1
|
Ueno Y, Higashiyama M, Haque T, Masuda Y, Katagiri A, Toyoda H, Uzawa N, Yoshida A, Kato T. Motor representation of rhythmic jaw movements in the amygdala of guinea pigs. Arch Oral Biol 2022; 135:105362. [PMID: 35121262 DOI: 10.1016/j.archoralbio.2022.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The areas of the amygdala contributing to rhythmic jaw movements and the movement patterns induced remain unknown. Therefore, the present study investigated the areas of the amygdala contributing to rhythmic jaw movements using repetitive electrical microstimulation techniques. DESIGN Experiments were performed on head-restrained guinea pigs under ketamine-xylazine anesthesia. EMG activities in the masseter and digastric muscles and jaw movements were recorded. Short- and long-train electrical microstimulations of the amygdala were performed and the patterns of jaw movements induced were analyzed quantitatively. RESULT The short-train stimulation induced short-latency EMG responses in the masseter and/or digastric muscles. The stimulation sites inducing short-latency EMG responses were distributed within the ventral part of the amygdala, which covered the medial, basal, and cortical nuclei. The long-train stimulation induced tonic jaw opening and two types of rhythmic jaw movements: those with or without lateral jaw shifts, which were characterized by a larger jaw gape and ipsilateral jaw excursion, respectively. Rhythmic jaw movements with lateral jaw shifts were characterized by overlapping masseter and digastric EMG activities. However, rhythmic patterns did not differ between the two types of rhythmic jaw movements. The stimulation sites that induced rhythmic jaw movements were more localized to the cortical nucleus. CONCLUSIONS The present results suggest that the ventral part of the amygdala is involved in the induction of rhythmic jaw movements in guinea pigs. The putative roles of the limbic system in the genesis of functional (e.g., chewing) and non-functional (e.g., bruxism) rhythmic oromotor movements warrant further study.
Collapse
Affiliation(s)
- Yoshio Ueno
- Department of Oral and Maxillofacial Surgery Ⅱ, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Makoto Higashiyama
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Tahsinul Haque
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; Department of Preventive Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | - Yuji Masuda
- Division of Oral Maxillofacial Biology, Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery Ⅱ, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Satoh Y, Tsuji K. Suppression of the Swallowing Reflex during Rhythmic Jaw Movements Induced by Repetitive Electrical Stimulation of the Dorsomedial Part of the Central Amygdaloid Nucleus in Rats. LIFE (BASEL, SWITZERLAND) 2020; 10:life10090190. [PMID: 32927817 PMCID: PMC7554838 DOI: 10.3390/life10090190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
A previous study indicated that the swallowing reflex is inhibited during rhythmic jaw movements induced by electrical stimulation of the anterior cortical masticatory area. Rhythmic jaw movements were induced by electrical stimulation of the central amygdaloid nucleus (CeA). The swallowing central pattern generator is the nucleus of the solitary tract (NTS) and the lateral reticular formation in the medulla. Morphological studies have reported that the CeA projects to the NTS and the lateral reticular formation. It is therefore likely that the CeA is related to the control of the swallowing reflex. The purpose of this study was to determine if rhythmic jaw movements driven by CeA had inhibitory roles in the swallowing reflex induced by electrical stimulation of the superior laryngeal nerve (SLN). Rats were anesthetised with urethane. The SLN was solely stimulated for 10 s, and the swallowing reflex was recorded (SLN stimulation before SLN + CeA stimulation). Next, the SLN and the CeA were electrically stimulated at the same time for 10 s, and the swallowing reflex was recorded during rhythmic jaw movements (SLN + CeA stimulation). Finally, the SLN was solely stimulated (SLN stimulation following SLN + CeA stimulation). The number of swallows was reduced during rhythmic jaw movements. The onset latency of the first swallow was significantly longer in the SLN + CeA stimulation than in the SLN stimulation before SLN + CeA stimulation and SLN stimulation following SLN + CeA stimulation. These results support the idea that the coordination of swallowing reflex with rhythmic jaw movements could be regulated by the CeA.
Collapse
Affiliation(s)
- Yoshihide Satoh
- Correspondence: ; Tel.: +81-25-267-1500; Fax: +81-25-267-1134
| | | |
Collapse
|
3
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
4
|
McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 2018; 368:152-170. [PMID: 28843993 PMCID: PMC5849401 DOI: 10.1016/j.neuroscience.2017.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.
Collapse
Affiliation(s)
- Lauren E McElvain
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Beth Friedman
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Harvey J Karten
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2G3, Canada
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Isogai F, Kato T, Fujimoto M, Toi S, Oka A, Adachi T, Maeda Y, Morimoto T, Yoshida A, Masuda Y. Cortical area inducing chewing-like rhythmical jaw movements and its connections with thalamic nuclei in guinea pigs. Neurosci Res 2012; 74:239-47. [PMID: 23142519 DOI: 10.1016/j.neures.2012.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/17/2012] [Accepted: 10/30/2012] [Indexed: 11/30/2022]
Abstract
Repetitive electrical stimulation to the cortical masticatory areas (CMA) evokes rhythmical jaw movements (RJM), whose patterns vary depending on the stimulation site, in various species. In guinea pigs, although alternating bilateral jaw movements are usually seen during natural chewing, it is still unclear which cortical areas are responsible for chewing-like RJM. To address this issue, we first defined the cortical areas inducing chewing-like RJM by intracortical microstimulation. Stimulation of the most lateral area of the CMA, the granular cortex, induced chewing-like RJM, but from the region medial to this area, simple vertical RJM were induced. Subsequently, to reveal the properties of these two areas in the CMA, the connections between the CMA and the dorsal thalamus were examined by neuronal tract-tracing techniques. The area inducing chewing-like RJM possessed strong reciprocal connections, mainly with the medial part of the ventral posteromedial nucleus, which is the sensory-relay thalamus. On the other hand, the simple vertical RJM-inducing area had reciprocal connections with the motor thalamus. The present study suggests that the CMA inducing chewing-like RJM is different from the CMA inducing simple vertical RJM, and plays a role in cortically induced chewing-like RJM under the influence of the sensory thalamus in guinea pigs.
Collapse
Affiliation(s)
- Fumihiko Isogai
- Division of Oral Maxillofacial Biology, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kinzeler NR, Travers SP. Licking and gaping elicited by microstimulation of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2008; 295:R436-48. [PMID: 18495833 DOI: 10.1152/ajpregu.00189.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intraoral infusions of bitter tastants activate expression of the immediate-early gene c-Fos in neurons located in the medial third of the rostral nucleus of the solitary tract (rNST). The distribution of these neurons is distinct from that activated by sour or sweet stimuli. Bitter stimuli are also distinctive because of their potency for eliciting gaping, an oral reflex that functions to actively reject potentially toxic substances. Glossopharyngeal nerve transection profoundly reduces, whereas decerebration spares, the bitter-evoked Fos-like immunoreactivity (FLI) pattern and gaping, implicating the medial rNST as a substrate for the sensory limb of oral rejection. The present experiment tested this hypothesis using microstimulation (100 Hz, 0.2 ms, 5-40 microA) to activate the rNST in awake rats. NST microstimulation elicited licking and gaping, and gaping was evoked from a restricted rNST region. The results indicated some topographic organization in sites effective for evoking gaping, but, in direct conflict with the hypothesis, lateral sites farther from bitter-evoked FLI were more effective than medial sites centered closer to FLI-expressing neurons. The gape-effective sites resemble locations of bitter-responsive neurons recently observed in neurophysiological recordings. These results indicate that bitter-responsive rNST neurons critical for triggering gaping may not express FLI and imply an alternate function for bitter-responsive neurons that do.
Collapse
Affiliation(s)
- Nicole R Kinzeler
- Department of Psychology, The Ohio State University, Section of Oral Biology, College of Dentistry, 4169 Postle Hall, 305 W. 12th Ave., Columbus, OH 43201-1267, USA.
| | | |
Collapse
|
7
|
Gutierrez R, Carmena JM, Nicolelis MAL, Simon SA. Orbitofrontal ensemble activity monitors licking and distinguishes among natural rewards. J Neurophysiol 2005; 95:119-33. [PMID: 16120664 DOI: 10.1152/jn.00467.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The classification of rhythmic licking into clusters has proved to be useful for characterizing brain mechanisms that modulate the ingestion of natural rewards (sucrose and water). One cortical area that is responsive to rewarding stimuli is the orbitofrontal cortex (OFC). However, it is not presently known how OFC neurons respond while rodents freely lick for natural rewards and whether these responses are related to the structure of licking clusters. We addressed these issues by showing that temporary inactivation of the OFC decreases the duration and increases the number of clusters and that the activity of OFC neurons changed at precise times before, during, and after the cluster terminates. Furthermore, analysis of the activity of OFC neuronal ensembles showed that they could discriminate cluster onset from termination, predict when a behaving animal will begin a cluster, and distinguish and anticipate between natural rewards. These results provide a new role for the OFC in influencing licking clusters and anticipating specific rewards.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Department of Neurobiology, Duke University Medical Center, Bryan Research Bldg., Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
8
|
Shinagawa H, Ono T, Ishiwata Y, Honda E, Sasaki T, Taira M, Iriki A, Kuroda T. Hemispheric dominance of tongue control depends on the chewing-side preference. J Dent Res 2003; 82:278-83. [PMID: 12651931 DOI: 10.1177/154405910308200407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) is known to be a non-invasive technique for studying human brain function. The purpose of this study was to apply BOLD-fMRI to identify brain areas responsible for producing tongue movements and their relation to chewing-side preference in 15 normal right-handed volunteers. A marked increase in BOLD signals was detected in primary sensorimotor cortices upon protrusion and in rightward and leftward tongue movements compared with at rest. In 10 subjects with an evident chewing-side preference, the BOLD signal change in the primary sensorimotor cortex was significantly greater on the side contralateral to the preferred chewing side. The results suggest that there is a relationship between hemispheric dominance and chewing-side preference in primary sensorimotor cortices responsible for tongue movements.
Collapse
Affiliation(s)
- H Shinagawa
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sokoloff AJ. Localization and contractile properties of intrinsic longitudinal motor units of the rat tongue. J Neurophysiol 2000; 84:827-35. [PMID: 10938309 DOI: 10.1152/jn.2000.84.2.827] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tongue dysfunction is a hallmark of many human clinical disorders, yet we lack even a rudimentary understanding of tongue neural control. Here, the location and contractile properties of intrinsic longitudinal motor units (MUs) of the rat tongue body are described to provide a foundation for developing and testing theories of tongue motor control. One hundred and sixty-five MUs were studied by microelectrode penetration and stimulation of individual motor axons coursing in the terminal portion of the lateral (retrusor) branch of the hypoglossal nerve in the rat. Uniaxial MU force was recorded by a transducer attached to the protruded tongue tip, and MU location was estimated by electromyographic (EMG) electrodes implanted into the anterior, middle, and posterior portions of the tongue body. All MUs produced retrusive force. MU twitch force ranged from 2-129 mg (mean = 35 mg) and tetanic force ranged from 9-394 mg (mean = 95 mg). MUs reached maximal twitch force in 8-33 ms (mean = 15 ms) and were resistant to fatigue; following 2 min of stimulation, MUs (n = 11) produced 78-131% of initial force. EMG data were collected for 105 MUs. For 65 of these MUs, the EMG response was confined to a single electrode location: for 26 MUs to the anterior, 21 MUs to the middle, and 18 MUs to the posterior portion of the tongue. Of the remaining MUs, EMG responses were observed in two (38/40) or all three (2/40) tongue regions. These data provide the first contractile measures of identified intrinsic tongue body MUs and the first evidence that intrinsic longitudinal MUs are restricted to a portion of tongue length. Localization of MU territory suggests a role for intrinsic MU in the regional control of the mammalian tongue observed during feeding and speech.
Collapse
Affiliation(s)
- A J Sokoloff
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
10
|
Abstract
The location, organization and anatomical connections of a central pattern generator (CPG) for licking are discussed. Anatomical and physiological studies suggest a brainstem location distributed within several subdivisions of the medullary reticular formation (RF). The involvement of widespread RF regions is evident from brainstem recording experiments in awake freely moving preparations and studies employing electrical stimulation of the frontal cortex to produce ororhythmic activity. The complex multifunctional properties of RF neurons producing licking are indicated by their activity during licking, swallowing and the rejection of an aversive gustatory stimulus. Anatomical studies place descending inputs to a brainstem CPG for licking to widely distributed areas of both the medial and lateral RF. In contrast, most projections originating from brainstem orosensory nuclei terminate primarily within the lateral RF. Because many pre-oromotor neurons appear concentrated largely in the intermediate zone of the RF (IRt), it is hypothesized that neurons from both lateral and medial sites converge within the IRt to control oromotor function.
Collapse
Affiliation(s)
- J B Travers
- College of Dentistry, Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | | | |
Collapse
|
11
|
Yang CC, Kuo TB, Chan SH. Functional characterization of caudal hypoglossal neurons by spectral patterns of neuronal discharges in the rat. Neuroscience 1997; 77:813-27. [PMID: 9070754 DOI: 10.1016/s0306-4522(96)00515-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study evaluated the spectral characteristics of neuronal discharges in the caudal hypoglossal nucleus and their physiological relevance in adult, male Sprague Dawley rats which were anaesthetized and maintained with pentobarbital sodium. Based on auto-spectral analysis of extracellular single-neuron activity, three spectral patterns were identified in the spontaneous discharges of hypoglossal neurons. Neurons that exhibited a rhythmic pattern manifested a concentrated peak in the auto-spectrogram that corresponded to the mean discharge rate. A majority of hypoglossal neurons displayed the modulated pattern, which was manifested either as scattered power densities (wide-band modulated pattern) or with a peak frequency component that was different from the mean discharge rate (narrow-band modulated pattern). Neurons that exhibited a mixed pattern displayed both rhythmic and modulated spectral patterns. Cross-spectral analysis further revealed that respiratory modulation constituted a major physiological influence on caudal hypoglossal neurons. The respiratory modulated pattern, however, could be converted to a mixed pattern in the presence of a central dipsogen, angiotensin III. The results suggest that the spectral patterns of neuronal discharges in caudal hypoglossal neurons represent manifestations of multiple physiological information, including that regarding respiration and dipsogenesis, which is encoded in these neurons. It was also shown that this information may only be revealed by auto-spectral and cross-spectral analysis of neuronal discharge signals.
Collapse
Affiliation(s)
- C C Yang
- Department of Physiology, Tzu Chi College of Medicine, Taiwan, Republic of China
| | | | | |
Collapse
|
12
|
Sahara Y, Hashimoto N, Nakamura Y. Hypoglossal premotor neurons in the rostral medullary parvocellular reticular formation participate in cortically-induced rhythmical tongue movements. Neurosci Res 1996; 26:119-31. [PMID: 8953574 DOI: 10.1016/s0168-0102(96)01080-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Premotor neurons projecting to the hypoglossal (XII) nucleus and participating in cortically-induced rhythmical tongue movements were defined by extracellular recording in the cat. Two thirds (37/57) of antidromically identified XII premotor neurons sampled in the rostral medullary parvocellular reticular formation showed changes in their firing pattern during cortically-induced rhythmical activity of XII motoneurons. Fifteen of the 37 neurons showed a firing in phase with rhythmical activity of either the medial or lateral branch of the XII nerve (phasic-type). The remaining 22 neurons showed an increase in discharge with no apparent correlation with cortically-induced rhythmical activity of the XII nerve (non-phasic-type). Among the phasic- and non-phasic-type neurons, 30 neurons received inputs from the cortical masticatory area, and 14 neurons received further excitatory inputs from the inferior alveolar nerve. By systematic mapping of the stimulation sites effective for antidromic activation, four phasic-type neurons were confirmed to project to either tongue-protruding or -retracting XII motoneuron pools in accordance with their burst firing, suggesting that the phasic-type premotor neurons contribute to excitation of XII motoneurons during cortically-induced rhythmical activity. It is concluded that there are the XII premotor neurons driving cortically-induced rhythmical activity of XII motoneurons in the rostral medullary parvocellular reticular formation.
Collapse
Affiliation(s)
- Y Sahara
- Department of Physiology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
13
|
Affiliation(s)
- M Davis
- Ribicoff Research Facilities of the Connecticut Mental Health Center, Department of Psychiatry, Yale University School of Medicine, New Haven 06508
| |
Collapse
|
14
|
Spooren WP, Veening JG, Cools AR. Descending efferent connections of the sub-pallidal areas in the cat: projections to the subthalamic nucleus, the hypothalamus, and the midbrain. Synapse 1993; 15:104-23. [PMID: 7903124 DOI: 10.1002/syn.890150203] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The efferent connections of the sub-pallidal regions to the mediodorsal thalamic nucleus, the subthalamic nucleus, the lateral hypothalamic area, and the midbrain were investigated in the cat, using Phaseolus vulgaris--leucoagglutinin (PHA-L) as an anterograde label. The results indicate that the sub-pallidal regions of the cat project to the (dorso)medial tip of the subthalamic nucleus and the adjoining lateral hypothalamic area as well as to the ventral tegmental area and the greater extent of the dorsolateral tier of the substantia nigra pars compacta. Extensive projections were also found to the peripeduncular nucleus. The central gray as well as the mesencephalic locomotor region receive some input from the basal forebrain too. In contrast only very limited projections were found to the mediodorsal thalamic nucleus. The results are discussed in view of the possible role of these output regions in oro-facial dyskinesia.
Collapse
Affiliation(s)
- W P Spooren
- Department of Psychoneuropharmacology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
15
|
Spooren WP, Mulders WH, Veening JG, Cools AR. The substantia innominata complex and the peripeduncular nucleus in orofacial dyskinesia: a pharmacological and anatomical study in cats. Neuroscience 1993; 52:17-25. [PMID: 8433805 DOI: 10.1016/0306-4522(93)90177-h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been shown that orofacial dyskinesia, i.e. a syndrome of abnormal involuntary movements of the facial muscles, can be elicited from the sub-commissural part of the globus pallidus and the adjoining dorsal parts of the extended amygdala in cats. Until now it is unknown whether the peripeduncular nucleus, which receives input from these structures according to anterograde tracing studies, plays a role in the funneling of orofacial dyskinesia to lower output stations. In the present study the connection of the subcommissural part of the globus pallidus and dorsal parts of the extended amygdala with the peripeduncular nucleus was investigated anatomically, using cholera toxin subunit B as a retrograde tracer, and functionally, using intracerebral injections of GABAergic compounds. The anatomical data show that the sub-commissural part of the globus pallidus and dorsal parts of the extended amygdala were marked by cholera toxin sub-unit B-immunoreactive cells following injections of this retrograde tracer into the peripeduncular nucleus. Thus, it could be confirmed that the peripeduncular nucleus receives input from the sub-commissural part of the globus pallidus and dorsal parts of the extended amygdala. Still, the orofacial dyskinesia elicited by local injections of the GABA antagonist picrotoxin (500 ng/0.5 microliters) into the sub-commissural part of the globus pallidus and dorsal extended amygdala was only in part attenuated by local injections of the GABA agonist muscimol (100 ng/l microliters) into the peripeduncular nucleus. Only the number of tongue protrusions was significantly attenuated, but not that of the ear and cheek movements. Furthermore, tongue protrusions, but no additional oral movements, were elicited by picrotoxin injections (375-500 ng) into the peripeduncular nucleus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W P Spooren
- Department of Pharmacology, Psychoneuropharmacological Research Unit, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- L A Marco
- Department of Psychiatry, College of Medicine, University of South Alabama, Mobile 36693
| | | |
Collapse
|
17
|
Gerstner GE, Goldberg LJ. Genioglossus EMG activity during rhythmic jaw movements in the anesthetized guinea pig. Brain Res 1991; 562:79-84. [PMID: 1799875 DOI: 10.1016/0006-8993(91)91189-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electromyograph (EMG) activity of the left anterior digastric and the genioglossus muscles was studied in ketamine-anesthetized guinea pigs under 3 separate jaw movement paradigms. The first paradigm has been previously named spontaneous rhythmic jaw movements. These jaw movements occur 1-2 h after the onset of ketamine anesthesia. After spontaneous rhythmic jaw movements began, a single dose of apomorphine caused a new, second jaw movement paradigm to occur, apomorphine-induced rhythmic jaw movements. The final paradigm, cortically-evoked rhythmic jaw movements, was elicited by electrical stimulation of the masticatory area of the cerebral cortex. Genioglossus EMG activity was complex and highly variable in spontaneous rhythmic jaw movements; however, apomorphine-induced jaw movements were characterized by simultaneously occurring rhythmic EMG bursts of approximately 230 ms duration in both the digastric and genioglossus muscles. In 4 of 5 animals, genioglossus muscle activity onset preceded digastric muscle activity onset by approximately 20 ms. These results support the hypothesis that apomorphine-induced rhythmic jaw movements are an analog of lapping in the awake animal. In cortically-evoked rhythmic jaw movements, both digastric and genioglossus EMG activity were time-locked to the cortical electrical stimulation, with an onset latency of approximately 11 ms for the digastric EMG activity and of 16 ms for the genioglossus EMG activity. These results support the hypothesis that both trigeminal and hypoglossal motoneuron pools are closely coupled in certain coordinative movement patterns.
Collapse
Affiliation(s)
- G E Gerstner
- Department of Oral Biology, School of Dentistry, University of California, Los Angeles 90024-166818
| | | |
Collapse
|
18
|
Amri M, Lamkadem M, Car A. Effects of lingual nerve and chewing cortex stimulation upon activity of the swallowing neurons located in the region of the hypoglossal motor nucleus. Brain Res 1991; 548:149-55. [PMID: 1868328 DOI: 10.1016/0006-8993(91)91116-i] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study focuses on motoneurons and interneurons in the region of the hypoglossal nucleus (XIIth) related to swallowing and chewing. In sheep anesthetized with halothane, we have used extracellular microelectrodes to study the effects of stimulation of the superior laryngeal nerve (SLN), the lingual nerve (LN) and the chewing cortex (CCx) upon activities of the swallowing neurons (SNs). Ipsilateral stimulation (1-5 pulses at 500 Hz) of the peripheral afferents or CCx did not generally induce a short latency activation of the hypoglossal swallowing motoneurons (Group I SNs) since only 4 motoneurons (69 tested) were activated by the SLN, 4 motoneurons (56 tested) by the LN and none by the CCx. In contrast, the same stimulations were more effective with swallowing interneurons (Group II SNs) located in the reticular formation close to the XIIth motor nucleus since 12 neurons (30 tested) were activated with short latencies (9 +/- 1.8 ms; mean latency +/- S.D.) by the SLN, 9 neurons (21 tested) by the LN (latency; 8 +/- 1.8 ms) and 5 neurons (18 tested) by the CCx (latency: 13 +/- 1.7 ms). Seven neurons were activated by two or three modes of stimulation indicating the existence of convergent inputs upon some Group II SNs. During chewing movements induced by a prolonged stimulation (20-40 Hz) of the CCx, 10 Group I SNs (16 tested) versus only one Group II SN (8 tested) were found to fire in association with the jaw opening. Moreover, 3 motoneurons and 4 interneurons inactive during swallowing discharged during chewing movements.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Amri
- Département de Physiologie et Neurophysiologie, C.N.R.S.-U.R.A. Faculté des Sciences et Technique Saint-Jérôme, Marseille, France
| | | | | |
Collapse
|
19
|
Zhang GX, Sasamoto K. Projections of two separate cortical areas for rhythmical jaw movements in the rat. Brain Res Bull 1990; 24:221-30. [PMID: 2322856 DOI: 10.1016/0361-9230(90)90209-i] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cortico-bulbar projection from two separate cortical areas which induce different types of rhythmical jaw movements (RJM), and the relationship between these cortical areas were studied with horseradish peroxidase tracing method. One area (A-area) corresponded to the primary jaw motor area and the other (P-area) was located in the agranular insular cortex. Separate descending pathways from two areas passed through the pyramidal tract and projected to the supratrigeminal nucleus, the intertrigeminal region, the dorsal part of the trigeminal sensory complex, and the reticular formation. In the reticular formation, the A-area projected more medially than the P-area did, and the ipsilateral projection from the P-area was more prominent than that from the A-area, although contralateral projections were dominant in the majority of regions. The two areas had only a sparse reciprocal connection. We suppose that the difference in patterns of RJM induced by the two cortical RJM areas may be due to the different projection patterns from these two areas.
Collapse
Affiliation(s)
- G X Zhang
- Department of Oral Physiology, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
20
|
Thompson RL, Cassell MD. Differential distribution and non-collateralization of central amygdaloid neurons projecting to different medullary regions. Neurosci Lett 1989; 97:245-51. [PMID: 2717060 DOI: 10.1016/0304-3940(89)90605-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The distributions of central amygdaloid nucleus (Ce) neurons projecting to different medullary regions were investigated using the retrograde transport of iontophoretically applied Fast Blue or bisbenzimide. Neurons projecting to the nucleus of the solitary tract were located throughout the medial, lateral and ventral subdivisions of the Ce whereas cells projecting to the parvicellular reticular formation and ventrolateral medulla were confined to the medial subdivision of the Ce. Combined injections of fluorescent dyes into these medullary areas resulted in only occasional double-labelled cells. The results suggest that Ce projections to a variety of medullary sites arise from separate populations of neurons with partially overlapping distributions in the medial Ce.
Collapse
Affiliation(s)
- R L Thompson
- Department of Anatomy, University of Iowa, Iowa City 52242
| | | |
Collapse
|
21
|
Ohta M, Saeki K. Corticotrigeminal motor pathway in the rat--I. Antidromic activation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 94:99-104. [PMID: 2571458 DOI: 10.1016/0300-9629(89)90791-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The rat corticotrigeminal motor pathway was electrophysiologically investigated. 2. Fifty-one cortical neurons were antidromically activated by stimulation of the contralateral motor trigeminal nucleus (MTN). 3. Twenty-eight of the neurons were examined to see whether they were pyramidal tract (PT) neurons and seven were the PT neurons. 4. Forty peduncular axons were antidromically activated by stimulation of the contralateral MTN and eight of them were the PT axons. 5. Most MTN projecting axons showed slower conduction velocities than their stem anons.
Collapse
Affiliation(s)
- M Ohta
- Department of Physiology, Faculty of Dentistry, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
22
|
Borke RC, Nau ME, Newman DB. Reticulo- and trigemino-hypoglossal connections: a quantitative comparison of ultrastructural substrates. Brain Res Bull 1988; 21:795-803. [PMID: 3219611 DOI: 10.1016/0361-9230(88)90048-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Axon terminals were identified and characterized by electron microscopy after injections of horseradish peroxidase (HRP) into the spinal V nucleus (SPVN) or the medullary reticular formation adjacent to the XIIth nucleus. The synaptic organization and topology of these two different populations of hypoglossal afferents (T-XII and R-XII respectively) were determined by quantitative comparisons. Significant differences were obtained in the ratios of morphological types of terminals, sizes of axonal endings and their location on postsynaptic structures. Axon terminals containing spherical vesicles (S-terminals) and those with flattened/pleomorphic vesicles (F-terminals) were anterogradely labeled with HRP from both injection sites. However, the S/F ratio for R-XII terminals was 1.2:1 compared to 2.6:1 for T-XII afferents. Asymmetrical membrane densities (Gray Type I) were the predominant form of junctional specialization for S-terminal synapses. Asymmetrical densities with subjunctional dense bodies/bars (S-Taxi) were associated with a higher proportion of T-XII synapses than R-XII synapses. Almost all of the F-terminals from both sources had symmetrical densities (Gray Type II). The average diameter of R-XII terminals was greater than that of T-XII terminals. R-XII-F terminals were the largest terminals. The majority of axon terminals from both sources formed axodendritic synapses. However, R-XII terminals had a higher incidence (10% vs. 3%) of axosomatic contacts. The proportion of R-XII-F-terminals decreased from the central toward the distal dendrites, whereas the opposite was found for T-XII-F and T-XII-S-terminals. In contrast to these findings, R-XII-S-terminals were more uniformly distributed on dendrites of all sizes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R C Borke
- USUHS, F. Hebert School of Medicine, Department of Anatomy, Bethesda, MD 20814-4799
| | | | | |
Collapse
|
23
|
Sahara Y, Hashimoto N, Kato M, Nakamura Y. Synaptic bases of cortically-induced rhythmical hypoglossal motoneuronal activity in the cat. Neurosci Res 1988; 5:439-52. [PMID: 3399148 DOI: 10.1016/0168-0102(88)90028-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intracellular recordings were made from hypoglossal motoneurons during cortically-induced fictive mastication in paralyzed encéphale isolé cats. Repetitive stimulation of the masticatory area of the cerebral cortex induced rhythmical tongue movements coordinated with jaw movements. After the animal was immobilized, the cortical stimulation still induced rhythmical burst activity in the hypoglossal nerve and the digastric nerve. The burst activities in the medial and lateral branches of the hypoglossal nerve alternated rhythmically, and were in and out of phase with the burst activities of the digastric nerve, respectively. All hypoglossal motoneurons showed rhythmical intracellular potentials during repetitive cortical stimulation. The rhythmical depolarizing potentials superimposed by spike bursts appeared in phase with rhythmical bursts in either the lateral or medial branch of the hypoglossal nerve. No hyperpolarization was present between consecutive depolarizing potentials. Synaptic activation noise increased coincidentally with the depolarizing potential, indicating that EPSPs were involved in the generation of the depolarizing potential. No evidence was obtained for the existence of IPSPs during the inter-depolarizing phase by intracellular current injection. It was concluded that rhythmical bombardment of excitatory impulses to hypoglossal motoneurons was responsible for the rhythmical activity induced by repetitive stimulation of the cortical masticatory area.
Collapse
Affiliation(s)
- Y Sahara
- Department of Physiology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
24
|
Borke RC, Nau ME. The ultrastructural morphology and distribution of trigemino-hypoglossal connections labeled with horseradish peroxidase. Brain Res 1987; 422:235-41. [PMID: 2445437 DOI: 10.1016/0006-8993(87)90930-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Axon terminals projecting to the hypoglossal nucleus have been identified and characterized by electron microscopy following injections of horseradish peroxidase (HRP) into pars interpolaris of the spinal trigeminal nucleus (SPVN) in adult rats. Over 70% of the anterogradely labeled terminals contained spherical vesicles (S-terminals) and their synaptic densities were chiefly asymmetrical (Gray Type I). The rest (28%) of the labeled terminals had flattened vesicles (F-terminals) and predominantly established symmetrical (Gray Type II) synaptic contacts. The diameters of labeled terminals were 0.5-2.5 micron. Two-thirds of the S-terminals had diameters less than 1.25 micron, whereas, F-terminals were distributed equally in the higher (greater than 1.25) and lower (less than 1.25) diameter ranges. Most axon terminals ended on dendrites of hypoglossal neurons; some, chiefly F-terminals, formed axosomatic endings. Dendrites had diameters of 0.5-5 micron. The majority of S- and F-terminals ended on dendrites with diameters of less than 2.5 micron. However, more F-terminals (17%) than S-terminals (11%) were presynaptic to dendrites greater than 2.5 micron in diameter. Experiments in which anterograde HRP labeling of trigemino-hypoglossal projections was combined with retrograde WGA-HRP labeling of motoneurons projecting to the tongue, demonstrated that SPVN axons end on dendrites of these motoneurons. Whether some of the trigeminal fibers also terminate on intrinsic hypoglossal interneurons remains to be determined.
Collapse
Affiliation(s)
- R C Borke
- Department of Anatomy, USUHS, F. Herbert School of Medicine, Bethesda, MD 20814-4799
| | | |
Collapse
|