1
|
Srivastava A, Liachenko S, Sarkar S, Paule M, Negi G, Pandey JP, Hanig JP. Quantitative Neurotoxicology: An Assessment of the Neurotoxic Profile of Kainic Acid in Sprague Dawley Rats. Int J Toxicol 2020; 39:294-306. [PMID: 32468881 DOI: 10.1177/1091581820928497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (∼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.
Collapse
Affiliation(s)
| | - Serguei Liachenko
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Sumit Sarkar
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Merle Paule
- National Center for Toxicological Research, NCTR/DNT, Jefferson, AR, USA
| | - Geeta Negi
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Jai P Pandey
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| | - Joseph P Hanig
- US Food and Drug Administration, CDER/OPQ, Silver Spring, MD, USA
| |
Collapse
|
2
|
Alam MN, Ahmad A, Al-Abbasi FA, Ahmad A. Female ovarian steroids in epilepsy: a cause or remedy. Pharmacol Rep 2014; 65:802-12. [PMID: 24145074 DOI: 10.1016/s1734-1140(13)71061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 02/16/2013] [Indexed: 10/25/2022]
Abstract
In this article, we review published preclinical and clinical studies that examine the role of female ovarian steroids (estrogen and progesterone) in epilepsy. Its effects on the reproductive and endocrine system are well known but a large and growing body of evidences indicates that the hormones also exert neuroprotective effects on the central nervous system. Estrogen crosses the blood-brain barrier due to its low molecular weight and lipophilic properties and easily reaches the neuronal tissue. Estrogens and progesterone influence neuronal activity and are important for normal brain functions. It is commonly accepted that estrogens may increase neuronal excitability and thus mediate proconvulsant effects whereas in case of progesterone, various preclinical and clinical studies have proved that progesterone shows anticonvulsant effects. To concise our review we concluded that the effects of estrogens and progesterone on seizures depend on various factors, such as treatment duration and latency prior to the seizure testing, dose, hormonal status, the seizure type/model used and sex.
Collapse
Affiliation(s)
- Mohammad N Alam
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Postal Code-61466, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
3
|
Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 2013; 37:2887-99. [PMID: 24184743 DOI: 10.1016/j.neubiorev.2013.10.011] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
The kainic acid model of temporal lobe epilepsy has greatly contributed to the understanding of the molecular, cellular and pharmacological mechanisms underlying epileptogenesis and ictogenesis. This model presents with neuropathological and electroencephalographic features that are seen in patients with temporal lobe epilepsy. It is also characterized by a latent period that follows the initial precipitating injury (i.e., status epilepticus) until the appearance of recurrent seizures, as observed in the human condition. Finally, the kainic acid model can be reproduced in a variety of species using either systemic, intrahippocampal or intra-amygdaloid administrations. In this review, we describe the various methodological procedures and evaluate their differences with respect to the behavioral, electroencephalographic and neuropathological correlates. In addition, we compare the kainic acid model with other animal models of temporal lobe epilepsy such as the pilocarpine and the kindling model. We conclude that the kainic acid model is a reliable tool for understanding temporal lobe epilepsy, provided that the differences existing between methodological procedures are taken into account.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute and Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, QC, Canada H3A 2B4
| | | |
Collapse
|
4
|
Abstract
Aged animals have been used by researchers to better understand the differences between the young and the aged brain and how these differences may provide insight into the mechanisms of acute seizures and epilepsy in the elderly. To date, there have been relatively few studies dedicated to the modeling of acute seizures and epilepsy in aged, healthy animals. Inherent challenges to this area of research include the costs associated with the purchase and maintenance of older animals and, at times, the unexpected and potentially confounding comorbidities associated with aging. However, recent studies using a variety of in vivo and in vitro models of acute seizures and epilepsy in mice and rats have built upon early investigations in the field, all of which has provided an expanded vision of seizure generation and epileptogenesis in the aged brain. Results of these studies could potentially translate to new and tailored interventional approaches that limit or prevent the development of epilepsy in the elderly.
Collapse
Affiliation(s)
- Kevin M Kelly
- Drexel University College of Medicine, Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital Pittsburgh, Pittsburgh, PA 15212-4772, USA.
| |
Collapse
|
5
|
McCord MC, Lorenzana A, Bloom CS, Chancer ZO, Schauwecker PE. Effect of age on kainate-induced seizure severity and cell death. Neuroscience 2008; 154:1143-53. [PMID: 18479826 DOI: 10.1016/j.neuroscience.2008.03.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
While the onset and extent of epilepsy increases in the aged population, the reasons for this increased incidence remain unexplored. The present study used two inbred strains of mice (C57BL/6J and FVB/NJ) to address the genetic control of age-dependent neurodegeneration by building upon previous experiments that have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death. We determined if seizure induction and seizure-induced cell death are affected differentially in young adult, mature, and aged male C57BL/6J and FVB/NJ mice administered the excitotoxin, kainic acid. Dose response testing was performed in three to four groups of male mice from each strain. Following kainate injections, mice were scored for seizure activity and brains from mice in each age group were processed for light microscopic histopathologic evaluation 7 days following kainate administration to evaluate the severity of seizure-induced brain damage. Irrespective of the dose of kainate administered or the age group examined, resistant strains of mice (C57BL/6J) continued to be resistant to seizure-induced cell death. In contrast, aged animals of the FVB/NJ strain were more vulnerable to the induction of behavioral seizures and associated neuropathology after systemic injection of kainic acid than young or middle-aged mice. Results from these studies suggest that the age-related increased susceptibility to the neurotoxic effects of seizure induction and seizure-induced injury is regulated in a strain-dependent manner, similar to previous observations in young adult mice.
Collapse
Affiliation(s)
- M C McCord
- Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, BMT 403, 1333 San Pablo Street, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
6
|
Zhang XM, Zhu SW, Duan RS, Mohammed AH, Winblad B, Zhu J. Gender differences in susceptibility to kainic acid-induced neurodegeneration in aged C57BL/6 mice. Neurotoxicology 2008; 29:406-12. [PMID: 18342945 DOI: 10.1016/j.neuro.2008.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/10/2008] [Accepted: 01/29/2008] [Indexed: 11/15/2022]
Abstract
Some epidemiological studies concerning gender differences in Alzheimer's disease (AD) support the higher prevalence and incidence of AD in women, while most studies using animal models of aging have included only male subjects. It is still uncommon for aged males and females to be compared in the same study. In the present study, we investigated how age and gender influence the excitotoxic neurodegeneration by treating C57BL/6 mice (aged females and males as well as adult females and males) with kainic acid (KA) intranasally. Clinical signs, behavioural changes, pathological changes and astrocyte proliferation were tested; and the levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were measured after KA treatment. The results showed that aged female mice were more sensitive to KA-induced excitotoxicity as demonstrated by severer seizure activity, increased locomotion and rearing in open-field test, prominent hippocampal neuronal damage, enhanced astrocyte proliferation compared with aged males, adult females and adult male mice. In addition, higher BDNF level in hippocampus of aged female mice was observed. These results denote the disparity of aging and gender in KA-induced hippocampal neurodegeneration and aged female mice are more sensitive to the excitotoxicity.
Collapse
Affiliation(s)
- Xing-Mei Zhang
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
7
|
Shin EJ, Jeong JH, Bing G, Park ES, Chae JS, Yen TPH, Kim WK, Wie MB, Jung BD, Kim HJ, Lee SY, Kim HC. Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice. Cell Signal 2007; 20:645-58. [PMID: 18248956 DOI: 10.1016/j.cellsig.2007.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 12/24/2022]
Abstract
We have demonstrated that kainate (KA) induces a reduction in mitochondrial Mn-superoxide dismutase (Mn-SOD) expression in the rat hippocampus and that KA-induced oxidative damage is more prominent in senile-prone (SAM-P8) than senile-resistant (SAM-R1) mice. To extend this, we examined whether KA seizure sensitivity contributed to mitochondrial degeneration in these mouse strains. KA-induced seizure susceptibility in SAM-P8 mice paralleled prominent increases in lipid peroxidation and protein oxidation and was accompanied by significant impairment in glutathione homeostasis in the hippocampus. These findings were more pronounced in the mitochondrial fraction than in the hippocampal homogenate. Consistently, KA-induced decreases in Mn-SOD protein expression, mitochondrial transmembrane potential, and uncoupling protein (UCP)-2 expression were more prominent in SAM-P8 than SAM-R1 mice. Marked release of cytochrome c from mitochondria into the cytosol and a higher level of caspase-3 cleavage were observed in KA-treated SAM-P8 mice. Additionally, electron microscopic evaluation indicated that KA-induced increases in mitochondrial damage and lipofuscin-like substances were more pronounced in SAM-P8 than SAM-R1 animals. These results suggest that KA-mediated mitochondrial oxidative stress contributed to hippocampal degeneration in the senile-prone mouse.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liang LP, Beaudoin ME, Fritz MJ, Fulton R, Patel M. Kainate-induced seizures, oxidative stress and neuronal loss in aging rats. Neuroscience 2007; 147:1114-8. [PMID: 17590518 DOI: 10.1016/j.neuroscience.2007.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 03/16/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Aging is a significant risk factor for developing epilepsy. The mechanisms underlying age-related increase in seizure susceptibility and resultant injury remain unknown. Oxidative stress is an important mechanism that contributes to diverse age-related disorders. Whether age-related increased seizure susceptibility is accompanied by increased oxidative stress remains unknown. The goal of this study was to determine if aging per se increases the susceptibility of rats to kainate-induced behavioral seizures and oxidative stress. Adult (3-4 month-old) and aging (18-19 month-old) Sprague-Dawley rats were administered a single low dose of kainate (5 mg/kg, s.c.) or saline. Behavioral seizures were monitored in all four groups for a period for a period of approximately 6 h. Oxidative stress (8-hydroxy-2'deoxyguanosine/2-deoxyguanosine; 8OHdG/2dG) was assessed 24 h following kainate injection. Stereological assessment of cell counts was performed in hippocampal tissue 7 days following kainate injection. In adult rats, administration of the low dose of kainate did not produce significant behavioral seizures, oxidative stress or cell loss. However, aging rats exhibited intense behavioral seizures consistent with status epilepticus following the low dose of kainate. In aging rats, kainate produced a significant increase in oxidative DNA damage (8OHdG/2dG) and neuronal loss in cornu ammonis regions 3 and 1 (CA3 and CA1), but not dentate gyrus compared with both age-matched controls and adult kainate-treated rats. These data suggest that the process of aging per se increases kainate-induced seizure susceptibility, oxidative stress and hippocampal pyramidal cell loss.
Collapse
Affiliation(s)
- L P Liang
- Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, Box C238, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Estrogens are essential for normal brain function throughout life. The source of estrogens is not only from the periphery, but local production has also been demonstrated in the CNS. Actions of estrogens involve a variety of effects, which include modulation of gene expression, regulation of neurotransmitter release, or direct inter-actions with neurotransmitter receptors. By these effects, estrogens affect neuronal excitability and thus may play an important role in seizure disorders. Although the original clinical as well as animal studies suggest that estrogens have exclusively proconvulsant properties, it has now become clear that estrogens also produce anticonvulsant effects. These opposite effects of estrogens on seizures may depend on treatment duration, latency prior to seizure testing, mode of administration, estrogen dose and hormonal status, estrogenic species, the region/neurotransmitter system involved, seizure type/model used, and sex. Animal data also suggest that estrogens, specifically beta-estradiol, have neuroprotective effects on seizure-induced hippocampal damage. Further studies are necessary to understand the role of estrogens in seizure disorders. Such under-standing is important, especially for women with epilepsy, to make qualified decisions regarding administration of contraceptives and hormonal replacement therapy as well as for the design of new therapeutic strategies for better seizure control and prevention of seizure-induced neuronal damage.
Collapse
Affiliation(s)
- Jana Velísková
- The Saul R. Korey Department of Neurology and the Dominick P. Purpura Department of Neuroscience, Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Murphree LJ, Rundhaugen LM, Kelly KM. Animal models of geriatric epilepsy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 81:29-40. [PMID: 17433916 DOI: 10.1016/s0074-7742(06)81003-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Geriatric epilepsy is a significant clinical problem that has not been studied adequately in animal models. This chapter will review the available literature with particular attention to models that have demonstrated how acute seizures and epilepsy in aged animals differ from those of younger animals. Studies include several strains of mice [e.g., El, DBA, senescence-accelerated mouse (SAM), Cacnb4 knockout] as well as acute seizure models in common strains of aged mice. Aged rats (including Fischer 344, Wistar, and Sprague-Dawley) have been used in acute seizure, lesion, and epilepsy models. This area of research remains largely unexplored and therefore provides numerous opportunities for new investigations.
Collapse
|
11
|
Butler D, Bahr BA. Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxid Redox Signal 2006; 8:185-96. [PMID: 16487052 DOI: 10.1089/ars.2006.8.185] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central nervous system is notable for its level of oxygen utilization and ATP synthesis, resulting in a distinct susceptibility to oxidative stress. Generation of reactive oxygen species (ROS) can occur with mitochondrial respiration as well as during other aspects of cellular homeostasis maintained through a balance between biosynthesis and catabolism. Altered catabolic processes often promote oxidative stress, and the autophagy-lysosome pathway stands out as being both affected by and contributing to the resulting stress. ROS production is increased by aging, excitotoxicity, and aberrant protein processing, just a few of the events that also influence lysosomal degradative mechanisms. Oxidative damage leads to very different outcomes, such as compromise of lysosome integrity as well as potential compensatory responses involving amplification of lysosomal enzymes and induced autophagy. Lysosomal activation occurs with brain aging, is a characteristic feature of Alzheimer's disease, and has been suggested to be an avenue for preventing protein accumulation pathology. This review provides examples from the literature to discuss the role of lysosomes in oxidative damage, the brain's distinct vulnerability, and issues regarding the enhancement of lysosomal capacity and autophagic processes.
Collapse
Affiliation(s)
- David Butler
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | |
Collapse
|
12
|
Benkovic SA, O'Callaghan JP, Miller DB. Regional neuropathology following kainic acid intoxication in adult and aged C57BL/6J mice. Brain Res 2006; 1070:215-31. [PMID: 16403473 DOI: 10.1016/j.brainres.2005.11.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/03/2005] [Accepted: 11/06/2005] [Indexed: 01/05/2023]
Abstract
We evaluated regional neuropathological changes in adult and aged male mice treated systemically with kainic acid (KA) in a strain reported to be resistant to excitotoxic neuronal damage, C57BL/6. KA was administered in a single intraperitoneal injection. Adult animals were dosed with 35 mg/kg KA, while aged animals received a dose of 20 mg/kg in order to prevent excessive mortality. At time-points ranging from 12 h to 7 days post-treatment, animals were sacrificed and prepared for histological evaluation utilizing the cupric-silver neurodegeneration stain, immunohistochemistry for GFAP and IgG, and lectin staining. In animals of both ages, KA produced argyrophilia in neurons throughout cortex, hippocampus, thalamus, and amygdala. Semi-quantitative analysis of neuropathology revealed a similar magnitude of damage in animals of both ages, even though aged animals received less toxicant. Additional animals were evaluated for KA-induced reactive gliosis, assayed by an ELISA for GFAP, which revealed a 2-fold elevation in protein levels in adult mice, and a 2.5-fold elevation in aged animals. Histochemical evaluation of GFAP and lectin staining revealed activation of astrocytes and microglia in regions with corresponding argyrophilia. IgG immunostaining revealed a KA-induced breach of the blood-brain barrier in animals of both ages. Our data indicate widespread neurotoxicity following kainic acid treatment in C57BL/6J mice, and reveal increased sensitivity to this excitotoxicant in aged animals.
Collapse
Affiliation(s)
- Stanley Anthony Benkovic
- Toxicology and Molecular Biology Branch, Centers for Disease Control and Prevention-National Institute for Occupational, Safety and Health, Mailstop 3014, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | |
Collapse
|
13
|
Velísková J. The role of estrogens in seizures and epilepsy: the bad guys or the good guys? Neuroscience 2005; 138:837-44. [PMID: 16310960 DOI: 10.1016/j.neuroscience.2005.07.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/07/2005] [Accepted: 07/12/2005] [Indexed: 11/17/2022]
Abstract
Estrogens influence neuronal activity and are important for normal brain functions. Effects of estrogens on seizures are contradictory. It is commonly accepted that estrogens may increase neuronal excitability and thus mediate proconvulsant effects. However, clinical and animal data show that estrogen may also have no effect or anticonvulsant effects. The action of estrogens on seizures depends on various factors, such as treatment duration and latency prior to the seizure testing, estrogen dose, hormonal status (naïve vs gonadectomized animals), estrogenic substance, the region/neurotransmitter system involved, the seizure type/model used, and sex. Besides the effects on seizure susceptibility, estrogens may also play an important role in seizure-induced damage. Pretreatment with beta-estradiol in ovariectomized female rats has neuroprotective effects on status epilepticus-induced hippocampal damage and prevents the loss of inhibition in the dentate gyrus during the early post-status epilepticus period determined by the in vitro paired pulse paradigm. Several signaling pathways may be involved in the neuroprotective effects of beta-estradiol on status epilepticus-induced hippocampal damage but at least one of these pathways involves interactions with neuropeptide Y.
Collapse
Affiliation(s)
- J Velísková
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Darbin O, Naritoku D, Patrylo PR. Aging alters electroencephalographic and clinical manifestations of kainate-induced status epilepticus. Epilepsia 2004; 45:1219-27. [PMID: 15461676 DOI: 10.1111/j.0013-9580.2004.66103.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The elderly exhibit an increased risk for developing status epilepticus and status-related morbidity and mortality. However, it is unclear how aging alters the progression of electroencephalographic (EEG) activity and behavioral manifestations during status epilepticus. METHODS A repetitive low-dose kainate treatment protocol (2.5 mg/kg/h; i.p.) was used in this study in conjunction with EEG and behavioral monitoring from freely behaving adult (7-8 months) and aged (22-25 months) Fischer 344 rats to assess the effects of aging on status epilepticus. RESULTS During kainate treatment, both groups exhibited an increase in EEG power that corresponded with the time course of kainate treatment. However, visual inspection and spectral analysis revealed a reduction of the faster frequencies (12.5-35 Hz) in the EEGs of aged rodents. A similar progression of behavioral manifestations was observed in adult and aged rodents during kainate treatment, although the frequency of preseizure manifestations (e.g., wet-dog shakes; aged rats, 110 events/h vs. adults, 25 events/h; median values) was greater, and latency to onset for any given behavioral manifestation (e.g., class V seizures; aged median, 60 min, vs. adult median, 145 min) was consistently shorter within the aged group. CONCLUSIONS These data reveal that aged Fischer 344 rats exhibit altered EEG activity (reduction of higher frequencies) and clinical manifestations during kainate-induced status epilepticus. Taken together, these data indicate an age-related change in seizure onset and spread after exposure to glutamate analogues.
Collapse
Affiliation(s)
- Olivier Darbin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | |
Collapse
|
15
|
Stanley DP, Shetty AK. Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J Neurochem 2004; 89:204-16. [PMID: 15030405 DOI: 10.1111/j.1471-4159.2004.02318.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increased excitability of principal excitatory neurons is one of the hallmarks of aging in the hippocampus, signifying a diminution in the number and/or function of inhibitory interneurons with aging. To elucidate this, we performed comprehensive GABA-ergic interneuron cell counts in all layers of the dentate gyrus and the CA1 and CA3 subfields, using serial sections from adult, middle-aged and aged Fischer 344 rats. Sections were immunostained for glutamate decarboxylase-67 (GAD-67, a synthesizing enzyme of GABA) and GAD-67 immunopositive interneurons were counted using an unbiased cell counting method, the optical fractionator. Substantial declines in the absolute number of GAD-67 immunopositive interneurons were found in all hippocampal layers/subfields of middle-aged and aged animals, in comparison with the adult animals. However, the counts were comparable between the middle-aged and aged groups for all regions. Interestingly, determination of the absolute number of interneurons using neuron-specific nuclear antigen (NeuN) expression in the strata oriens and radiatum of CA1 and CA3 subfields revealed an analogous number of interneurons across the three age groups. Furthermore, the ratio of GAD-67 immunopositive and NeuN positive interneurons decreased from adult age to middle age but remained relatively static between middle age and old age. Collectively, the results underscore that aging in the hippocampus is associated with wide-ranging decreases in the number of GAD-67 immunopositive interneurons and most of the age-related changes in GAD-67 immunopositive interneuron numbers transpire by middle age. Additionally, this study provides novel evidence that age-related reductions in hippocampal GAD-67 immunopositive interneuron numbers are due to loss of GAD-67 expression in interneurons rather than interneuron degeneration.
Collapse
Affiliation(s)
- Dirk P Stanley
- Medical Research Service, Veterans Affairs Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
16
|
Kelly KM, Ikonomovic MD, Abrahamson EE, Kharlamov EA, Hentosz TM, Armstrong DM. Alterations in hippocampal voltage-gated calcium channel alpha 1 subunit expression patterns after kainate-induced status epilepticus in aging rats. Epilepsy Res 2004; 57:15-32. [PMID: 14706730 DOI: 10.1016/j.eplepsyres.2003.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Young adult and aged male Fisher 344 rats underwent kainate-induced convulsive status epilepticus (SE) for 4 h prior to sacrifice to determine potential aging-related differences in the effect of prolonged SE on the expression of hippocampal voltage-gated calcium channels (VGCCs). Immunohistochemistry was performed on hippocampal sections using antibodies directed against the alpha1 subunit of class A-D VGCCs. Compared to age-matched controls, SE animals showed a marked loss of alpha1A immunoreactivity (IR) in CA3 and the hilus, which was more prominent in aged animals. Alpha1B-IR was decreased selectively in the stratum lucidum of CA3. Alpha1C-IR was increased on neuronal somata in the pyramidal and granule cell layers of both age groups. In contrast, there was a marked decrease of alpha1C-IR in the neuropil of CA3 stratum pyramidale and portions of CA1, which was more pronounced in aged animals. Alpha1D-IR was decreased in CA3 and the hilus, which was more prominent in aged animals. Nissl staining demonstrated mild somal dysmorphia in the pyramidal cell layer of CA3, which was more apparent in aged animals. Fluoro-Jade B staining was prominent in the stratum pyramidale of CA3 and in the hilus of aged SE animals. These results demonstrated that expression patterns of hippocampal high-threshold VGCC alpha1 subunits were altered variably during prolonged convulsive SE and were associated with prominent early degenerative changes in aged neurons in CA3 and the hilus.
Collapse
Affiliation(s)
- Kevin M Kelly
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, 940 South Tower, 320 E North Avenue, Pittsburgh, PA 15212-4772, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Chen Z, Ljunggren HG, Zhu SW, Winblad B, Zhu J. Reduced susceptibility to kainic acid-induced excitoxicity in T-cell deficient CD4/CD8(-/-) and middle-aged C57BL/6 mice. J Neuroimmunol 2004; 146:33-8. [PMID: 14698844 DOI: 10.1016/j.jneuroim.2003.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kainic acid (KA)-induced hippocampal injury is a good model for studying human neurodegenerative diseases. To investigate the roles of immune cells and age related changes in neurodegeneration, we used this model to assess reactions in young and middle-aged wild-type and CD4/CD8(-/-) mice by intranasal administration of KA. We found that CD4/CD8-deficiency resulted in a significant reduction of the severity of clinical signs and pathological changes in KA-treated young, but not in KA-treated middle-aged mice. Middle-aged wild-type mice had a similar reaction to KA insult as young and middle-aged CD4/CD8(-/-) mice. CD4/CD8(-/-) mice exhibited decreased locomotor and rearing activities as they approached to middle-aged state, which was not seen in wild-type mice. In addition, CD4/CD8-deficiency and increased age prevented KA-induced increase of both locomotor and rearing activities. The results suggest that a decline of immunological function is associated with aging, and both of them may contribute to the relative resistance to KA-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhiguo Chen
- Division of Experimental Geriatrics, Department of Neurotec, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Holtkamp M, Buchheim K, Siegmund H, Meierkord H. Optical imaging reveals reduced seizure spread and propagation velocities in aged rat brain in vitro. Neurobiol Aging 2003; 24:345-53. [PMID: 12498969 DOI: 10.1016/s0197-4580(02)00100-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Old age is the most common time for patients to develop epileptic seizures, and due to their frequent unusual clinical presentation the diagnosis of epilepsy is often delayed in the elderly. It is as yet unknown if pronounced alterations in the plastic properties of aging nervous tissue contribute to these phenomena. We employed a non-lesional in vitro epilepsy model to study seizure susceptibility, spread pattern, and propagation velocities in combined hippocampal-entorhinal cortex slices of aged rats and controls using electrophysiological methods and imaging of intrinsic optical signals. In aged animals we saw a less extensive spread of seizure-like events into areas adjacent to the region of onset of activity and a decreased spread velocity in various anatomical regions. In addition, both the activity-dependent shrinkage of the extracellular space (ECS)-volume and the extracellular K(+) concentration were significantly reduced compared to controls. The results of this study are consistent with the clinical observation that epileptic seizures in the elderly have a reduced tendency to spread. In addition, our data suggest that in the absence of structural lesions seizure susceptibility in the aging brain is not increased.
Collapse
Affiliation(s)
- M Holtkamp
- Neurologische Klinik, Universitätsklinikum Charité, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
19
|
Pérez-Cruz C, Rocha L. Kainic acid modifies mu-receptor binding in young, adult, and elderly rat brain. Cell Mol Neurobiol 2002; 22:741-53. [PMID: 12585692 DOI: 10.1023/a:1021861108885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mu-receptor binding changes were evaluated following the kainic acid (KA)-induced status epilepticus (SE) in young, adult, and elderly animals. Male Wistar rats were used as follows: young rats (15 days old) were treated with KA (7 mg/kg) and sacrificed 72 h (YKA3d) or 35 days (YKA35d) after SE; adult (90 days old) (AKA1d and AKA40d) and elderly rats (1-year-old) (EKA1d and EKA40d) were injected with KA (10 mg/kg) and then sacrificed 24 h or 40 days following SE. Their brains were processed for an autoradiography assay for mu-receptors. The YKA3d group showed increased values in dentate gyrus (39%) and a decrease in substantia nigra (26%); YKA35d animals had a reduction in caudate putamen (29%) and in substantia nigra (20%). The AKA1d group exhibited increased mu-receptors in caudate putamen (49%), cingulate (415%), frontal (52%), and temporal (53%) cortices: substantia nigra (56%), dentate gyrus (48%). and CA2 field of hippocampus (53%). The AKA40d group showed increased values in sensorimotor cortex (45%), anterior (39%), medial (65%), basolateral (202%), and central (32%) amygdaloid nuclei; dentate gyrus (80%) as well as CA2 (80%) and CA3 (49%) fields of hippocampus. The EKA1d group presented decreased mu-receptor binding in piriform (16%) and enthorinal (22%) cortices as well as in anterior amygdala nucleus (17%). The EKA40d group showed reduced values in sensorimotor cortex (14%) and substantia nigra (27%). The present results indicate that the mu-binding changes following SE depend on the rate of brain maturation.
Collapse
Affiliation(s)
- Claudia Pérez-Cruz
- División de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente: Av. México-Xochimilco 101, Mexico. D.F. C.P., 14370 Mexico
| | | |
Collapse
|
20
|
Willott JF, Hnath Chisolm T, Lister JJ. Modulation of presbycusis: current status and future directions. Audiol Neurootol 2001; 6:231-49. [PMID: 11729326 DOI: 10.1159/000046129] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Literature and ideas are reviewed concerning the modulation of presbycusis - the influence of variables that can alter the severity and/or time course of presbycusis or counteract its negative aspects. Eleven topics are identified: variables related to biological aging; genetics; noise-induced hearing loss; moderately augmented acoustic environment; neural plasticity and the central auditory system; neural plasticity and hearing aids; socioeconomic and cultural barriers to hearing aid use; lifestyle (diet, exercise, etc.); medical variables; pharmaceutical interventions for presbycusis, and cognitive variables. It is concluded that the field of otogerontology will best be served by a comprehensive, integrative interaction among basic researchers and clinical scientists who will continue to learn how the auditory problems associated with presbycusis can be intentionally modulated in beneficial ways.
Collapse
Affiliation(s)
- J F Willott
- Department of Psychology, The Jackson Laboratory, Bar Harbor, ME, USA.
| | | | | |
Collapse
|
21
|
Eppler B, Dawson R. Dietary taurine manipulations in aged male Fischer 344 rat tissue: taurine concentration, taurine biosynthesis, and oxidative markers11Abbreviations: CA, cysteic acid; CSA, cysteine sulfinic acid; CSD, cysteine sulfinic acid decarboxylase; CDO, cysteine dioxygenase; DNPH, 2,4-dinitrophenylhydrazin; DPPH, α,α-diphenyl-β-picrylhydrazyl; F344, Fischer 344; HPLC-ECD, high performance liquid chromatography with electrochemical detection; MDCK, Madin Darby canine kidney; PCA, perchloric acid; TAU, taurine; TBARS, thiobarbituric acid; and TCA, trichloroacetic acid. Biochem Pharmacol 2001; 62:29-39. [PMID: 11377394 DOI: 10.1016/s0006-2952(01)00647-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Taurine (TAU) is a ubiquitous sulfur-containing amino acid that has been proposed to be an antioxidant. The concentration of TAU decreases during aging, which may increase susceptibility to oxidative stress. Our study attempted to elucidate the mechanism for the age-dependent decrease in TAU content by examining TAU biosynthesis in aged rats. We also examined the effects of dietary TAU manipulations on TAU content and oxidative markers in aged male Fischer 344 (F344) rats. Adult (9 months) and aged (26 months) rats fed control diets, aged rats fed control diet and TAU-supplemented (1.5%) water, and aged rats fed a TAU-deficient diet were used. We observed a significant age-related decrease in TAU content in liver, kidney, and cerebellum. Dietary TAU supplementation increased tissue TAU content, whereas dietary TAU restriction had no effect. Enzyme-dependent TAU synthesis showed an age-dependent reduction in liver that was decreased further by TAU supplementation. Protein carbonyl content was elevated in the cerebral cortex and kidney of aged rats and was attenuated by TAU supplementation. A trend for a decrease in protein and acid-soluble thiol contents in hepatic tissue of aged rats was observed, and this was attenuated with dietary TAU supplementation. Our data show that a decrease in hepatic TAU biosynthesis may cause, in part, the observed decline in tissue TAU content in aged F344 rats, and TAU supplementation can restore TAU levels. Our study indicates that a decline in TAU content may exacerbate oxidative stress in aged rats, which can be reversed by dietary TAU supplementation.
Collapse
Affiliation(s)
- B Eppler
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, JHMHC Box 100487, Gainesville, FL 32610, USA.
| | | |
Collapse
|
22
|
Eppler B, Patterson TA, Zhou W, Millard WJ, Dawson R. Kainic acid (KA)-induced seizures in Sprague-Dawley rats and the effect of dietary taurine (TAU) supplementation or deficiency. Amino Acids 2001; 16:133-47. [PMID: 10319185 DOI: 10.1007/bf01321532] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Male Sprague-Dawley rats received TAU supplementation (1.5% in drinking water) or TAU deficient diets for 4 weeks to test for a possible neuroprotective role of TAU in KA-induced (10 mg/kg s.c.) seizures. TAU supplementation significantly increased serum and hippocampal TAU levels, but not TAU content in temporal cortex or striatum. TAU deficient diets did not attenuate serum or tissue TAU levels. Dietary TAU supplementation failed to decrease the number or latency of partial or clonic-tonic seizures or wet dog shakes, whereas a TAU deficient diet decreased the number of clonictonic and partial seizures. This study does not support previous observations of an anticonvulsant effect of TAU against KA-induced seizures. KA-treatment decreased alpha 2-adrenergic receptor binding sites and TAU content in the temporal cortex across all dietary treatment groups, supporting previous evidence of severe KA-induced damage and neuronal loss in this brain region.
Collapse
Affiliation(s)
- B Eppler
- Department of Pharmacodynamics, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
23
|
Pitkin SR, Savage LM. Aging potentiates the acute and chronic neurological symptoms of pyrithiamine-induced thiamine deficiency in the rodent. Behav Brain Res 2001; 119:167-77. [PMID: 11165332 DOI: 10.1016/s0166-4328(00)00350-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study aimed to assess the role of advanced age in the development and manifestation of thiamine deficiency using an animal model of Wernicke-Korsakoff syndrome (WKS). Interactions between pyrithiamine-induced thiamine deficiency (PTD) and age were examined relative to working memory impairment and neuropathology in Fischer 344 rats. Young (2-3 months) and aged (22-23 months) F344 rats were assigned to one of two treatment conditions: PTD or pair-fed control (PF). Rats in the former group were further divided into three groups according to duration of PTD treatment. Working memory was assessed with an operant matching-to-position (MTP) task; after testing, animals were sacrificed and both gross and immunocytochemical measures of brain pathology were obtained. Aged rats exhibited acute neurological disturbances during the PTD treatment regime earlier than did young rats, and also developed more extensive neuropathology with a shorter duration of PTD. Aged rats displayed increased brain shrinkage (smaller frontal cortical and callosal thickness) as well as enhanced astrocytic activity in the thalamus and a decrease in ChAT-positive cell numbers in the medial septum; the latter two measures of neuropathology were potentiated by PTD. In both young and aged rats, and to a greater degree in the latter group, PTD reduced thalamic volume. Behaviorally, aged rats displayed impaired choice accuracy on the delayed MTP task. Regardless of age, rats with lesions centered on the internal medullary lamina of the thalamus also displayed impaired choice accuracy. Moreover, increased PTD treatment duration led to increased response times on the delayed MTP task. These results suggest that aging does indeed potentiate the neuropathology associated with experimental thiamine deficiency, supporting an age coupling hypothesis of alcohol-related neurological disorders.
Collapse
Affiliation(s)
- S R Pitkin
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13905, USA
| | | |
Collapse
|
24
|
Segovia G, Porras A, Del Arco A, Mora F. Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 2001; 122:1-29. [PMID: 11163621 DOI: 10.1016/s0047-6374(00)00225-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of aging on glutamate neurotransmission in the brain is reviewed and evaluated. Glutamate is the neurotransmitter in most of the excitatory synapses and appears to be involved in functions such as motor behaviour, cognition and emotion, which alter with age. However, relatively few studies have been conducted to study the relationship between glutamate and aging of the brain. The studies presented here indicate the existence of a number of changes in the glutamatergic system during the normal process of aging. First, an age-related decrease of glutamate content in tissue from cerebral cortex and hippocampus has been reported, although it may be mainly a consequence of changes in metabolic activity rather than glutamatergic neurotransmission. On the other hand, studies in vitro and in vivo have shown no changes in glutamate release during aging. Since glutamate sampled in most of these studies is the result of a balance between release and uptake processes, the lack of changes in glutamate release may be due to compensatory changes in glutamate uptake. In fact, a reduced glutamate uptake capacity, as well as a loss in the number of high affinity glutamate transporters in glutamatergic terminals of aged rats, have been described. However, the most significant and consistent finding is the decrease in the density of glutamatergic NMDA receptors with age. A new perspective, in which glutamate interacts with other neurotransmitters to conform the substrates of specific circuits of the brain and its relevance to aging, is included in this review. In particular, studies from our laboratory suggest the existence of age-related changes in the interaction between glutamate and other neurotransmitters, e.g. dopamine and GABA, which are regionally specific.
Collapse
Affiliation(s)
- G Segovia
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Zhang JW, Deb S, Gottschall PE. Regional and age-related expression of gelatinases in the brains of young and old rats after treatment with kainic acid. Neurosci Lett 2000; 295:9-12. [PMID: 11078924 DOI: 10.1016/s0304-3940(00)01582-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the possible detrimental impact of local inflammatory responses in neurodegenerative disease, it was of interest to measure the expression of extracellular matrix-degrading enzymes, a group of proteases that are induced during an inflammatory response, in the brains of old and young animals in a model of neuronal death. Doses of kainic acid were administered that resulted in comparable hippocampal pyramidal neuron loss in young and old F344/BN hybrid rats, even though each age group received widely differing doses. Two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were differentially induced with respect to time after kainic acid in sensitive brain regions in both young and old rats. However, the elevation of MMP-9 in the temporal lobe 12 h after injection in old rats was significantly greater than that observed in young animals. These results suggest that early and late induction of MMPs may play a role in neuronal death and repair mechanisms, respectively, and that inflammatory mechanisms in the central nervous system (CNS) of old rats are exaggerated compared to young rats.
Collapse
Affiliation(s)
- J W Zhang
- University of South Florida College of Medicine, Department of Pharmacology and Therapeutics, Tampa, FL 33612-4799, USA
| | | | | |
Collapse
|
26
|
Kharlamov A, Kharlamov E, Armstrong DM. Age-dependent increase in infarct volume following photochemically induced cerebral infarction: putative role of astroglia. J Gerontol A Biol Sci Med Sci 2000; 55:B135-41; discussion B142-3. [PMID: 10795717 DOI: 10.1093/gerona/55.3.b135] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study demonstrates that the photochemically induced model of stroke is an extremely viable method of inducing cerebral infarction in old animals. The lesions are reproducible both in terms of location and size and compatible with long-term survival of the animal. With this model we demonstrated, one week following surgery, a significantly larger infarct in rats 20 and 24 months of age compared to 4-month-old rats. The older rats also sustained greater neurologic deficits as assessed on a rotarod task. Older rats also were characterized by a glial response that was far less intense than in young animals. While the precise relationship between glia activation and cerebral damage remains to be determined, it would appear that a better understanding of those factors that contribute to the astrocytic response in the aged rat may be of particular benefit in designing therapeutic strategies aimed at reducing the pathologic consequences of cerebral infarction in elderly humans.
Collapse
Affiliation(s)
- A Kharlamov
- Allegheny University of the Health Sciences, Neurosciences Research Center, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
27
|
Eppler B, Dawson R. Cysteine sulfinate decarboxylase and cysteine dioxygenase activities do not correlate with strain-specific changes in hepatic and cerebellar taurine content in aged rats. Mech Ageing Dev 1999; 110:57-72. [PMID: 10580692 DOI: 10.1016/s0047-6374(99)00040-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Taurine is a free sulfur-containing amino acid that is found in abundance in mammalian tissues and fluids. Many biological roles have been proposed for this amino acid, including reducing oxidative stress and cytotoxicity. Taurine has previously been reported to decline in tissues during aging which could exacerbate an age-related increase in oxidative stress. The aim of the present study was to elucidate the mechanism responsible for the observed decline in tissue taurine content. We measured the activity of the major taurine biosynthetic enzymes, cysteine sulfinate decarboxylase and cysteine dioxygenase, in liver and cerebellar tissues of rats. Tissues from male adult and aged Fischer 344 (F344; 10 and 28 months), Sprague-Dawley (SD; 5, 20 and 25 months), and F344/Brown-Norway hybrid (FBNF1; 14 and 33.5 months) rats were used. We observed a significant decline in hepatic taurine content of the F344 animals but the decline in the liver of SD and FBNF1 animals was non-significant. Hepatic cysteine sulfinate decarboxylase and cysteine dioxygenase activities were significantly lower in aged F344 rats but not in the other strains. Cerebellar taurine content was significantly lower in aged F344 and SD rats without a concomitant decline in cysteine sulfinate decarboxylase activity. These results suggest that a decline in hepatic de novo taurine biosynthesis might be partially responsible for a reduction in tissue taurine content in F344 rats.
Collapse
Affiliation(s)
- B Eppler
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville 32610, USA.
| | | |
Collapse
|
28
|
Shetty AK, Turner DA. Vulnerability of the dentate gyrus to aging and intracerebroventricular administration of kainic acid. Exp Neurol 1999; 158:491-503. [PMID: 10415155 DOI: 10.1006/exnr.1999.7107] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hippocampal formation is highly vulnerable to the aging process, demonstrating functional alterations in circuitry with aging. Aging may also change the sensitivity of the hippocampal formation to excitotoxic lesions. In this study, using young adult, middle aged, and aged Fischer 344 rats, we evaluated morphometric changes in the dentate gyrus as a function of age and also in response to an administration of an excitotoxin (kainic acid) into the right lateral ventricle. The dentate gyrus was measured for changes in the area of dentate hilus and the dentate granule cell layer, alterations in the width of the dentate granule cell layer, and degree of dentate hilar cell loss. With aging, the hilar area increased in size while the area and width of the dentate granule cell layer remained constant. However, the most striking change with aging was a significant reduction in the number of dentate hilar neurons. Intracerebroventricular kainic acid produced consistent lesions in the entire ipsilateral CA3 region, and the size of CA3 lesion was identical in all three ages of animals. Following the lesion, areas of both the dentate hilus and the granule cell layer were significantly decreased in only young adult and middle aged animals whereas the width of the dentate granule cell layer was significantly increased only in the middle aged group. In contrast, dentate hilar neurons were significantly reduced in all ages of animals with the maximum reductions in neuron number observed in the aged group. Thus, aging in the dentate gyrus is characterized by a significantly decreased number of dentate hilar neurons and also a significantly increased susceptibility of dentate hilar neurons to excitotoxic damage.
Collapse
Affiliation(s)
- A K Shetty
- Medical Research and Surgery (Neurosurgery) Services, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| | | |
Collapse
|
29
|
Abstract
The age-related susceptibility of the brain to neurodegenerative disease may be inherent in the susceptibility of individual neurons to various stressors. Neurons were isolated from embryonic, young- and old-aged rat hippocampus, cultured in serum-free medium and exposed to lactic acid, glutamate or beta-amyloid. Yields of isolated adult cells were 1 million cells/hippocampus, 12,000 cells/mg tissue, independent of age. For lactic acidosis, there was a non-significant 10% increment in killing of neuron-like cells from old rats compared to young. For glutamate, there was a 5-10% increment in killing of neuron-like cells from old rats compared to young rats and embryonic neurons. For cells exposed to the toxic fragment of beta-amyloid, A beta (25-35), toxicity was age, dose and time-dependent. Maximum toxicity in cells treated for 1 day with 25 microM A beta (25-35) was 16%, 24%, and 33% for embryonic, young and old cells. Similar results were found for A beta (1-40) (LD50 = 2 microM). These results suggest that aging imparts to individual cells an increased susceptibility to toxic substances relevant to neurodegenerative diseases.
Collapse
Affiliation(s)
- G J Brewer
- Southern Illinois University School of Medicine, Springfield 62794-9626, USA.
| |
Collapse
|
30
|
Dawson R, Eppler B, Patterson TA, Shih D, Liu S. The effects of taurine in a rodent model of aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 403:37-50. [PMID: 8915339 DOI: 10.1007/978-1-4899-0182-8_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R Dawson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
31
|
Halonen T, Kotti T, Tuunanen J, Toppinen A, Miettinen R, Riekkinen PJ. Alpha 2-adrenoceptor agonist, dexmedetomidine, protects against kainic acid-induced convulsions and neuronal damage. Brain Res 1995; 693:217-24. [PMID: 8653412 DOI: 10.1016/0006-8993(95)00744-b] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Kainic acid (KA)-induced convulsions are accompanied by histopathological changes that are most prominent in the temporal lobe structures. In the present study, we investigated whether a selective alpha2-adrenoceptor agonist, dexmedetomidine could attenuate KA-induced epileptic convulsions and subsequent neuronal damage in the rat hippocampus. Rats were pretreated 30 min before KA injection (9 mg/kg, i.p.) with dexmedetomidine (3 micrograms/kg, s.c.). The behavior of animals was observed for at least 3 h. Dexmedetomidine suppressed the development (p < 0.001), generalization (p < 0.05) and severity (p < 0.01) of convulsions. In addition, histological analysis revealed that dexmedetomidine-treated animals without convulsions or with only partial convulsions had no neuronal damage in the principal cell layers of the hippocampus. A selective alpha2-antagonist, atipamezole (1 mg/kg, s.c.) potentiated KA-induced convulsions and increased the mortality in status epilepticus. In conclusion, the present study demonstrated that dexmedetomidine, in addition to possessing anticonvulsant properties, has a neuroprotective effect in the KA model of status epilepticus.
Collapse
Affiliation(s)
- T Halonen
- Department of Neurology, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Dawson R, Patterson TA, Eppler B. Endogenous excitatory amino acid release from brain slices and astrocyte cultures evoked by trimethyltin and other neurotoxic agents. Neurochem Res 1995; 20:847-58. [PMID: 7477678 DOI: 10.1007/bf00969697] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trimethyltin (TMT) is a toxic alkyltin compound that is known to produce neuronal necrosis in the CNS. The present study examined the effects of TMT on the release of excitatory amino acids (EAA) from cortical slices prepared from adult and aged (24 months old) rats. The calcium dependence of TMT-induced EAA efflux was evaluated and compared to other neurotoxic agents. The actions of TMT were also evaluated in an astrocyte culture model to assess glial contributions to TMT-induced EAA efflux. TMT (10-1000 microM) evoked a dose-related increase in GLU and ASP efflux during a 30 min incubation period and this efflux was sustained or slightly higher during a 15 min recovery period. TMT-stimulated GLU efflux was not altered in aged rats. TMT-induced GLU efflux was significantly reduced by removing extracellular calcium and including 10 microM EGTA in the incubation media. Calcium channel blockers (nifedipine, verapamil, flunarizine, amiloride, neomycin) and MK-801 did not significantly attenuate TMT-induced GLU efflux. Diltiazem (25 microM) produced modest but inconsistent reductions in TMT-induced GLU efflux from brain slices, and significantly inhibited the leakage of lactate dehydrogenase (LDH) from TMT-treated astrocyte cultures. TMT did not increase GLU efflux from glial cultures during a 30 min incubation period, but did significantly elevate GLU efflux during the 15 min recovery period. TMT evoked the release of EAA by both calcium dependent and independent mechanisms in brain slices. TMT at high concentrations also produced a delayed increase in glial GLU efflux. These studies suggest that excitotoxic mechanisms may contribute to TMT-induced neurotoxicity.
Collapse
Affiliation(s)
- R Dawson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville 32610, USA
| | | | | |
Collapse
|
33
|
Kesslak JP, Yuan D, Neeper S, Cotman CW. Vulnerability of the hippocampus to kainate excitotoxicity in the aged, mature and young adult rat. Neurosci Lett 1995; 188:117-20. [PMID: 7792054 DOI: 10.1016/0304-3940(95)11415-s] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sensitivity to excitotoxic damage was assessed in young adult, mature and aged male Sprague-Dawley rats. Kainic acid was injected into the hippocampus and the size of the hippocampal lesion rated. Intrahippocampal injection of kainic acid produced lesions in aged animals that were significantly smaller than lesions in the young rats (P < 0.05), while lesion size in mature rats was intermediate. Excitotoxic damage was localized primarily to the CA3 region of the hippocampus in the aged rats. Young adult rats had more damage to the hippocampus with involvement of CA1 pyramidal and dentate granule cells. These results suggest that increased age may reduce susceptibility to excitotoxic damage.
Collapse
Affiliation(s)
- J P Kesslak
- Department of Neurology, University of California at Irvine 92717, USA
| | | | | | | |
Collapse
|
34
|
Bennett SA, Stevenson B, Staines WA, Roberts DC. Periodic acid-Schiff (PAS)-positive deposits in brain following kainic acid-induced seizures: relationships to fos induction, neuronal necrosis, reactive gliosis, and blood-brain barrier breakdown. Acta Neuropathol 1995; 89:126-38. [PMID: 7732785 DOI: 10.1007/bf00296356] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Periodic acid-Schiff (PAS)-positive deposits have been demonstrated in the central nervous system (CNS) of patients suffering from a wide variety of neurodegenerative disorders including Alzheimer's disease, presenile dementia, Parkinson's disease, diabetes mellitus, myoclonic epilepsy, and cerebral palsy. The etiology of these deposits and their relationship to mechanisms of progressive neurodegeneration is unknown. In the present study, we demonstrate that the kainic acid model of limbic status epilepticus provides a useful system for the study of PAS-positive staining. The relationship between PAS-positive deposition, induction of fos-like immunoreactivity (FLI), neuronal necrosis, reactive gliosis, and blood-brain barrier breakdown following the kainic acid induction of status epilepticus was investigated. Epileptiform activity was elicited in rats by intraperitoneal administration of 10 mg/kg kainic acid and brains were examined 3, 5, 12, 24, 72, and 168 h after drug injection. Four distinct types of PAS-positive staining in rat brain were observed: type 1, extracellular matrix (ECM) or blood vessel associated-material; type 2, granular deposits; type 3, glial labelling; and type 4, neuronal labelling. Results demonstrated that the four types of PAS-positive staining were differentially associated with specific markers of neuropathology: (1) type 1 ECM staining and type 3 glia were preferentially localized to edematous tissue; (2) the majority of type 3 glia were identified as reactive astrocytes, while a minority of appeared to be proliferating microglia; (3) type 1 blood vessels labelled hemorrhaging vasculature; (4) early deposition of type 2 granules was predictive of subsequent cell loss; (5) chronic type 2 granular deposits and type 4 neuronal labelling not associated with cell death could be predicted by early changes in FLI; and (6) chronic deposition of all four forms of PAS-positive material was correlated with earlier, transient blood-brain barrier compromise. The results support the growing literature that local carbohydrate metabolism may be one of a constellation of parameters important to the development of progressive neurodegeneration.
Collapse
Affiliation(s)
- S A Bennett
- Department of Biochemistry, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
35
|
Post-Munson DJ, Lum-Ragan JT, Mahle CD, Gribkoff VK. Reduced bicuculline response and GABAA agonist binding in aged rat hippocampus. Neurobiol Aging 1994; 15:629-33. [PMID: 7824055 DOI: 10.1016/0197-4580(94)00057-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular field recordings from CA1 pyramidal cells in the rat hippocampal slice preparation were used to examine the effects of age on gamma-aminobutyric acid (GABA)-mediated recurrent inhibition. The actions of bicuculline (1-100 microM), a GABAA antagonist, were assessed in slices from young (1-3 months) and aged (26 months) Fischer 344 rats. Pre-drug population spike amplitudes were smaller in slices from aged rats. Bicuculline increased population spike amplitudes in slices from both age groups, but slices from young rats were more sensitive to the antagonist. Bicuculline also produced multiple population spikes in slices from both age groups, however the increase in population spike burst durations was much greater in slices from young rats than in slices from aged rats. Agonist radiolabeled GABAA binding site density was significantly decreased in hippocampal tissue from aged rats. Our results suggest there is a reduction in GABAergic inhibition in hippocampal slices from aged rats, possibly mediated by a decrease in GABAA receptors.
Collapse
Affiliation(s)
- D J Post-Munson
- Bristol-Myers Squibb Pharmaceutical Research Institute, Department of CNS/Biophysics & Molecular Biology, Wallingford, CT 06492
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- G Sperk
- Department of Pharmacology, University of Innsbruck, Austria
| |
Collapse
|
37
|
Poeggeler B, Reiter RJ, Tan DX, Chen LD, Manchester LC. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res 1993; 14:151-68. [PMID: 8102180 DOI: 10.1111/j.1600-079x.1993.tb00498.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Melatonin is a very potent and efficient endogenous radical scavenger. The pineal indolamine reacts with the highly toxic hydroxyl radical and provides on-site protection against oxidative damage to biomolecules within every cellular compartment. Melatonin acts as a primary non-enzymatic antioxidative defense against the devastating actions of the extremely reactive hydroxyl radical. Melatonin and structurally related tryptophan metabolites are evolutionary conservative molecules principally involved in the prevention of oxidative stress in organisms as different as algae and rats. The rate of aging and the time of onset of age-related diseases in rodents can be retarded by the administration of melatonin or treatments that preserve the endogenous rhythm of melatonin formation. The release of excitatory amino acids such as glutamate enhances endogenous hydroxyl radical formation. The activation of central excitatory amino acid receptors suppress melatonin synthesis and is therefore accompanied by a reduced detoxification rate of hydroxyl radicals. Aged animals and humans are melatonin-deficient and more sensitive to oxidative stress. Experiments investigating the effects of endogenous excitatory amino acid antagonists and stimulants of melatonin biosynthesis such as magnesium may finally lead to novel therapeutic approaches for the prevention of degeneration and dysdifferentiation associated with diseases related to premature aging.
Collapse
Affiliation(s)
- B Poeggeler
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284-7762
| | | | | | | | | |
Collapse
|