1
|
Cunha Bustamante-Filho I, Renato Menegassi S, Ribas Pereira G, Dias Salton G, Mosena Munari F, Roberto Schneider M, Costa Mattos R, Otávio Jardim Barcellos J, Pereira Laurino J, Obino Cirne-Lima E, Inês Mascarenhas Jobim M. Bovine seminal plasma osteopontin: Structural modelling, recombinant expression and its relationship with semen quality. Andrologia 2020; 53:e13905. [PMID: 33225455 DOI: 10.1111/and.13905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional phosphoprotein that has been linked to fertility in bulls. However, the exact mechanism by which OPN contributes to fertilisation is yet unknown. The biotechnological use of OPN in bovine reproduction is promising but some gaps remain unfilled. The present work aimed: (a) to verify whether the seminal plasma OPN is associated with seminal traits and a standard breeding soundness exam; (b) to predict OPN interactions with integrins, CD44 and glycosaminoglycans through molecular docking; and (c) to develop a protocol for recombinant expression of OPN from vesicular gland cDNA. Ejaculates from top ranked bulls had higher amounts of seminal plasma OPN in comparison with bulls classified as questionable (p < .01). The structural modelling and molecular docking predictions indicated that bovine OPN binds to heparin disaccharide, hyaluronic acid and hyaluronan. In addition, docking studies described the binding complexes of OPN with CD44 and the integrin heterodimers α5β1 and αVβ3. Finally, expression of rOPN-6His was successfully obtained after 3 hr of induction with 0.5 mM IPTG at 37°C and a denaturing purification protocol resulted in efficiently purified recombinant OPN. The present results contribute to the development of biotechnological uses of OPN as a biomarker in bovine reproduction.
Collapse
Affiliation(s)
- Ivan Cunha Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil.,Departamento de Ciência Animal, PPG Zootecnia - NESPRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Gene Center, Ludwig-Maximilians Universität München, Munich, Bayern, Germany
| | - Silvio Renato Menegassi
- Departamento de Ciência Animal, PPG Zootecnia - NESPRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriel Ribas Pereira
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | - Gabrielle Dias Salton
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Mosena Munari
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Rodrigo Costa Mattos
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlio Otávio Jardim Barcellos
- Departamento de Ciência Animal, PPG Zootecnia - NESPRO, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jomar Pereira Laurino
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
2
|
Bai WL, Yang RJ, Yin RH, Jiang WQ, Luo GB, Yin RL, Zhao SJ, Li C, Zhao ZH. Molecular characterization and expression analysis of osteopontin cDNA from lactating mammary gland in yak (Bos grunniens). Mol Biol Rep 2011; 39:3627-35. [PMID: 21720759 DOI: 10.1007/s11033-011-1137-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
Osteopontin (OPN) is a secreted phosphorylated glycoprotein. It has an important role in mammary gland development and lactation, as well as, is thought to be a potential candidate gene for lactation traits. In the present work, we isolated and characterized a full-length open reading frame (ORF) of yak OPN cDNA from lactating mammary tissue, and examined its expression pattern in mammary gland during different stages of lactation, as well as, the recombinant OPN protein of yak was expressed successfully in E. coli. The sequencing results indicated that the isolated cDNA was 1132-bp in length containing a complete ORF of 837-bp. It encoded a precursor protein of yak OPN consisting of 278 amino acid with a signal peptide of 16 amino acids. Yak OPN has a predicted molecular mass of 29285.975 Da and an isoelectric point of 4.245. It had an identity of 65.50-99.16% in cDNA, identity of 52.06-98.56% and similarity of 65.40-98.56% in deduced amino acids with the corresponding sequences of cattle, buffalo, sheep, goat, pig, human, and rabbit. The phylogenetic analysis indicated that yak OPN had the closest evolutionary relationship with that of cattle, and next buffalo. In mammary gland, yak OPN was generally transcribed in a declining pattern from colostrum period to dry period with an apparent increase of OPN expression being present in the late period of lactation compared with peak period of lactation. Western blot analysis indicated that His-tagged yak OPN protein expressed in E. coli could be recognized not only by an anti-His-tag antibody but also by an anti-human OPN antibody. These results from the present work provided a foundation for further insight into the role of OPN gene in yak lactation.
Collapse
Affiliation(s)
- W L Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Frenzel DF, Weiss JM. Osteopontin and allergic disease: pathophysiology and implications for diagnostics and therapy. Expert Rev Clin Immunol 2011; 7:93-109. [PMID: 21162653 DOI: 10.1586/eci.10.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteopontin (OPN) is a phosphoglycoprotein that is expressed by various immune cells in a secreted and intracellular form. It has cytokine, chemotactic and cell signaling functions enhancing Th1 and Th17 immunity and protects against apoptosis. Recent studies found OPN to be modulatory in cell-mediated and immediate-type allergic diseases. In allergic asthma, OPN enhances sensitization but downmodulates Th2-driven IL-4-dominated inflammation. The finding that OPN expression is augmented during specific immunotherapy supports a Th2 suppressive effect of OPN. In Th1-driven delayed-type allergy, such as allergic contact dermatitis, OPN supports dendritic cell migration and IL-12 expression and is secreted by T effector cells and keratinocytes, augmenting Th1-mediated allergy and supporting disease chronification. There are numerous missing links as to how OPN variants modulate allergic inflammation through different OPN receptors. OPN research in allergy is an interesting, rapidly expanding field that has high potential for translational research.
Collapse
Affiliation(s)
- Denis F Frenzel
- University of Ulm, Department of Dermatology and Allergy, Maienweg 12, D-89081 Ulm, Germany
| | | |
Collapse
|
4
|
Fisher LW, Stubbs JT, Young MF. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/17453679509157649] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Larry W Fisher
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Building 30, Room 106, Bethesda, Maryland, 20892, USA
- +301-496-5769, +301-402-0824
| | - John T Stubbs
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Building 30, Room 106, Bethesda, Maryland, 20892, USA
| | - Marian F Young
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Building 30, Room 106, Bethesda, Maryland, 20892, USA
- +301-496-8860, +301-402-0824
| |
Collapse
|
5
|
Saad FA, Salih E, Glimcher MJ. Identification of osteopontin phosphorylation sites involved in bone remodeling and inhibition of pathological calcification. J Cell Biochem 2008; 103:852-6. [PMID: 17615552 PMCID: PMC2744143 DOI: 10.1002/jcb.21453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteopontin is a noncollagenous, phosphorylated extracellular glycoprotein, expressed in mineralized and nonmineralized tissues, organs and body fluids. The protein contains an RGD tripeptide cell-binding motif, and is subjected to a variety of posttranslational modifications that play important roles in its multiple biological functions, such as bone remodeling and inhibition of pathological calcification. In this study, we have expressed bovine osteopontin in a prokaryotic system and identified the seven amino acid residues phosphorylated in vitro by CKII.
Collapse
Affiliation(s)
- Fawzy A Saad
- Laboratory for Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
6
|
Oztabak K, Un C, Tesfaye D, Akis I, Mengi A. Genetic polymorphisms of osteopontin (OPN), prolactin (PRL) and pituitary-specific transcript factor-1 (PIT-1) in South Anatolian and East Anatolian Red cattle. ACTA AGR SCAND A-AN 2008. [DOI: 10.1080/09064700802357771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:1087-97. [PMID: 17548669 DOI: 10.1158/1055-9965.epi-06-1008] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of cancer biomarkers to anticipate the outlines of disease has been an emerging issue, especially as cancer treatment has made such positive steps in the last few years. Progress in the development of consistent malignancy markers is imminent because advances in genomics and bioinformatics have allowed the examination of immense amounts of data. Osteopontin is a phosphorylated glycoprotein secreted by activated macrophages, leukocytes, and activated T lymphocytes, and is present in extracellular fluids, at sites of inflammation, and in the extracellular matrix of mineralized tissues. Several physiologic roles have been attributed to osteopontin, i.e., in inflammation and immune function, in mineralized tissues, in vascular tissue, and in kidney. Osteopontin interacts with a variety of cell surface receptors, including several integrins and CD44. Binding of osteopontin to these cell surface receptors stimulates cell adhesion, migration, and specific signaling functions. Overexpression of osteopontin has been found in a variety of cancers, including breast cancer, lung cancer, colorectal cancer, stomach cancer, ovarian cancer, and melanoma. Moreover, osteopontin is present in elevated levels in the blood and plasma of some patients with metastatic cancers. Therefore, suppression of the action of osteopontin may confer significant therapeutic activity, and several strategies for bringing about this suppression have been identified. This review looks at the recent advances in understanding the possible mechanisms by which osteopontin may contribute functionally to malignancy, particularly in breast cancer. Furthermore, the measurement of osteopontin in the blood or tumors of patients with cancer, as a way of providing valuable prognostic information, will be discussed based on emerging clinical data.
Collapse
Affiliation(s)
- Lígia R Rodrigues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
8
|
Fonseca VG, Laizé V, Valente MS, Cancela ML. Identification of an osteopontin-like protein in fish associated with mineral formation. FEBS J 2007; 274:4428-39. [PMID: 17680811 DOI: 10.1111/j.1742-4658.2007.05972.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fish has been recently recognized as a suitable vertebrate model and represents a promising alternative to mammals for studying mechanisms of tissue mineralization and unravelling specific questions related to vertebrate bone formation. The recently developed Sparus aurata (gilthead seabream) osteoblast-like cell line VSa16 was used to construct a cDNA subtractive library aimed at the identification of genes associated with fish tissue mineralization. Suppression subtractive hybridization, combined with mirror orientation selection, identified 194 cDNA clones representing 20 different genes up-regulated during the mineralization of the VSa16 extracellular matrix. One of these genes accounted for 69% of the total number of clones obtained and was later identified as theS. aurata osteopontin-like gene. The 2138-bp full-length S. aurata osteopontin-like cDNA was shown to encode a 374 amino-acid protein containing domains and motifs characteristic of osteopontins, such as an integrin receptor-binding RGD motif, a negatively charged domain and numerous post-translational modifications (e.g. phosphorylations and glycosylations). The common origin of mammalian osteopontin and fish osteopontin-like proteins was indicated through an in silico analysis of available sequences showing similar gene and protein structures and was further demonstrated by their specific expression in mineralized tissues and cell cultures. Accordingly, and given its proven association with mineral formation and its characteristic protein domains, we propose that the fish osteopontin-like protein may play a role in hard tissue mineralization, in a manner similar to osteopontin in higher vertebrates.
Collapse
Affiliation(s)
- Vera G Fonseca
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | | | | | | |
Collapse
|
9
|
Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 2006; 47:1707-12. [PMID: 16631011 PMCID: PMC3951851 DOI: 10.1016/j.jacc.2006.02.040] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The goal of this research was to define the cellular mechanisms involved in myxomatous mitral valve disease and calcific aortic valve disease and to redefine the term degenerative valve disease in terms of an active cellular biology. BACKGROUND "Degenerative" valvular heart disease is the primary cause of regurgitant and stenotic valvular lesion in the U.S. However, the signaling pathways are not known. We hypothesize that valve degeneration occurs due to an osteoblastic differentiation process mediated by the low-density lipoprotein receptor-related protein 5 (Lrp5) signaling pathway to cause valve thickening. METHODS We examined human diseased valves: myxomatous mitral valves (n = 23), calcified tricuspid aortic valves (n = 27), calcified bicuspid aortic valves (n = 23), and control tissue from mitral and aortic valves (n = 40). The valves were examined by reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry for signaling markers important in osteoblast differentiation: Sox9 and Cbfa1 (transcription factors for osteoblast differentiation); Lrp5 and Wnt3 (osteoblast differentiation signaling marker), osteopontin and osteocalcin (osteoblast endochrondral bone matrix proteins), and proliferating cell nuclear antigen (a marker of cell proliferation). Cartilage development and bone formation was measured by Alcian blue stain and Alizarin red stain. Computed Scano MicroCT-40 (Bassersdorf, Switzerland) analysis measured calcium burden. RESULTS Low-density lipoprotein receptor-related protein 5, osteocalcin, and other osteochrondrogenic differentiation markers were increased in the calcified aortic valves by protein and gene expression (p > 0.001). Sox9, Lrp5 receptor, and osteocalcin were increased in myxomatous mitral valves by protein and gene expression (p > 0.001). MicroCT was positive in the calcified aortic valves and negative in the myxomatous mitral valves. CONCLUSIONS The mechanism of valvular heart disease involves an endochondral bone process that is expressed as cartilage in the mitral valves and bone in the aortic valves. Up-regulation of the Lrp5 pathway may play a role in the mechanism for valvular heart disease.
Collapse
Affiliation(s)
- Frank C. Caira
- Division of Cardiology and Cardiothoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stuart R. Stock
- Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, Chicago, Illinois
| | - Thomas G. Gleason
- Division of Cardiology and Cardiothoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Edwin C. McGee
- Division of Cardiology and Cardiothoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jie Huang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert O. Bonow
- Division of Cardiology and Cardiothoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas C. Spelsberg
- Department of Molecular Biology and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Patrick M. McCarthy
- Division of Cardiology and Cardiothoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shahbudin H. Rahimtoola
- Division of Cardiovascular Medicine, Department of Medicine, LAC + USC Medical Center, Keck School of Medicine at the University of Southern California, Los Angeles, California
| | - Nalini M. Rajamannan
- Division of Cardiology and Cardiothoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
10
|
Lee SN, Hwang JR, Lindberg I. Neuroendocrine protein 7B2 can be inactivated by phosphorylation within the secretory pathway. J Biol Chem 2005; 281:3312-20. [PMID: 16286464 DOI: 10.1074/jbc.m506635200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prohormone convertases play important roles in the maturation of neuropeptides and peptide hormone precursors. Prohormone convertase-2 (PC2) is the only convertase that requires the expression of another neuroendocrine protein, 7B2, for expression of enzyme activity. In this study, we determined that 7B2 can be phosphorylated in Rin cells (a rat insulinoma cell line) and cultured chromaffin cells, but not in AtT-20 cells (derived from mouse anterior pituitary). Phosphoamino acid analysis of Rin cell 7B2 indicated the presence of phosphorylated serine and threonine. Phosphorylation of Ser115 (located within the minimally active 36-residue peptide) was confirmed by mutagenesis, although Ser115 did not represent the sole residue phosphorylated. Two independent assays were used to investigate the effect of phosphorylated 7B2 on PC2 activation: the ability of 7B2 to bind to pro-PC2 was assessed by co-immunoprecipitation, and activation of pro-PC2 was assessed in a cell-free assay. Phosphorylated 7B2 was unable to bind pro-PC2, and the phosphorylated 7B2 peptide (residues 86-121, known to be the minimally active peptide for pro-PC2 activation) was impaired in its ability to facilitate the generation of PC2 activity in membrane fractions containing pro-PC2. In vitro phosphorylation experiments using Golgi membrane fractions showed that 7B2 could be phosphorylated by endogenous Golgi kinases. Golgi kinase activity was strongly inhibited by the broad-range kinase inhibitor staurosporine and partially inhibited by the protein kinase C inhibitor bisindolylmaleimide I, but not by the other protein kinase A, Ca2+/calmodulin-dependent kinase II, myosin light chain kinase, and protein kinase G inhibitors tested. We conclude that phosphorylation of 7B2 functionally inactivates this protein and suggest that this may be analogous to the phosphorylating inactivation of BiP, which impairs its ability to bind substrate.
Collapse
Affiliation(s)
- Sang-Nam Lee
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
11
|
Leonard S, Khatib H, Schutzkus V, Chang YM, Maltecca C. Effects of the Osteopontin Gene Variants on Milk Production Traits in Dairy Cattle. J Dairy Sci 2005; 88:4083-6. [PMID: 16230712 DOI: 10.3168/jds.s0022-0302(05)73092-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteopontin (OPN) is a highly phosphorylated glycoprotein whose gene has been cloned and sequenced in different species. Several whole genome scans have identified quantitative trait loci (QTL) affecting milk production traits on bovine chromosome 6 close to the osteopontin gene (OPN) location. The presence of OPN in milk and its elevated expression in mammary gland epithelial cells together with previous QTL studies have prompted us to investigate the effects of OPN variants on milk production traits in the Holstein dairy cattle population. A single nucleotide polymorphism in intron 4 (C/T) was detected and primers were designed to amplify genomic DNA from 1362 bulls obtained from Cooperative Dairy DNA Repository and from 214 cows from the University of Wisconsin herd. For the Repository population, the C allele was associated with an increase in milk protein percentage and milk fat percentage. Correlation between milk protein percentage and milk fat percentage was about 0.57. For the University of Wisconsin herd, the estimates of the effects of allele C were in the same direction as for the Repository population, although these estimates did not reach statistical significance. Our results are consistent with other studies that showed a significant association of the microsatellite markers in the region of OPN with milk protein percentage and other correlated traits.
Collapse
Affiliation(s)
- S Leonard
- Department of Dairy Science, University of Wisconsin-Madison, Madison 53706, USA
| | | | | | | | | |
Collapse
|
12
|
Hou P, Troen T, Ovejero MC, Kirkegaard T, Andersen TL, Byrjalsen I, Ferreras M, Sato T, Shapiro SD, Foged NT, Delaissé JM. Matrix metalloproteinase-12 (MMP-12) in osteoclasts: new lesson on the involvement of MMPs in bone resorption. Bone 2004; 34:37-47. [PMID: 14751561 DOI: 10.1016/j.bone.2003.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Osteoclasts require matrix metalloproteinase (MMP) activity and cathepsin K to resorb bone, but the critical MMP has not been identified. Osteoclasts express MMP-9 and MMP-14, which do not appear limiting for resorption, and the expression of additional MMPs is not clear. MMP-12, also called metalloelastase, is reported only in a few cells, including tissue macrophages and hypertrophic chondrocytes. MMP-12 is critical for invasion and destruction in pathologies such as aneurysm and emphysema. In the present study, we demonstrate that osteoclasts express MMP-12, although only in some situations. Northern blots show that highly purified rabbit osteoclasts in culture express MMP-12 at the same level as macrophages, whereas in situ hybridizations performed on rabbit bone do not show any MMP-12 expression in osteoclasts whatever the bone type. In contrast, in situ hybridizations performed on mouse bone show MMP-12 expression in osteoclasts in calvariae and long bones. We also demonstrate that recombinant MMP-12 cleaves the putative functional domains of osteopontin and bone sialoprotein, two bone matrix proteins that strongly influence osteoclast activities, such as attachment, spreading and resorption. Furthermore, we investigated the role of MMP-12 in bone resorption and osteoclast recruitment by comparing MMP-12 knockout and wild-type mice in specialized culture models known to depend on MMP activity, as well as in the ovariectomy model, and we did not find any indication for a limiting role of MMP-12 in these processes. In conclusion, we found that osteoclasts are able to express MMP-12, but MMP-12 did not appear critical for osteoclast recruitment or resorption. The fact that none of the MMPs identified so far in osteoclasts appears limiting for resorption, gives strength to the hypothesis that the critical MMP for bone solubilization is produced by non-osteoclastic cells.
Collapse
Affiliation(s)
- Peng Hou
- Nordic Bioscience/Center for Clinical and Basic Research, Herlev, Ballerup, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Osteopontin (OPN) is an acidic member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of extracellular matrix proteins/cytokines that undergoes extensive posttranslational modification, including phosphorylation, glycosylation, and cleavage, yielding molecular mass variants ranging in size from 25 to 75 kDa. The result is a versatile protein(s) with multiple functions arising from its role as a mediator of cell-cell and cell-extracellular matrix (ECM) communication that encompass both normal and tumorigenic developmental processes, immunological responses during inflammation and wound healing, and biomineralization. Studies in primates, pigs, sheep, and rodents have revealed that OPN is a major constituent of the uterine-placental microenvironment with influence as 1) a component of histotroph required for adhesion and signal transduction at the uterine-placental interface throughout pregnancy, 2) a gene product expressed by uterine stroma contributing to a decidualization-like transformation that correlates with the degree of conceptus invasiveness, and 3) a product of resident uterine and placental immune cells that may regulate their behavior and cytokine production. This minireview summarizes information regarding uterine and placental expression of OPN that has accumulated over the past 15 yr, and we briefly describe structural/functional properties of this protein that are likely relevant to its role(s) during pregnancy. Comparative studies have offered insights into the potential hormonal/cytokine, cellular, and molecular mechanisms underlying OPN-mediated adhesion, remodeling, and cell-cell/cell-ECM communication within the uterus and placenta. OPN has the potential to profoundly impact pregnancy, and investigators are now challenged to focus on the mechanistic nature of the functions of this multifaceted and major component of the uterine-placental microenvironment.
Collapse
Affiliation(s)
- Greg A Johnson
- Center for Animal Biotechnology and Genomics, College of Veterinary Medicine, Texas A and M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
14
|
Choi K, Kim D, Lee S. Purification and Properties of Osteopontin from Bovine Milk. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2003. [DOI: 10.5187/jast.2003.45.3.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Sugitani H, Wachi H, Murata H, Sato F, Mecham RP, Seyama Y. Characterization of an in vitro model of calcification in retinal pigmented epithelial cells. J Atheroscler Thromb 2003; 10:48-56. [PMID: 12621165 DOI: 10.5551/jat.10.48] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Little is known about the relationship at the molecular and cellular levels between vascular calcification and elastic fibers essential for elasticity. To gain a better understanding of the physiological function of elastin in vascular calcification, we developed a calcification model on cultured bovine retinal-pigmented-epithelial cells (RPEs) that do not express endogenous tropoelastin. The addition of inorganic phosphate (NaH2PO4; Pi) induced calcium deposition in RPEs. The Pi-induced calcification, as assessed by the o-cresolphthalein complexone method, Goldenbergs method, and von Kossa staining, was completely inhibited by treatment with clodronate (DMDP) and phosphonoformic acid (PFA) and was weakly suppressed by treatment with levamisole. Moreover, the osteopontin mRNA expression was upregulated in the Pi-induced calcification of RPEs. These reactions in RPEs were characteristically consistent with those already established in cultured bovine aortic smooth muscle cells (BASMCs). Furthermore, bacterially expressed tropoelastin inhibited calcium deposition in RPEs as well as in BASMCs. Finally, Pi-induced calcification was partially suppressed after the addition of tropoelastin due to elastic fiber formation. In conclusion, we suggest that this calcification model in RPEs is useful for analyzing the relation between elastic fibers and vascular calcification, and that tropoelastin and elastic fibers may contribute to the inhibition of vascular calcification.
Collapse
Affiliation(s)
- Hideki Sugitani
- Department of Clinical Chemistry, Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Brunswig-Spickenheier B, Mukhopadhyay AK. Expression of osteopontin (OPN) mRNA in bovine ovarian follicles and corpora lutea. Reprod Domest Anim 2003; 38:175-81. [PMID: 12753549 DOI: 10.1046/j.1439-0531.2003.00413.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The matricellular protein osteopontin (OPN) plays a role in various physiological processes, including angiogenesis and tissue remodelling. As these processes are essential for the maintenance of ovarian physiology, the aim of the study was to investigate the expression of OPN (mRNA) in ovarian cells and to evaluate whether it can be regulated by gonadotrophins. Using conventional RT-PCR and real-time PCR, we have detected and quantified OPN mRNA as well as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA expression in bovine granulosa, theca and luteal cells. In all cells examined, both genes were found in equal amounts and no striking variations in the expression could be observed between granulosa, theca and luteal cells. Furthermore, no effect on either OPN or GAPDH mRNA expression was evident after culturing ovarian cells in the presence of gonadotrophic hormones, although the cells were still highly responsive in terms of cAMP formation. Although neither variations between different cell types nor a regulation of OPN mRNA expression by gonadotrophic hormones could be detected, the high and unambiguous mRNA expression in steroidogenic cells suggests that OPN should be added to the growing list of intraovarian factors which may be involved in ovarian physiology.
Collapse
|
17
|
Bayless KJ, Davis GE. Identification of dual alpha 4beta1 integrin binding sites within a 38 amino acid domain in the N-terminal thrombin fragment of human osteopontin. J Biol Chem 2001; 276:13483-9. [PMID: 11278897 DOI: 10.1074/jbc.m011392200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory demonstrates that the alpha(4)beta(1) integrin is an adhesion receptor for OPN and that alpha(4)beta(1) binding site(s) are present in the N-terminal thrombin fragment of osteopontin (OPN) (Bayless, K. J., Meininger, G. A., Scholtz, J. M., and Davis, G. E. (1998) J. Cell Sci. 111, 1165-1174). The work presented here identifies two alpha(4)beta(1) binding sites within a recombinantly produced N-terminal thrombin fragment of human OPN. Initial experiments, using wild-type OPN containing an RGD sequence or an OPN-RGE mutant, showed identical alpha(4)beta(1)-dependent cell adhesive activity. A strategy to localize alpha(4)beta(1) binding sites within the thrombin fragment of osteopontin involved performing a series of truncation analyses. Removal of the last 39 amino acids (130) completely eliminated adhesion, indicating all binding activity was present within that portion of the molecule. Combined mutation and deletion analyses of this region revealed the involvement of dual alpha(4)beta(1) binding sites. Synthetic peptides for both regions in OPN, ELVTDFPTDLPAT (131) and SVVYGLR (162), were found to block alpha(4)beta(1)-dependent adhesion. The first peptide when coupled to Sepharose bound the alpha(4)beta(1) integrin directly whereas a mutated ELVTEFPTELPAT peptide showed a dramatically reduced ability to bind. These data collectively demonstrate that dual alpha(4)beta(1) integrin binding sites are present in a 38 amino acid domain within the N-terminal thrombin fragment of OPN.
Collapse
Affiliation(s)
- K J Bayless
- Department of Pathology and Laboratory Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, USA
| | | |
Collapse
|
18
|
Sodek J, Ganss B, McKee MD. Osteopontin. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 11:279-303. [PMID: 11021631 DOI: 10.1177/10454411000110030101] [Citation(s) in RCA: 829] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) is a highly phosphorylated sialoprotein that is a prominent component of the mineralized extracellular matrices of bones and teeth. OPN is characterized by the presence of a polyaspartic acid sequence and sites of Ser/Thr phosphorylation that mediate hydroxyapatite binding, and a highly conserved RGD motif that mediates cell attachment/signaling. Expression of OPN in a variety of tissues indicates a multiplicity of functions that involve one or more of these conserved motifs. While the lack of a clear phenotype in OPN "knockout" mice has not established a definitive role for OPN in any tissue, recent studies have provided some novel and intriguing insights into the versatility of this enigmatic protein in diverse biological events, including developmental processes, wound healing, immunological responses, tumorigenesis, bone resorption, and calcification. The ability of OPN to stimulate cell activity through multiple receptors linked to several interactive signaling pathways can account for much of the functional diversity. In this review, we discuss the structural features of OPN that relate to its function in the formation, remodeling, and maintenance of bones and teeth.
Collapse
Affiliation(s)
- J Sodek
- MRC Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, ON, Canada.
| | | | | |
Collapse
|
19
|
Abstract
Using suppression subtraction hybridization between ovulatory and postovulatory trout ovaries, a down-regulated cDNA was obtained that presumably encodes a novel ovarian protein ('NOP'). NOP mRNA is present in the ovary during ovulation and down-regulated by 48 h postovulation, suggesting an important role for NOP during ovulation. Besides the ovary, NOP is also strongly expressed in the testis and at lower levels in the skin, gills, kidney and gastrointestinal tract. While the overall identity is not high, NOP shares several sequence similarities with mammalian and chicken osteopontins, including the percentage of aspartate, serine and alanine residues and the presence of a cell attachment motif.
Collapse
Affiliation(s)
- J Bobe
- Institut National de la Recherche Agronomique, SCRIBE, Campus de Beaulieu, France
| | | |
Collapse
|
20
|
Chiba S, Rashid MM, Okamoto H, Shiraiwa H, Kon S, Maeda M, Murakami M, Inobe M, Kitabatake A, Chambers AF, Uede T. The role of osteopontin in the development of granulomatous lesions in lung. Microbiol Immunol 2000; 44:319-32. [PMID: 10832978 DOI: 10.1111/j.1348-0421.2000.tb02501.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) has been shown to be expressed by cells in granulomas of various origins, but whether it plays a functional role in granuloma formation is not known. Here we used a cardiomyopathic hamster (TO2) model, to test the hypothesis that OPN contributes functionally to granuloma development. We immunized cardiomyopathic and normal hamsters by subcutaneous injection of bovine serum albumin in complete Freund's adjuvant, and assessed various tissues for both OPN RNA expression and granuloma formation. Cardiomyopathic hamsters expressed OPN, and formed granulomatous lesions, in heart tissue in both immunized and untreated animals. In addition, immunization induced expression of OPN in lung and lymph nodes of cardiomyopathic (but not normal) hamsters, and also induced granuloma formation in these organs. To test whether OPN expression could play a functional role in inducing granulomas, we produced an adenoviral vector containing the murine OPN gene, and introduced this vector intratracheally into the lungs of normal hamsters. The OPN-containing vector, but not the control vector, induced pulmonary granuloma formation. These studies provided direct in vivo evidence that OPN can contribute functionally to the formation of granulomatous lesions, and suggest that OPN expression may be a common factor involved in formation of granulomas of various origin.
Collapse
Affiliation(s)
- S Chiba
- Section of Immunopathogenesis, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
VandenBos T, Bronckers AL, Goldberg HA, Beertsen W. Blood circulation as source for osteopontin in acellular extrinsic fiber cementum and other mineralizing tissues. J Dent Res 1999; 78:1688-95. [PMID: 10576164 DOI: 10.1177/00220345990780110501] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteopontin (OPN) is one of the major non-collagenous proteins in root cementum and other mineralized tissues. Although most of this mineral-seeking protein is thought to be produced by local tissue cells, some of it might enter the mineralizing matrix from the blood. To test this hypothesis, we followed the distribution of a single dose of purified porcine or rat 125I-labeled OPN injected i.v. in rats, in mineralizing and non-mineralizing tissues and in subcutaneously implanted collagenous implants. The animals were killed 30 or 48 hrs after injection. Tissues (calvaria, tibia, lower and upper jaws) were harvested and processed for radioautography and biochemical analysis. Tissues as well as calcifying collagenous implants proved to have taken up radiolabel. In EDTA extracts of long bones, the majority of the radiolabel was demonstrated to be associated with intact OPN. The iodinated protein was also found in the acellular extrinsic fiber cementum (acellular cementum) layer investing the continuously growing incisors, in laminae limitantes, cement lines, and in forming bone near the mineralization front. Further, the label was present in the circumpulpal dentin of the incisors, and some of it appeared to have been incorporated into developing enamel. It is concluded that OPN in acellular cementum and other mineralizing tissues may-at least partially-originate from sources outside the direct environment following its transportation via serum.
Collapse
Affiliation(s)
- T VandenBos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
22
|
Yamagishi S, Fujimori H, Yonekura H, Tanaka N, Yamamoto H. Advanced glycation endproducts accelerate calcification in microvascular pericytes. Biochem Biophys Res Commun 1999; 258:353-7. [PMID: 10329391 DOI: 10.1006/bbrc.1999.0625] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular calcification in advanced atherosclerosis is frequently associated with diabetes, and is a predictor of future cardiovascular events. To investigate the molecular mechanisms of vascular calcification, we examined whether advanced glycation endproducts (AGE) formed at an accelerated rate under diabetes induce the osteoblastic differentiation of pericytes, a mesenchymal progenitor. First, von Kossa staining demonstrated that AGE significantly increased the number of calcified nodules in a bovine pericyte culture. AGE were also found to induce calcium accumulation in the pericyte monolayer in time- and dose-dependent manners. Second, quantitative reverse transcription-polymerase chain reaction revealed that AGE increased the pericyte levels of mRNAs coding for alkaline phosphatase and osteopontin, the representative markers for early and late osteoblastic differentiation, respectively. Alkaline phosphatase activity was actually enhanced by AGE. The results suggest that AGE have the ability to induce the osteoblatic differentiation of pericytes, which would contribute to the development of vascular calcification in diabetes.
Collapse
Affiliation(s)
- S Yamagishi
- Department of Biochemistry, Kanazawa University School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | | | | | | | | |
Collapse
|
23
|
Cancel AM, Chapman DA, Killian GJ. Osteopontin localization in the Holstein bull reproductive tract. Biol Reprod 1999; 60:454-60. [PMID: 9916014 DOI: 10.1095/biolreprod60.2.454] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previously we reported that the 55-kDa fertility-associated protein in Holstein bull seminal plasma (SP) is osteopontin (OPN). The objective of the present study was to localize OPN in tissues and fluids in the Holstein bull reproductive tract to determine its origin. Antisera generated against human recombinant OPN, as well as antiserum prepared against purified bovine seminal plasma OPN, reacted with protein in SP, accessory sex gland fluid, seminal vesicle fluid, ampullary fluid, and urine using one- and two-dimensional SDS-PAGE Western blot analysis. However, these antisera failed to detect OPN in cauda epididymal fluid or solubilized sperm membranes. Immunofluorescence histochemistry localized OPN in the lumen and epithelial cells of the seminal vesicle and ampulla, but not in tissues of testis, epididymis, prostate, and bulbourethral gland. OPN was not detected immunohistochemically in epididymal, ampullary, or ejaculated sperm treated with or without Triton X-100. We concluded that the primary sources of OPN in bull SP are the seminal vesicles and ampulla.
Collapse
Affiliation(s)
- A M Cancel
- Dairy Breeding Research Center, Department of Dairy and Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
24
|
Lavelin I, Yarden N, Ben-Bassat S, Bar A, Pines M. Regulation of osteopontin gene expression during egg shell formation in the laying hen by mechanical strain. Matrix Biol 1998; 17:615-23. [PMID: 9923654 DOI: 10.1016/s0945-053x(98)90112-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study is to evaluate the regulation of the osteopontin (OPN) gene expression by non-hormonal stimuli, such as calcium flux and mechanical strain during the daily egg cycle in the oviduct of the laying hen. After the egg enters the eggshell gland (ESG), the OPN gene is expressed by the epithelium cells in two waves: first by the basal cells and only then by the apical cells of the epithelium. A reduction in OPN gene expression was observed 1 h prior to laying. The calbindin gene, which marks the onset of calcification, was found to be expressed in the glandular epithelium starting 2 h after OPN gene expression. In addition, the formation of soft shells was accompanied by a reduction in calbindin, but not in OPN, gene expression. The application of a mechanical strain comparable to that induced by an egg led to induction of OPN gene expression at a normally quiescent phase in the cyclical expression of this gene. The induction of the gene was time- and strain-dependent and temporally similar to that induced by the entry of the egg into the ESG. In contrast, the calbindin gene was not affected by mechanical strain. The ESG of the laying hen provides a system to study the effect of a mechanical strain on matrix protein production in vivo, in a relevant physiological setting. The finding suggests that, in contrast to calbindin, OPN gene expression is not regulated by calcium flux but rather by the mechanical strain imposed by the resident egg.
Collapse
Affiliation(s)
- I Lavelin
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | |
Collapse
|
25
|
Cooper LF, Yliheikkilä PK, Felton DA, Whitson SW. Spatiotemporal assessment of fetal bovine osteoblast culture differentiation indicates a role for BSP in promoting differentiation. J Bone Miner Res 1998; 13:620-32. [PMID: 9556062 DOI: 10.1359/jbmr.1998.13.4.620] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fetal bovine mandible-derived osteoblasts were cultured for the purpose of obtaining a spatiotemporal assessment of bone matrix protein expression during in vitro differentiation. The results obtained from electron microscopic, immunohistological, biochemical, and molecular biological analyses indicated that these primary cultured osteoblasts produce an abundant extracellular matrix which mineralizes during a 14-day culture period. During this process, a restricted, spatiotemporal pattern of bone sialoprotein expression was indicated by immunohistological and molecular evaluations. To test the possibility that bone sialoprotein promoted the continued morphodifferentiation of osteoblastic cells, cultures were grown in the presence of anti-bone sialoprotein antibodies known to interfere with cell-bone sialoprotein attachment. Compared with cultures grown in the presence of normal rabbit serum (1:150), cultures grown in the media containing anti-bone sialoprotein antibody (1:150) failed to mineralize as demonstrated by von Kossa staining and failed to express osteocalcin and osteopontin as shown by the reverse transcription polymerase chain reaction. These results contribute to the growing evidence that bone sialoprotein is an important determinant of osteoblast differentiation and bone formation. Matrix protein-cell interactions may be examined using this spatiotemporally defined model.
Collapse
Affiliation(s)
- L F Cooper
- Department of Prosthodontics, University of North Carolina School of Dentistry, Chapel Hill 27599-7450, USA.
| | | | | | | |
Collapse
|
26
|
Veis A, Sfeir C, Wu CB. Phosphorylation of the proteins of the extracellular matrix of mineralized tissues by casein kinase-like activity. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:360-79. [PMID: 9391750 DOI: 10.1177/10454411970080040101] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The extracellular matrix of the connective tissue contains non-collagenous proteins (NCP) which are acidic in character. The NCP of mineralizing systems (bone, dentin) differ from those of the non-mineralizing systems (skin, tendon) in that the mineralized tissue NCP are frequently phosphorylated. The phosphorylated proteins have been implicated in various aspects of the mineralization process. Thus, it is of interest to consider the mechanism and regulation of phosphorylation of the major matrix NCP. The majority of the phosphorylation takes place at Ser or Thr residues embedded within acidic sequences, and therefore are targets for casein kinase I (CK1) or casein kinase II (CK2)-like kinases. CK1 and CK2 are distantly related members of the protein kinase family. They are ubiquitous, constitutively active, second-messenger-independent kinases. CK1 is found in a variety of isoforms, all homologous to the alpha-subunit of the protein kinase family. It acts as a monomer. The active form of CK2 is a tetrameric holoenzyme, with 2 alpha catalytic subunits and 2 beta regulatory subunits. The CK2 alpha has activity alone, but the holoenzyme is four- to five-fold that activity. CK2 can use either ATP or GTP as the phosphate donor, but CK1 can use only ATP. The CK2 activity which phosphorylates the mineralized tissue NCP appears to be localized to membrane-associated cell fractions, and is present in the endoplasmic reticulum and Golgi compartments in osteoblasts, where phosphorylation of the secreted proteins appears to take place as co- and post-translational processes. Data indicate that both alpha and beta subunits of the membrane-associated CK2 are isoforms of the cytosolic CK2 in the same cells. The CK1 has not been specifically localized. Studies of dephosphorylated NCP such as phosphophoryn (PP) have shown that CK1 will not phosphorylate dephosphorylated dPP unless prior phosphorylation with CK2 has been carried out. In turn, CK2 activity may be initiated only after an initial phosphorylation of one of the messenger-dependent kinases. Thus, the phosphorylation reactions in mineralized tissues may be a tightly regulated hierarchical or sequential cascade of intracellular phosphorylation events.
Collapse
Affiliation(s)
- A Veis
- Department of Basic and Behavioral Sciences, Northwestern University Dental School, Chicago, Ilinois 60611, USA
| | | | | |
Collapse
|
27
|
Salih E, Ashkar S, Gerstenfeld LC, Glimcher MJ. Identification of the phosphorylated sites of metabolically 32P-labeled osteopontin from cultured chicken osteoblasts. J Biol Chem 1997; 272:13966-73. [PMID: 9153260 DOI: 10.1074/jbc.272.21.13966] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Osteopontin (OPN) is one of the major secretory phosphoproteins in both calcifying and non-calcifying tissues. Evidence has accumulated for the biological importance of the phosphoproteins and, in particular, the phosphate groups in bone formation, resorption, and calcification. The precise locations of the phosphate groups in the OPN molecule were determined by metabolically labeling OPN with 32P in cultured chicken osteoblasts, followed by purification to homogeneity. N-terminal sequencing showed a single sequence of WPVSKRQHAISA, consistent with that deduced from both cDNA, and previous amino acid sequencing of the protein isolated from chicken bone. Three 32P-labeled peptides were isolated by reverse-phase high performance liquid chromatography of thrombin-digested, 32P-labeled OPN. The N-terminal sequencing of each of these thrombin fragments gave single sequences as follows: WPVSKSRQHAIS, SHHTHRYHQDHVD, and ASKLRKAARKL, with approximate molecular masses of 5, 30, and 20 kDa. These data demonstrate that 32P was incorporated throughout the N- to C-terminal sequence of the protein. Thrombin specifically cleaved chicken OPN at two sites: between Arg-22 and Ser-23, which generated the 5-kDa N-terminal end fragment, and another between Lys-138 and Ala-139, which generated the 30- and 20-kDa fragments. To further define the exact locations of the phosphorylated amino acids and the surrounding amino acid sequences, OPN was digested with trypsin, which generated seven major 32P-labeled peptides whose amino acid sequences were determined. The phosphorylated peptide regions of osteopontin were identified as amino acids 8-18 (QHAIS*AS*S*EEK), 39-54 (LASQQTHYS*S*EENAD), 150-171 (LIEDDAT*AEVGDSQLAGLWLPK), 179-191 (ELAQHQSVENDSR), 194-205 (FDS*PEVGGDSK), 214-219 (ES*LASR), and 239-248 (HSIENNEVTR). The phosphorylated amino acid sites are followed by an asterisk (*). Of the seven identified phosphorylated peptide regions, three were localized on the N-terminal end of the osteopontin molecule (with five phosphorylated serines) and contained the sequence motifs that were phosphorylated by casein kinase II type(s), whereas the remaining four peptides are concentrated toward the C-terminal half of the molecule (with five phosphorylated residues) and contained recognition motifs for other kinases as well as casein kinase II.
Collapse
Affiliation(s)
- E Salih
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School, and Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
28
|
Bayless KJ, Davis GE, Meininger GA. Isolation and biological properties of osteopontin from bovine milk. Protein Expr Purif 1997; 9:309-14. [PMID: 9126601 DOI: 10.1006/prep.1996.0699] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A procedure for the isolation of osteopontin (OPN) from bovine milk using ion-exchange and hydrophobic chromatography is described. A DEAE-Sephacel column followed by dual phenyl-Sepharose columns yielded approximately 8 mg of purified protein per liter of milk. SDS-PAGE analysis revealed that the protein migrated at M(r) 60,000. NH2-terminal sequence analysis of the first seven amino acids revealed the protein to be identical to that previously reported for bovine OPN. Also, our preparation demonstrated expected biological properties of OPN including adhesion of both endothelial and vascular smooth muscle cells to OPN in a dose- and Arg-Gly-Asp-dependent manner. Furthermore, OPN coupled to Sepharose was capable of binding the alpha v beta 3 integrin from a detergent extract of endothelial cells. Thus, our procedure yielded biologically active OPN from an abundant and natural source.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cattle
- Cell Adhesion/drug effects
- Cells, Cultured
- Chromatography/methods
- Chromatography, Agarose
- Chromatography, Ion Exchange
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Female
- Humans
- Milk/chemistry
- Molecular Weight
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Oligopeptides/chemistry
- Osteopontin
- Rats
- Receptors, Vitronectin/metabolism
- Sepharose/analogs & derivatives
- Sialoglycoproteins/chemistry
- Sialoglycoproteins/isolation & purification
- Sialoglycoproteins/pharmacology
Collapse
Affiliation(s)
- K J Bayless
- Microcirculation Research Institute, Texas A&M University Health Science Center, Texas A&M University, College Station 77843-1114, USA
| | | | | |
Collapse
|
29
|
Wu CB, Shimizu Y, Ng A, Pan YM. Characterization and partial purification of microsomal casein kinase II from osteoblast-like cells: an enzyme that phosphorylates osteopontin and phosphophoryn. Connect Tissue Res 1996; 34:23-32. [PMID: 8835845 DOI: 10.3109/03008209609028890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microsomal casein kinase II (mCKII) is a membrane-bound enzyme present in the microsomal fractions of ROS 17/2.8 osteoblast-like cells. It phosphorylates acidic matrix phosphoproteins such as phosphophoryn and osteopontin. Addition of 1.0% Nonidet P-40 facilitates extraction of the optimum amount of detergent-solubilized and -activated enzyme from microsomal fractions. mCKII was partially purified over 3000-fold by sequential chromatography over DEAE-cellulose and heparin-agarose. SDS-polyacrylamide gels, showed that mCKII contained 43 kDa and 31 kDa polypeptides, corresponding to the alpha- and beta-subunits of the enzyme, respectively. The alpha subunit was identified by anti-CKII antiserum and the beta subunit, by its ability to undergo autophosphorylation. The enzyme was inhibited by 50% with 0.4 micrograms/ml heparin and stimulated by 100% with 1.0 mM spermine when casein was used as a substrate. The phosphorylation of phosphophoryn was reduced to 50% by 0.8 micrograms/ml heparin, but was increased to 2-2.5 fold by 5 to 15 mM spermine, which may be due to substrate-directed effects. Kinetic analysis showed that the apparent Km values for phosphophoryn (0.39 microM) and for osteopontin (2.1 microM) were lower than that for casein (21.3 microM). Vmax values of phosphophoryn and osteopontin were 2.2-fold and 4.6-fold higher than that of casein. Using the ratio Vmax/Km as a measure of kinetic specificity, osteopontin and phosphophoryn appear to be the more specific substrates than casein for mCKII. Thus, both proteins can be considered as physiological substrates for mCKII.
Collapse
Affiliation(s)
- C B Wu
- Department of Clinical Dental Sciences, Faculty of Dentistry University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
30
|
Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H. Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1995; 15:2003-9. [PMID: 7583582 DOI: 10.1161/01.atv.15.11.2003] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Calcification is a common feature of advanced atherosclerotic lesions and is being reemphasized as a clinically significant element of vascular disease. However, the scarcity of in vitro models of vascular calcification preclude studying its molecular and cellular mechanism. In the present study, we describe an in vitro calcification in which diffuse calcification can be induced by culturing bovine vascular smooth muscle cells (BVSMC) in the presence of beta-glycerophosphate, ascorbic acid, and insulin in a manner analogous to in vitro mineralization by osteoblasts. Calcification was confirmed by von Kossa staining and 45Ca accumulation. Factor analysis revealed that beta-glycerophosphate is the most important factor for this calcification process, suggesting that alkaline phosphatase (ALP) may be involved. As predicted, high levels of ALP expression were detected by ALP assay and Northern blot analysis. Functional significance of ALP was confirmed by demonstrating that levamisole, a specific inhibitor of ALP, inhibited BVSMC calcification in a dose-dependent manner. Bisphosphonates such as etidronate and pamidronate potently inhibited BVSMC calcification, suggesting that hydroxyapatite formation may be involved. Importantly, expression of osteopontin mRNA was dramatically increased in calcified BVSMC compared with uncalcified control cells. These data suggest that beta-glycerophosphate can induce diffuse calcification by an ALP-dependent mechanism and that this in vitro calcification system is useful for analyzing the molecular and cellular mechanisms of vascular calcification.
Collapse
Affiliation(s)
- A Shioi
- Second Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Evans JS, Chan SI, Goddard WA. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling. Protein Sci 1995; 4:2019-31. [PMID: 8535238 PMCID: PMC2142998 DOI: 10.1002/pro.5560041007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many interesting proteins possess defined sequence stretches containing negatively charged amino acids. At present, experimental methods (X-ray crystallography, NMR) have failed to provide structural data for many of these sequence domains. We have applied the dihedral probability grid-Monte Carlo (DPG-MC) conformational search algorithm to a series of N- and C-capped polyelectrolyte peptides, (Glu)20, (Asp)20, (PSer)20, and (PSer-Asp)10, that represent polyanionic regions in a number of important proteins, such as parathymosin, calsequestrin, the sodium channel protein, and the acidic biomineralization proteins. The atomic charges were estimated from charge equilibration and the valence and van der Waals parameters are from DREIDING. Solvation of the carboxylate and phosphate groups was treated using sodium counterions for each charged side chain (one Na+ for COO-; two Na for CO(PO3)-2) plus a distance-dependent (shielded) dielectric constant, epsilon = epsilon 0 R, to simulate solvent water. The structures of these polyelectrolyte polypeptides were obtained by the DPG-MC conformational search with epsilon 0 = 10, followed by calculation of solvation energies for the lowest energy conformers using the protein dipole-Langevin dipole method of Warshel. These calculations predict a correlation between amino acid sequence and global folded conformational minima: 1. Poly-L-Glu20, our structural benchmark, exhibited a preference for right-handed alpha-helix (47% helicity), which approximates experimental observations of 55-60% helicity in solution. 2. For Asp- and PSer-containing sequences, all conformers exhibited a low preference for right-handed alpha-helix formation (< or = 10%), but a significant percentage (approximately 20% or greater) of beta-strand and beta-turn dihedrals were found in all three sequence cases: (1) Aspn forms supercoil conformers, with a 2:1:1 ratio of beta-turn:beta-strand:alpha-helix dihedral angles; (2) PSer20 features a nearly 1:1 ratio of beta-turn:beta-sheet dihedral preferences, with very little preference for alpha-helical structure, and possesses short regions of strand and turn combinations that give rise to a collapsed bend or hairpin structure; (3) (PSer-Asp)10 features a 3:2:1 ratio of beta-sheet:beta-turn:alpha-helix and gives rise to a superturn or C-shaped structure.
Collapse
Affiliation(s)
- J S Evans
- Arthur Amos Noyes Laboratory for Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
32
|
Sørensen ES, Højrup P, Petersen TE. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 1995; 4:2040-9. [PMID: 8535240 PMCID: PMC2142990 DOI: 10.1002/pro.5560041009] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Osteopontin (OPN) is a multiphosphorylated glycoprotein found in bone and other normal and malignant tissues, as well as in the physiological fluids urine and milk. The present study demonstrates that bovine milk osteopontin is phosphorylated at 27 serine residues and 1 threonine residue. Phosphoamino acids were identified by a combination of amino acid analysis, sequence analysis of S-ethylcysteine-derivatized phosphopeptides, and mass spectrometric analysis. Twenty-five phosphoserines and one phosphothreonine were located in Ser/Thr-X-Glu/Ser(P)/Asp motifs, and two phosphoserines were found in the sequence Ser-X-X-Glu/Ser(P). These sequence motifs are identical with the recognition sequences of mammary gland casein kinase and casein kinase II, respectively. Examination of the phosphorylation pattern revealed that the phosphorylations were clustered in groups of approximately three spanned by unphosphorylated regions of 11-32 amino acids. This pattern is probably of importance in the multiple functions of OPN involving interaction with Ca2+ and inorganic calcium salts. Furthermore, three O-glycosylated threonines (Thr 115, Thr 124, and Thr 129) have been identified in a threonine- and proline-rich region of the protein. Three putative N-glycosylation sites (Asn 63, Asn 85, and Asn 193) are present in bovine osteopontin, but sequence and mass spectrometric analysis showed that none of these asparagines were glycosylated in bovine mammary gland osteopontin. Alignment analysis showed that the majority of the phosphorylation sites in bovine osteopontin as well as all three O-glycosylation sites were conserved in other mammalian sequences. This conservation of serines, even in otherwise less well-conserved regions of the protein, indicates that the phosphorylation of osteopontin at specific sites is essential for the function of the protein.
Collapse
Affiliation(s)
- E S Sørensen
- Protein Chemistry Laboratory, University of Aarhus, Denmark
| | | | | |
Collapse
|
33
|
Barak-Shalom T, Schickler M, Knopov V, Shapira R, Hurwitz S, Pines M. Synthesis and phosphorylation of osteopontin by avian epiphyseal growth-plate chondrocytes as affected by differentiation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1995; 111:49-59. [PMID: 7656184 DOI: 10.1016/0742-8413(95)00021-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regulation of synthesis and phosphorylation of osteopontin in relation to avian epiphyseal growth-plate chondrocyte differentiation was studied in situ and in culture. Osteopontin gene expression was evaluated in the tibia growth-plate of 3-week-old chickens by in situ hybridization. The gene was expressed mainly at the lower hypertrophic zone where cartilage matrix is calcified and endochondral bone formation is initiated. Within the hypertrophic region, a poorly labeled area separated the layer of osteopontin-positive hypertrophic chondrocytes from those associated with endochondral bone formation. In culture, proliferative chondrocytes show no alkaline phosphatase activity in contrast to ascorbic acid-treated chondrocytes which display the enzyme activity. Chondrocytes not treated with ascorbic acid, exhibited lower levels of osteopontin mRNA than the treated cells. The phorbol ester TPA--an activator of protein kinase C--and to a lesser extent FGF but not EGF, stimulated osteopontin gene expression. Chondrocytes secreted low levels of phosphorylated osteopontin to the medium. EGF treatment resulted in the appearance of phosphorylated osteopontin in the medium, without affecting the synthesis of other proteins. FGF and TGF beta, but not IGF-I or IGF-II, also caused phosphorylation of osteopontin. Ascorbic acid-treated chondrocytes secreted higher levels of phosphorylated osteopontin than the non-treated cells, but addition of FGF or TPA did not stimulate osteopontin phosphorylation any further. Parathyroid hormone caused a dose-dependent attenuation of osteopontin phosphorylation and inhibited the EGF-dependent osteopontin phosphorylation. The results suggest that osteopontin gene expression and phosphorylation in chondrocytes are regulated by separate mechanisms. The response to the various controlling agents varies with the state of differentiation. Both processes--the synthesis and phosphorylation of osteopontin--are under the control of local growth factors which are involved in bone growth and calcification.
Collapse
Affiliation(s)
- T Barak-Shalom
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Sodek J, Chen J, Nagata T, Kasugai S, Todescan R, Li IW, Kim RH. Regulation of osteopontin expression in osteoblasts. Ann N Y Acad Sci 1995; 760:223-41. [PMID: 7785896 DOI: 10.1111/j.1749-6632.1995.tb44633.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) is a prominent bone matrix protein that is synthesized by osteoblastic cells. To elucidate the function of OPN in bone we studied the regulated expression of the rat OPN protein during bone formation in vivo and in vitro. OPN mRNA is expressed by preosteoblastic cells early in bone formation, but the highest expression is observed in mature osteoblasts at sites of bone remodelling. A low-phosphorylated, 55-kDa form of OPN is produced by the preosteoblastic cells, whereas osteoblasts produce a highly phosphorylated, 44-kDa protein; the two forms of OPN corresponding to pp69 and pp62 in transformed rat cells. The synthesis of the 55-kDa OPN correlates with the formation of a 'cement' matrix that is synthesized prior to bone deposition, whereas the 44-kDa OPN synthesized by osteoblasts associates rapidly with hydroxyapatite, possibly regulating crystal growth, and may also provide a substratum for osteoclast attachment. Expression of OPN mRNA is upregulated by growth and differentiation factors (PDGF, EGF, TGF-beta and BMP-7/OP-1) and by mechanical stress, which promote bone formation, as well as by osteotropic hormones (retinoic acid and vitamin D3), which can promote bone resorption and remodelling. However, OPN mRNA is down-regulated by bisphosphonates, which abrogate bone resorption. Regulation of OPN expression is, therefore, consistent with a multiplicity of functions for OPN that involve specific structural motifs in both the synthesis and resorption of bone.
Collapse
Affiliation(s)
- J Sodek
- Medical Research Council Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Senger DR, Brown LF, Perruzzi CA, Papadopoulos-Sergiou A, Van de Water L. Osteopontin at the tumor/host interface. Functional regulation by thrombin-cleavage and consequences for cell adhesion. Ann N Y Acad Sci 1995; 760:83-100. [PMID: 7540380 DOI: 10.1111/j.1749-6632.1995.tb44622.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- D R Senger
- Department of Pathology, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
36
|
Gerstenfeld LC, Uporova T, Ashkar S, Salih E, Gotoh Y, McKee MD, Nanci A, Glimcher MJ. Regulation of avian osteopontin pre- and posttranscriptional expression in skeletal tissues. Ann N Y Acad Sci 1995; 760:67-82. [PMID: 7785927 DOI: 10.1111/j.1749-6632.1995.tb44621.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- L C Gerstenfeld
- Department of Orthopedic Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- W T Butler
- Department of Basic Sciences, University of Texas-Houston Health Science Center 77030, USA
| |
Collapse
|
38
|
Abstract
Osteopontin is a secreted glycosylated phosphoprotein found in bone and other normal and malignant tissues. Osteopontin can be autophosphorylated on tyrosine residues and can also be phosphorylated on serine and threonine residues by several protein kinases. Autophosphorylation of osteopontin may generate sites for specific interactions with other proteins on the cell surface and/or within the extracellular matrix. These interactions of osteopontin are thought to be essential for bone mineralization and function. The polyaspartic acid motif of osteopontin, in combination with neighboring sequences that include serine residues phosphorylated by protein kinases, could fold and assemble into a molecular structure that participates in the mineralization of the bone matrix.
Collapse
Affiliation(s)
- R A Saavedra
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Bautista D, Xuan J, Hota C, Chambers A, Harris J. Inhibition of Arg-Gly-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31650-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
40
|
Xuan JW, Hota C, Chambers AF. Recombinant GST-human osteopontin fusion protein is functional in RGD-dependent cell adhesion. J Cell Biochem 1994; 54:247-55. [PMID: 8175899 DOI: 10.1002/jcb.240540213] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteopontin (OPN) is a secreted phosphoprotein expressed by many tumor cells, as well as a limited set of normal cells. Native OPN has been shown to support cell adhesion in an RGD-peptide-inhibitable fashion. Here we expressed human OPN in E. coli as a recombinant fusion protein with glutathione-S-transferase (GST). We report that the GST-OPN fusion protein has functional activity. PAP2 (ras-transformed, metastatic murine NIH 3T3) and MDA-MB-435 human mammary carcinoma cells bound to GST-OPN in an in vitro cell adhesion assay nearly as well as to native bovine OPN. Adhesion to the recombinant fusion protein was blocked by addition of GRGDS peptide, suggesting that the cells adhere to the recombinant and native OPN proteins by similar, integrin-mediated mechanisms. Adhesion to both sources of OPN also was inhibited by thrombin treatment of the protein. Thrombin cleaves GST from OPN in the fusion protein, and also cleaves internally in OPN, adjacent to the RGD sequence of the protein. Our results suggest that (a) thrombin cleavage of native OPN may be a natural regulator of OPN function, and (b) the majority of OPN cell binding activity is mediated by the RGD sequence in the protein backbone, with little or no requirement for post-translational modifications that occur in native OPN for adhesive function as measured here.
Collapse
Affiliation(s)
- J W Xuan
- London Regional Cancer Centre, Ontario, Canada
| | | | | |
Collapse
|
41
|
Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res 1994; 74:214-24. [PMID: 8293561 DOI: 10.1161/01.res.74.2.214] [Citation(s) in RCA: 295] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteopontin is an Arg-Gly-Asp-containing acidic phosphoprotein recently shown to be upregulated in vascular smooth muscle during rat arterial neointima formation and in human atherosclerotic plaques. Functional studies showed that osteopontin promoted adhesion of both cultured aortic endothelial cells and aortic smooth muscle cells. Adhesion of vascular cells to osteopontin was dose dependent and half maximal when solutions containing 7 and 30 nmol/L osteopontin were used to coat wells for endothelial and smooth muscle cells, respectively. Smooth muscle cells adherent to osteopontin were spread after 60 minutes, whereas endothelial cells remained round, although flattened, at this time point but were spread at 90 minutes. Cell spreading on osteopontin was accompanied by the formation of focal adhesion plaques. A newly developed anti-osteopontin antibody completely inhibited adhesion of both cell types to osteopontin but not to fibronectin or vitronectin. In addition, the peptide GRGDSP blocked adhesion to osteopontin, suggesting that integrins mediate Arg-Gly-Asp-dependent adhesion. Indeed, an antibody against the alpha v beta 3 integrin neutralized adhesion of both endothelium and smooth muscle cells to osteopontin by approximately 50%, demonstrating that alpha v beta 3 is one osteopontin receptor on vascular cells. Osteopontin also promoted the migration of smooth muscle cells in a Boyden-type chamber, with half-maximal effects observed at 77 nmol/L osteopontin. Checkerboard analysis demonstrated that this stimulus was chemotactic in nature. Our findings suggest that osteopontin may be functionally important as an adhesive and chemotactic molecule for vascular cells, particularly when levels of osteopontin are dramatically increased, as is the case after arterial angioplasty and in atherosclerotic plaques.
Collapse
Affiliation(s)
- L Liaw
- Department of Pathology, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
42
|
Boyan BD, Schwartz Z. Diagnostic tools and biologic models for studying osteoporosis and oral bone loss: tissue sampling. J Bone Miner Res 1993; 8 Suppl 2:S557-62. [PMID: 8122527 DOI: 10.1002/jbmr.5650081324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Study of oral tissues to understand the mechanisms of osteoporosis and oral bone loss includes histologic, biochemical, and molecular assessments of the tissue itself, as well as in vivo analysis of the biology of resident cells. Tissue sampling is limited by the nature of the defect and the use of appropriate controls (contralateral site vs same site, different subjects vs repeated measures of the same sites). Experimental parameters may include histomorphometrics, histochemistry, immunohistochemistry, and in situ hybridization. Molecular and biochemical technology also can be used to study the tissue in vivo. The presence of mineral is a confounding variable. To understand the underlying mechanisms of oral bone loss, cell culture is a powerful tool. The location in the oral cavity, the type of tissue (periosteum/cortical bone/trabecular bone), and the presence of pathology (periodontal disease) affect the biology of the cultured cells. Enzymatic release of cells from their extracellular matrix yields heterogeneous cell populations. Migratory cells from explant cultures are more homogeneous but less differentiated. Fibroblastic and bacterial contamination may be problems. Although cell culture data must be considered in the context of the intact tissue, the potential exists for developing bone cell function tests with diagnostic use in the treatment of bone disease.
Collapse
Affiliation(s)
- B D Boyan
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
43
|
Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 1993; 92:1686-96. [PMID: 8408622 PMCID: PMC288328 DOI: 10.1172/jci116755] [Citation(s) in RCA: 502] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In an earlier report, we used differential cloning to identify genes that might be critical in controlling arterial neointima formation (Giachelli, C., N. Bae, D. Lombardi, M. Majesky, and S. Schwartz. 1991. Biochem. Biophys. Res. Commun. 177:867-873). In this study, we sequenced the complete cDNA and conclusively identified one of these genes, 2B7, as rat osteopontin. Using immunochemistry and in situ hybridization, we found that medial smooth muscle cells (SMC) in uninjured arteries contained very low levels of osteopontin protein and mRNA. Injury to either the adult rat aorta or carotid artery using a balloon catheter initiated a qualitatively similar time-dependent increase in both osteopontin protein and mRNA in arterial SMC. Expression was transient and highly localized to neointimal SMC during the proliferative and migratory phases of arterial injury, suggesting a possible role for osteopontin in these processes. In vitro, basic fibroblast growth factor (bFGF), transforming growth factor-beta (TGF-beta), and angiotensin II (AII), all proteins implicated in the rat arterial injury response, elevated osteopontin expression in confluent vascular SMC. Finally, we found that osteopontin was a novel component of the human atherosclerotic plaque found most strikingly associated with calcified deposits. These data implicate osteopontin as a potentially important mediator of arterial neointima formation as well as dystrophic calcification that often accompanies this process.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta/metabolism
- Aorta/pathology
- Arteries/drug effects
- Arteries/metabolism
- Arteries/pathology
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Catheterization
- Cells, Cultured
- DNA/chemistry
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Male
- Molecular Sequence Data
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Osteopontin
- Phosphoproteins/biosynthesis
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Rats, Sprague-Dawley
- Sialoglycoproteins/analysis
- Sialoglycoproteins/biosynthesis
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- C M Giachelli
- Department of Pathology SJ-60 University of Washington School of Medicine, Seattle 98195
| | | | | | | | | | | |
Collapse
|
44
|
Helder MN, Bronckers AL, Wöltgens JH. Dissimilar expression patterns for the extracellular matrix proteins osteopontin (OPN) and collagen type I in dental tissues and alveolar bone of the neonatal rat. MATRIX (STUTTGART, GERMANY) 1993; 13:415-25. [PMID: 8246837 DOI: 10.1016/s0934-8832(11)80047-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteopontin (OPN) is a phosphorylated, sialic acid containing glycoprotein that can be extracted from the mineralized extracellular matrix of bone. In the present study we determined the expression patterns of OPN in dental tissues and alveolar bone of 1-3 day old (neonatal) rats by means of 1) immunohistochemistry, 2) Northern blotting and 3) in situ hybridization. We compared these patterns with those of type I collagen. We localized collagen type I expression in osteoblasts adjacent to alveolar bone and in odontoblasts lining predentin/dentin, but not in the epithelial ameloblasts. For OPN, we observed a weak antigenicity in predentin. Although generally no cellular immunostaining was found, very occasionally a minor immunoreactivity was detected in a small number of pre-mineralizing incisor odontoblasts. On the mRNA level, however, no OPN transcripts could be detected in odontoblasts, either by in situ or by Northern hybridization analyses. Also the odontoblasts of the bone-like dentin (osteodentin) region in the tip of incisors were negative for OPN. In contrast, however, osteoblasts of alveolar bone showed strong positive signals with all three techniques, confirming the sensitivity and specificity of the detection methods. From the data obtained in this study, it can be concluded that during early stages of dentinogenesis OPN presumably is not expressed in developing rat tooth germs. The weak immunostaining observed sporadically in some young odontoblasts is probably due to resorption of OPN of non-dental origin entrapped in the predentin.
Collapse
Affiliation(s)
- M N Helder
- Department of Oral Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
45
|
Montgomery GW, Crawford AM, Penty JM, Dodds KG, Ede AJ, Henry HM, Pierson CA, Lord EA, Galloway SM, Schmack AE. The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q. Nat Genet 1993; 4:410-4. [PMID: 8401591 DOI: 10.1038/ng0893-410] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The autosomal Booroola fecundity gene (FecB) mutation in sheep increases ovulation rate and litter size, with associated effects on ovarian physiology and hormone profiles. Analysis of segregation in twelve families (379 female progeny) identified linkage between the mutation, two microsatellite markers (OarAE101 and OarHH55, Zmax > 9.0) and epidermal growth factor (EGF) from human chromosome 4q25 (Zmax > 3.0). The marker OarAE101 was linked to secreted phosphoprotein 1 (SPP1, which maps to chromosome 4q21-23 in man) in the test pedigrees and independent families (Zmax > 9.7). The identification of linkage between the FecB mutation and markers from human chromosome 4q is an important step towards further understanding the control of ovulation rates in mammals.
Collapse
Affiliation(s)
- G W Montgomery
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sørensen ES, Petersen TE. Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. J DAIRY RES 1993; 60:189-97. [PMID: 8320368 DOI: 10.1017/s0022029900027503] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three major proteins from the proteose peptone of bovine milk were purified by Sephadex G-75 gel chromatography, Q-Sepharose ion-exchange and additional Sephadex G-75 gel chromatography in the presence of urea. From their mobility in a gradient SDS-PAGE, the proteins were found to have molecular masses of 17, 28 and 60 kDa. The N-terminal amino acid sequence of the 17 kDa protein was found to be homologous with a camel whey protein. This protein has not previously been described in bovine milk. From the SDS-PAGE results, the 28 kDa protein was judged to be the major protein of proteose peptone, contributing approximately 25% of the total. The N-terminal amino acid sequence showed no homology to any known protein sequence, but the amino acid composition indicated that the 28 kDa protein is identical with the PP3 component from the proteose peptone fraction of bovine milk, or part of it. The 60 kDa protein was found to be bovine osteopontin, a very highly phosphorylated protein with an Arg-Gly-Asp sequence which mediates cell attachment.
Collapse
Affiliation(s)
- E S Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
| | | |
Collapse
|
47
|
Kohri K, Suzuki Y, Yoshida K, Yamamoto K, Amasaki N, Yamate T, Umekawa T, Iguchi M, Sinohara H, Kurita T. Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 1992; 184:859-64. [PMID: 1575754 DOI: 10.1016/0006-291x(92)90669-c] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have sequenced a cDNA of urinary stone protein. cDNA sequences show complete homology between urinary stone protein and human osteopontin (bone sialoprotein) (nucleotides 265-886 and 1183-1424). Osteopontin is a recently discovered bone matrix protein which has been implicated in mediating mineral formation within bone extracellular matrix. This result shows that osteopontin is presumably involved in stone formation as stone matrix.
Collapse
Affiliation(s)
- K Kohri
- Department of Urology and Biochemistry, School of Medicine, Kinki University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|