. In pineal gland, expression was strong throughout the parenchyma of the gland. In brain, expression was observed in a few discrete nuclei, including the lateral septal area and medial preoptic nucleus. The retina and pineal gland showed distinct diurnal expression patterns. In pineal gland, melanopsin mRNA levels were highest at night at Zeitgeber time (ZT) 16. In contrast, transcript levels in the whole retina reached their highest levels in the early morning (ZT 0-4). Further analysis of melanopsin mRNA expression in retinal layers isolated by laser capture microdissection revealed different patterns in different layers. There was diurnal expression in all retinal layers except the ganglion cell layer, where heavy expression was localized to a small number of cells. Expression of melanopsin mRNA peaked during the daytime in the retinal pigment epithelium and inner nuclear layer but, like in the pineal, at night in the photoreceptors. Localization and regulation of melanopsin mRNA in the retina and pineal gland is consistent with the hypothesis that this novel photopigment plays a role in photic regulation of circadian function in these tissues.
Collapse
Affiliation(s)
- S S Chaurasia
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li H, Ferrari MB, Kuenzel WJ. Light-induced reduction of cytoplasmic free calcium in neurons proposed to be encephalic photoreceptors in chick brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:153-61. [PMID: 15527883 DOI: 10.1016/j.devbrainres.2004.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
A population of cerebrospinal fluid-contacting neurons (CSFcn) in the lateral septal organ (LSO) may serve as encephalic photoreceptors (EPRs) functioning to signal the onset of seasonal reproductive development in birds. Previous studies on CSFcn in the LSO have focused on identification of retinal protein components in fixed brain tissue. In order to understand better the mechanisms underlying the light-induced photosexual response in birds, a physiological characterization is required. In this study, changes of intracellular free calcium concentration ([Ca2+]i) were monitored during light stimulation of CSFcn in the LSO in live brain slices from embryonic chicks. Using the fluorescent calcium indicator fluo-4, a reduced [Ca2+]i within CSFcn was recorded in response to photostimulation, which is consistent with what has been demonstrated in rods and cones following illumination. Results support the hypothesis that CSFcn in the LSO function as EPRs in the avian brain.
Collapse
Affiliation(s)
- Hongyan Li
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
26
|
Abstract
Male sexual behavior in both field and laboratory settings has been studied in birds since the 19th century. Birds are valuable for the investigation of the neuroendocrine mechanisms of sexual behavior, because their behavior can be studied in the context of a large amount of field data, well-defined neural circuits related to reproductive behavior have been described, and the avian neuroendocrine system exhibits many examples of marked plasticity. As is the case in other taxa, male sexual behavior in birds can be usefully divided into an appetitive phase consisting of variable behaviors (typically searching and courtship) that allow an individual to converge on a functional outcome, copulation (consummatory phase). Based primarily on experimental studies in ring doves and Japanese quail, it has been shown that testosterone of gonadal origin plays an important role in the activation of both of these aspects of male sexual behavior. Furthermore, the conversion of androgens, such as testosterone, in the brain to estrogens, such as 17beta-estradiol, is essential for the full expression of male-typical behaviors. The localization of sex steroid receptors and the enzyme aromatase in the brain, along with lesion, hormone implant and immediate early gene expression studies, has identified many neural sites related to the control of male behavior. The preoptic area (POA) is a key site for the integration of sensory inputs and the initiation of motor outputs. Furthermore, prominent connections between the POA and the periaqueductal gray (PAG) form a node that is regulated by steroid hormones, receive sensory inputs and send efferent projections to the brainstem and spinal cord that activate male sexual behaviors. The sensory inputs regulating avian male sexual responses, in contrast to most mammalian species, are primarily visual and auditory, so a future challenge will be to identify how these senses impinge on the POA-PAG circuit. Similarly, most avian species do not have an intromittent organ, so the projections from the POA-PAG to the brainstem and spinal cord that control sexual reflexes will be of particular interest to contrast with the well characterized rodent system. With this knowledge, general principles about the organization of male sexual circuits can be elucidated, and comparative studies relating known species variation in avian male sexual behaviors to variation in neural systems can be pursued.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
27
|
Montagnese CM, Székely AD, Adám A, Csillag A. Efferent connections of septal nuclei of the domestic chick (Gallus domesticus): An anterograde pathway tracing study with a bearing on functional circuits. J Comp Neurol 2004; 469:437-56. [PMID: 14730592 DOI: 10.1002/cne.11018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were placed in different subregions of the septum of domestic chicks. The main targets of septal projections comprised the ipsi- and contralateral septal nuclei, including the nucleus of the diagonal band, basal ganglia, including the ventral paleostriatum, lobus parolfactorius, nucleus accumbens, and olfactory tubercle, archistriatum, piriform cortex, and anterior neostriatum. Further diencephalic and mesencephalic septal projections were observed in the ipsilateral preoptic region, hypothalamus (the main regions of afferentation comprising the lateral hypothalamic nuclei, ventromedial, paraventricular and periventricular nuclei, and the mammillary region), dorsal thalamus, medial habenular and subhabenular nuclei, midbrain central gray, and ventral tegmental area. Contralateral projections were also encountered in the septal nuclei, ventral paleostriatum, periventricular and anteromedial hypothalamic nuclei, suprachiasmatic nucleus, and the lateral hypothalamic area. Avian septal efferents are largely similar to those of mammals, the main differences being a relatively modest hippocampal projection arising mainly from the nucleus of the diagonal band (as confirmed by a specific experiment with the retrograde pathway tracer True blue), the lack of interpeduncular projection, and a greater contingent of amygdalar efferents arising from the lateral septum rather than the nucleus of the diagonal band. This pattern of connectivity is likely to reflect an important role of the avian septal nuclei in the coordination of limbic circuits and the integration of a wide variety of information sources modulating the appropriate behavioral responses: attention and arousal level, memory formation, hormonally mediated behaviors, and their affective components (such as ingestive, reproductive, and parental behaviors), social interaction, locomotor modulation, and circadian rhythm.
Collapse
|
28
|
Millam JR, Craig-Veit CB, Siopes TD. Photostimulated fos-like immunoreactivity in tuberal hypothalamus of photosensitive vs. photorefractory turkey hens. Gen Comp Endocrinol 2003; 134:175-81. [PMID: 14511988 DOI: 10.1016/s0016-6480(03)00249-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photorefractoriness in commercial turkey hens can be viewed as a failure of previously sexually stimulatory photoperiods to maintain egg production via activation of cGnRH I neurons, but the neural locus of photorefractoriness, i.e., where in the brain failure occurs, is not known. We used a c-fos antiserum that detects c-Fos and Fos-related antigens to characterize Fos-like immunoreactivity (FLI) as a measure of neuronal activation. FLI was measured in somatically mature, photosensitive hens (held on short photoperiods [8L:16D] for at least 10 weeks) before (non-photostimulated-photosensitive group) and after 48 h of exposure to long photoperiods (16L:8D; photostimulated-photosensitive group). We also measured FLI in hens that had become photorefractory, transferred to short photoperiods for 1 week--an insufficient time period to reverse photorefractoriness--and then exposed to long photoperiods for 48 h (photostimulated-photorefractory group). FLI was nearly absent in the tuberal hypothalamus of non-photostimulated-photosensitive hens but FLI was abundant in photostimulated-photosensitive hens. FLI was greatly reduced (P<0.01) in the rostral tuberal hypothalamus of photostimulated-photorefractory hens. All hens showed variable extra-tuberal FLI in locations associated with stress, e.g., paraventricular nucleus, lateral septal area, and nucleus taenia. Double-label fluorescence immunohistochemistry with c-fos antiserum and anti-Neu-N, a neuron-specific protein, showed that a substantial fraction of tuberal FLI-positive cells in photostimulated-photosensitive hens were neuronal. These results implicate neurons in the rostral tuberal hypothalamus as a potential neural locus of photorefractoriness, as FLI in this region appears coupled with cGnRH I activation in photostimulated-photosensitive but not photostimulated-photorefractory turkey hens.
Collapse
Affiliation(s)
- J R Millam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616-8532, USA.
| | | | | |
Collapse
|
29
|
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21230, USA.
| | | |
Collapse
|
30
|
Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T. Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules. Endocrinology 2003; 144:3742-8. [PMID: 12933643 DOI: 10.1210/en.2003-0435] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In birds, the mediobasal hypothalamus (MBH) including the infundibular nucleus, inferior hypothalamic nucleus, and median eminence is considered to be an important center that controls the photoperiodic time measurement. Here we show expression patterns of circadian clock genes in the MBH, putative suprachiasmatic nucleus (SCN), and pineal gland, which constitute the circadian pacemaker under various light schedules. Although expression patterns of clock genes were different between long and short photoperiod in the SCN and pineal gland, the results were not consistent with those under night interruption schedule, which causes testicular growth. These results indicate that different expression patterns of the circadian clock genes in the SCN and pineal gland are not an absolute requirement for encoding and decoding of seasonal information. In contrast, expression patterns of clock genes in the MBH were stable under various light conditions, which enables animals to keep a steady-state photoinducible phase.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Division of Biomodeling, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
This review examines how birds use the annual cycle in photoperiod to ensure that seasonal events--breeding, molt, and song production--happen at the appropriate time of year. Differences in breeding strategies between birds and mammals reflect basic differences in biology. Avian breeding seasons tend to be of shorter duration and more asymmetric with respect to changes in photoperiod. Breeding seasons can occur at the same time each year (predictable) or at different times (opportunistic), depending on the food resource. In all cases, there is evidence for involvement of photoperiodic control, nonphotoperiodic control, and endogenous circannual rhythmicity. In predictable breeders (most nontropical species), photoperiod is the predominant proximate factor. Increasing photoperiods of spring stimulate secretion of gonadotropin-releasing hormone (GnRH) and consequent gonadal maturation. However, breeding ends before the return of short photoperiods. This is the consequence of a second effect of long photoperiods--the induction of photorefractoriness. This dual role of long photoperiods is required to impart the asymmetry in breeding seasons. Typically, gonadal regression through photorefractoriness is associated with a massive decrease in hypothalamic GnRH, essentially a reversal to a pre-pubertal condition. Although breeding seasons are primarily determined by photoperiodic control of GnRH neurons, prolactin may be important in determining the exact timing of gonadal regression. In tropical and opportunistic breeders, endogenous circannual rhythmicity may be more important. In such species, the reproductive system remains in a state of "readiness to breed" for a large part of the year, with nonphotic cues acting as proximate cues to time breeding. Circannual rhythmicity may result from a temporal sequence of different physiological states rather than a molecular or cellular mechanism as in circadian rhythmicity. Avian homologues of mammalian clock genes Per2, Per3, Clock, bmal1, and MOP4 have been cloned. At the molecular level, avian circadian clocks appear to function in a similar manner to those of mammals. Photoperiodic time measurement involves interaction between a circadian rhythm of photoinducibility and, unlike mammals, deep brain photoreceptors. The exact location of these remains unclear. Although the eyes and pineal generate a daily cycle in melatonin, this photoperiodic signal is not used to time seasonal breeding. Instead, photoperiodic responses appear to involve direct interaction between photoreceptors and GnRH neurons. Thyroid hormones are required in some way for this system to function. In addition to gonadal function, song production is also affected by photoperiod. Several of the nuclei involved in the song system show seasonal changes in volume, greater in spring than in the fall. The increase in volume is, in part, due to an increase in cell number as a result of neurogenesis. There is no seasonal change in the birth of neurons but rather in their survival. Testosterone and melatonin appear to work antagonistically in regulating volume.
Collapse
Affiliation(s)
- A Dawson
- Centre for Ecology and Hydrology, Huntingdon, Cambridgeshire, UK
| | | | | | | |
Collapse
|
32
|
Dawson A. The effects of a single long photoperiod on induction and dissipation of reproductive photorefractoriness in European starlings. Gen Comp Endocrinol 2001; 121:316-24. [PMID: 11254373 DOI: 10.1006/gcen.2001.7601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many birds, long photoperiods stimulate gonadal maturation but also cause photorefractoriness, leading to gonadal regression. While much is known about the neuroendocrinology of photostimulation, little is known about photorefractoriness, partly due to lack of an experimental model. This study aimed to develop a model to test whether a single long photoperiod (LP) initiates the mechanism leading to photorefractoriness. It made use of the fact that in castrated European starlings, luteinizing hormone (LH) is low in photorefractory birds and high in photosensitive birds. In the first experiment, groups of castrated photorefractory birds were transferred from a long to a short photoperiod and then exposed to one LP every 5, 10, 20, 30, 40, or 60 days. In birds exposed to one LP every 5 days, LH stayed low. In birds exposed to one LP every 10 days, each LP caused a pulse in LH, but mean LH remained low. One LP every 20 days increased LH 6 days later, followed by a decrease at 11 days and then a further increase, so that overall, LH increased slowly. In birds exposed to one LP every 30, 40, or 60 days, LH increased at the same rate as in short photoperiod controls. Each LP did not cause a significant increase in LH, but did cause a decrease. A second experiment examined the changes in LH following a LP in more detail. Castrated starlings had been exposed to one LP every 14 days for 16 weeks. On the day of the final LP, LH values were midway between photorefractory and photosensitive values. The LP caused an increase in LH from the second day to a peak after 7 days. Thereafter, LH declined to initial values after 14 days, followed, in the absence of further LP, by a second increase to photosensitive values. These results suggest that the mechanisms causing photostimulation and photorefractoriness are both initiated during the first long photoperiod. That gonadal maturation precedes regression must reflect the relative rates at which the two processes reach completion.
Collapse
Affiliation(s)
- A Dawson
- Centre for Ecology and Hydrology, Abbots Ripton, Huntingdon, Cambridgeshire, PE28 2LS, United Kingdom.
| |
Collapse
|
33
|
Saldanha CJ, Silverman AJ, Silver R. Direct innervation of GnRH neurons by encephalic photoreceptors in birds. J Biol Rhythms 2001; 16:39-49. [PMID: 11220777 PMCID: PMC3281767 DOI: 10.1177/074873040101600105] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In nonmammalian vertebrates, photic cues that regulate the timing of seasonal reproductive cyclicity are detected by nonretinal, nonpineal deep brain photoreceptors. It has long been assumed that the underlying mechanism involves the transmission of photic information from the photoreceptor to a circadian system, and thence to the reproductive axis. An alternative hypothesis is that there is direct communication between the brain photoreceptor and the reproductive axis. In the present study, light and confocal microscopy reveal that gonadotropin releasing hormone (GnRH) neurons and processes are scattered among photoreceptor cells (identified by their opsin-immunoreactivity) in the lateral septum (SL). In the median eminence (ME), opsin and GnRH immunoreactive fibers overlap extensively. Single and double label ultrastructural immunocytochemistry indicate that in the SL and preoptic area (POA), opsin positive terminals form axo-dendritic synapses onto GnRH dendrites. In the ME, opsin and GnRH terminals lie adjacent to each other, make contact with tanycytes, or terminate on the hypophyseal portal capillaries. These results reveal thatbrain photoreceptors communicate directly with GnRH-neurons; this represents a means by which photoperiodic information reaches the reproductive axis.
Collapse
Affiliation(s)
- Colin J. Saldanha
- The Graduate School of Arts and Sciences, Columbia University, New York, NY 10027, USA
| | - Ann-Judith Silverman
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10027, USA
| | - Rae Silver
- The Graduate School of Arts and Sciences, Columbia University, New York, NY 10027, USA
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10027, USA
- Psychology Departments, Barnard College and Columbia University, New York, NY 10027, USA
- To whom all correspondence should be addressed: Department of Psychology, Columbia University MAILCODE5501, 1190 Amsterdam Avenue, New York, NY 10027, USA;
| |
Collapse
|
34
|
Abstract
We detected rhodopsin gene expression in the pigeon lateral septum, a photosensitive deep brain region that is responsible for the photoperiodic gonadal response. The nucleotide sequence of the deep brain rhodopsin cDNA clone exactly matched that of the retinal one, indicating that a single rhodopsin gene is transcribed in the two tissues. Immunohistochemical analysis localized rhodopsin in the cerebrospinal fluid-contacting neurons, which have been assumed to be photoreceptive cells in the deep brain. Pigeon rhodopsin seems to play dual important roles in the visual and non-visual systems, the latter of which contributes to the photoperiodic response.
Collapse
Affiliation(s)
- Y Wada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Dawson A, Sharp PJ. The role of prolactin in the development of reproductive photorefractoriness and postnuptial molt in the European starling (Sturnus vulgaris). Endocrinology 1998; 139:485-90. [PMID: 9449615 DOI: 10.1210/endo.139.2.5701] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Seasonal breeding in many birds, including the European starling, is terminated by the development of absolute reproductive photorefractoriness, followed by a postnuptial molt, when photo-induced PRL secretion is at its seasonal maximum. To determine whether this photo-induced increase in PRL secretion has a causal role in the development of photorefractoriness or molt, European starlings were actively immunized against vasoactive intestinal polypeptide (VIP), the PRL releasing hormone in birds, or against PRL, during a photo-induced breeding cycle. In half of the VIP-immunized birds, the photo-induced increase in PRL was completely suppressed. Although these birds became photorefractory, the rate of gonadal regression was markedly slowed. These birds did not molt. In the remaining VIP-immunized birds, the photo-induced increase in PRL was inhibited but not completely suppressed. In these birds, and in those immunized against PRL, gonadal regression was also slowed, but molt progressed as normal. There were no significant differences in concentrations of plasma thyroxine between treatment and control groups, indicating that the effects of immunization on gonadal regression were not mediated by the induction of hypothyroidism. These results are consistent with the view that in the European starling the seasonal photo-induced increase in PRL accelerates gonadal regression during the onset of photorefractoriness but does not itself cause photorefractoriness. Further, the seasonal increase in PRL is required for the induction of the postnuptial molt.
Collapse
Affiliation(s)
- A Dawson
- Institute of Terrestrial Ecology, Huntingdon, Cambridgeshire, United Kingdom.
| | | |
Collapse
|
36
|
Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail. J Neurosci 1997. [PMID: 9348357 DOI: 10.1523/jneurosci.17-22-08909.1997] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid photoperiodic response in Japanese quail is so precise that it allows neural analyses of how photoperiodic information is transduced into an endocrine response. After transfer from short [SD; 6L:18D (6:18 hr light/dark cycle)] to long (LD; 20L:4D) days, luteinizing hormone (LH) first rises 20 hr after dawn. Using Fos immunocytochemistry, we examined the basal tuberal hypothalamus (BtH) to determine the relationship between brain cell activation and the first endocrine changes. Two separate cell populations within the BtH expressed Fos-like immunoreactivity (FLI) by hour 18 of the first LD. Importantly, this activation occurred before the LH rise. Median eminence activation appeared within glial cells, whereas activated infundibular nucleus cells were neuronal, providing support to the view that gonadotropin-releasing hormone (GnRH) release can be controlled at the terminals by glia. The FLI induction parallels LH changes, suggesting that gene expression may be involved in events preceding photostimulation and is the earliest photoperiodically stimulated physiological change yet reported. Additional experiments provided further support for this hypothesis. First, photoperiodically induced activation is not a result peculiar to castrates because intact birds displayed similar results. Second, the critical length of 14 hr of light had to be exceeded to cause both BtH activation and a LH rise 30 hr from dawn. Finally, valuable evidence of the response specificity was provided by using a unique property of the quail photoperiodic clock in which exposure to 10L:26D, but not 10L:14D, causes photoinduction. The 36 hr paradigm increased both plasma LH and BtH activation.
Collapse
|
37
|
Santacana M, de la Vega AG, Heredia M, Valverde F. Presence of LHRH (luteinizing hormone-releasing hormone) fibers in the optic nerve, optic chiasm and optic tract of the adult rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:292-9. [PMID: 8852381 DOI: 10.1016/0165-3806(95)00199-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In mammals LHRH (luteinizing hormone-releasing hormone) is synthesized and released by a set of neurons that have their embryonic origin in the olfactory placode. We have observed that, besides their classical location, LHRH fibers can also be seen in the optic nerve and optic chiasm. Some LHRH fibers could also be traced in the optic tract. The possible course of these projections, and their functional significance are discussed.
Collapse
Affiliation(s)
- M Santacana
- Laboratorio de Neuroanatomía Comparada, Instituto Cajal, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Hirunagi K, Kiyoshi K, Adachi A, Hasegawa M, Ebihara S, Korf HW. Electron-microscopic investigations of vasoactive intestinal peptide (VIP)-like immunoreactive terminal formations in the lateral septum of the pigeon. Cell Tissue Res 1994; 278:415-8. [PMID: 8001092 DOI: 10.1007/bf00414184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vasoactive intestinal peptide (VIP)-like immunoreactive terminal fields were examined in the lateral septum of the pigeon by means of immunocytochemistry. According to light-microscopic observations, these projections originated from VIP-like immunoreactive cerebrospinal fluid (CSF)-contacting neurons, which are located in the ependymal layer of the lateral septum and form a part of the lateral septal organ. The processes of these cells gave rise to dense terminal-like structures in the lateral septum. Pre-embedding immuno-electron microscopy revealed that VIP-like immunoreactive axon terminals had synaptoid contacts with perikarya of small VIP-immunonegative neurons of the lateral septum, which were characterized by an invaginated nucleus, numerous mitochondria, a well-developed Golgi apparatus, endoplasmic reticulum and a small number of dense-core vesicles (about 100 nm in diameter). VIP-like immunoreactive axons were also seen in contact with immunonegative dendrites in the lateral septum. In both axosomatic and axodendritic connections, VIP-like immunoreactive presynaptic terminals contained large dense-core vesicles, clusters of small vesicles and mitochondria. These findings suggest that VIP-immunoreactive neurons of the lateral septal organ project to small, presumably peptidergic nerve cells of the lateral septum and that the VIP-like neuropeptide serves as a neuromodulator (-transmitter) in this area.
Collapse
Affiliation(s)
- K Hirunagi
- Department of Veterinary Anatomy, Faculty of Agriculture, Nagoya University, Japan
| | | | | | | | | | | |
Collapse
|