1
|
Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M. Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system. FEMS Microbiol Rev 2023; 47:fuad052. [PMID: 37715317 PMCID: PMC10532202 DOI: 10.1093/femsre/fuad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, C/Albert Einstein 22, PCTCAN, 39011 Santander, Spain
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine
, Universiti Sultan Zainal Abidin, Jalan Sultan Mahumd, 20400 Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
2
|
Martínez-García E, Fraile S, Algar E, Aparicio T, Velázquez E, Calles B, Tas H, Blázquez B, Martín B, Prieto C, Sánchez-Sampedro L, Nørholm MH, Volke D, Wirth N, Dvořák P, Alejaldre L, Grozinger L, Crowther M, Goñi-Moreno A, Nikel P, Nogales J, de Lorenzo V. SEVA 4.0: an update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Res 2023; 51:D1558-D1567. [PMID: 36420904 PMCID: PMC9825617 DOI: 10.1093/nar/gkac1059] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Sofía Fraile
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Elena Algar
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Tomás Aparicio
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Elena Velázquez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Huseyin Tas
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Blas Blázquez
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | | | | | | | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 62500 Czech Republic
| | - Lorea Alejaldre
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
| | - Lewis Grozinger
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
- School of Computing, Newcastle University, NE4 5TG, UK
| | - Matthew Crowther
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
- School of Computing, Newcastle University, NE4 5TG, UK
| | - Angel Goñi-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (INIA-CSIC), Pozuelo de Alarcón 28223, Spain
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Juan Nogales
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain
| |
Collapse
|
3
|
Aparicio T, Silbert J, Cepeda S, de Lorenzo V. Propagation of Recombinant Genes through Complex Microbiomes with Synthetic Mini-RP4 Plasmid Vectors. BIODESIGN RESEARCH 2022; 2022:9850305. [PMID: 37850127 PMCID: PMC10521647 DOI: 10.34133/2022/9850305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/23/2022] [Indexed: 10/19/2023] Open
Abstract
The promiscuous conjugation machinery of the Gram-negative plasmid RP4 has been reassembled in a minimized, highly transmissible vector for propagating genetically encoded traits through diverse types of naturally occurring microbial communities. To this end, the whole of the RP4-encoded transfer determinants (tra, mob genes, and origin of transfer oriT) was excised from their natural context, minimized, and recreated in the form of a streamlined DNA segment borne by an autoselective replicon. The resulting constructs (the pMATING series) could be self-transferred through a variety of prokaryotic and eukaryotic recipients employing such a rationally designed conjugal delivery device. Insertion of GFP reporter into pMATING exposed the value of this genetic tool for delivering heterologous genes to both specific mating partners and complex consortia (e.g., plant/soil rhizosphere). The results accredited the effective and functional transfer of the recombinant plasmids to a diversity of hosts. Yet the inspection of factors that limit interspecies DNA transfer in such scenarios uncovered type VI secretion systems as one of the factual barriers that check otherwise high conjugal frequencies of tested RP4 derivatives. We argue that the hereby presented programming of hyperpromiscuous gene transfer can become a phenomenal asset for the propagation of beneficial traits through various scales of the environmental microbiome.
Collapse
Affiliation(s)
- Tomás Aparicio
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| | - Jillian Silbert
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| | - Sherezade Cepeda
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco Madrid 28049Spain
| |
Collapse
|
4
|
Abstract
Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.
Collapse
|
5
|
A Novel Mobilizing Tool Based on the Conjugative Transfer System of the IncM Plasmid pCTX-M3. Appl Environ Microbiol 2020; 86:AEM.01205-20. [PMID: 32591385 PMCID: PMC7440800 DOI: 10.1128/aem.01205-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Conjugative plasmids are the main players in horizontal gene transfer in Gram-negative bacteria. DNA transfer tools constructed on the basis of such plasmids enable gene manipulation even in strains of clinical or environmental origin, which are often difficult to work with. The conjugation system of the IncM plasmid pCTX-M3 isolated from a clinical strain of Citrobacter freundii has been shown to enable efficient mobilization of oriT pCTX-M3-bearing plasmids into a broad range of hosts comprising Alpha-, Beta-, and Gammaproteobacteria We constructed a helper plasmid, pMOBS, mediating such mobilization with an efficiency up to 1,000-fold higher than that achieved with native pCTX-M3. We also constructed Escherichia coli donor strains with chromosome-integrated conjugative transfer genes: S14 and S15, devoid of one putative regulator (orf35) of the pCTX-M3 tra genes, and S25 and S26, devoid of two putative regulators (orf35 and orf36) of the pCTX-M3 tra genes. Strains S14 and S15 and strains S25 and S26 are, respectively, up to 100 and 1,000 times more efficient in mobilization than pCTX-M3. Moreover, they also enable plasmid mobilization into the Gram-positive bacteria Bacillus subtilis and Lactococcus lactis Additionally, the constructed E. coli strains carried no antibiotic resistance genes that are present in pCTX-M3 to facilitate manipulations with antibiotic-resistant recipient strains, such as those of clinical origin. To demonstrate possible application of the constructed tool, an antibacterial conjugation-based system was designed. Strain S26 was used for introduction of a mobilizable plasmid coding for a toxin, resulting in the elimination of over 90% of recipient E. coli cells.IMPORTANCE The conjugation of donor and recipient bacterial cells resulting in conjugative transfer of mobilizable plasmids is the preferred method enabling the introduction of DNA into strains for which other transfer methods are difficult to establish (e.g., clinical strains). We have constructed E. coli strains carrying the conjugation system of the IncM plasmid pCTX-M3 integrated into the chromosome. To increase the mobilization efficiency up to 1,000-fold, two putative regulators of this system, orf35 and orf36, were disabled. The constructed strains broaden the repertoire of tools for the introduction of DNA into the Gram-negative Alpha-, Beta-, and Gammaproteobacteria, as well as into Gram-positive bacteria such as Bacillus subtilis and Lactococcus lactis The antibacterial procedure based on conjugation with the use of the orf35- and orf36-deficient strain lowered the recipient cell number by over 90% owing to the mobilizable plasmid-encoded toxin.
Collapse
|
6
|
Abstract
Site-directed mutagenesis is a key tool in the analysis of biological mechanisms. We have established an efficient and systematic gene targeting strategy for Bacillus subtilis based on the Golden Gate cloning methodology. Our approach permits the introduction of single or multiple point mutations or of heavily engineered alleles into the endogenous gene locus in a single step using a 96-well microtiter plate format. We have successfully applied this system for high-throughput functional screening of resized variants of the Structural Maintenance of Chromosome (Smc) protein and for exhaustive cysteine cross-linking mutagenesis. Here we describe, in detail, the experimental setup for high-throughput introduction of modifications into the B. subtilis chromosome. With minor modifications, the approach should be applicable to other bacteria and yeast.
Collapse
|
7
|
Kohler V, Vaishampayan A, Grohmann E. Broad-host-range Inc18 plasmids: Occurrence, spread and transfer mechanisms. Plasmid 2018; 99:11-21. [PMID: 29932966 DOI: 10.1016/j.plasmid.2018.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/17/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022]
Abstract
Conjugative plasmid transfer is one of the major mechanisms responsible for the spread of antibiotic resistance and virulence genes. The incompatibility (Inc) 18 group of plasmids is a family of plasmids replicating by the theta-mechanism, whose members have been detected frequently in enterococci and streptococci. Inc18 plasmids encode a variety of antibiotic resistances, including resistance to vancomycin, chloramphenicol and the macrolide-lincosamide-streptogramine (MLS) group of antibiotics. These plasmids comprising insertions of Tn1546 were demonstrated to be responsible for the transfer of vancomycin resistance encoded by the vanA gene from vancomycin resistant enterococci (VRE) to methicillin resistant Staphylococcus aureus (MRSA). Thereby vancomycin resistant S. aureus (VRSA) were generated, which are serious multi-resistant pathogens challenging the health care system. Inc18 plasmids are widespread in the clinic and frequently have been detected in the environment, especially in domestic animals and wastewater. pIP501 is one of the best-characterized conjugative Inc18 plasmids. It was originally isolated from a clinical Streptococcus agalactiae strain and is, due to its small size and simplicity, a model to study conjugative plasmid transfer in Gram-positive bacteria. Here, we report on the occurrence and spread of Inc18-type plasmids in the clinic and in different environments as well as on the exchange of the plasmids among them. In addition, we discuss molecular details on the transfer mechanism of Inc18 plasmids and its regulation, as exemplified by the model plasmid pIP501. We finish with an outlook on promising approaches on how to reduce the emerging spread of antibiotic resistances.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | - Ankita Vaishampayan
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, D-13347 Berlin, Germany
| | - Elisabeth Grohmann
- Life Sciences and Technology, Beuth University of Applied Sciences Berlin, D-13347 Berlin, Germany.
| |
Collapse
|
8
|
The ng_ζ1 toxin of the gonococcal epsilon/zeta toxin/antitoxin system drains precursors for cell wall synthesis. Nat Commun 2018; 9:1686. [PMID: 29703974 PMCID: PMC5923241 DOI: 10.1038/s41467-018-03652-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/02/2018] [Indexed: 01/14/2023] Open
Abstract
Bacterial toxin–antitoxin complexes are emerging as key players modulating bacterial physiology as activation of toxins induces stasis or programmed cell death by interference with vital cellular processes. Zeta toxins, which are prevalent in many bacterial genomes, were shown to interfere with cell wall formation by perturbing peptidoglycan synthesis in Gram-positive bacteria. Here, we characterize the epsilon/zeta toxin–antitoxin (TA) homologue from the Gram-negative pathogen Neisseria gonorrhoeae termed ng_ɛ1 / ng_ζ1. Contrary to previously studied streptococcal epsilon/zeta TA systems, ng_ɛ1 has an epsilon-unrelated fold and ng_ζ1 displays broader substrate specificity and phosphorylates multiple UDP-activated sugars that are precursors of peptidoglycan and lipopolysaccharide synthesis. Moreover, the phosphorylation site is different from the streptococcal zeta toxins, resulting in a different interference with cell wall synthesis. This difference most likely reflects adaptation to the individual cell wall composition of Gram-negative and Gram-positive organisms but also the distinct involvement of cell wall components in virulence. Toxin–antitoxin (TA) systems are important modulators of bacterial physiology. Here, the authors structurally characterize the epsilon/zeta TA system from the Gram-negative pathogen Neisseria gonorrhoeae and show that the toxin interferes with peptidoglycan and lipopolysaccharide synthesis by phosphorylating the UDP-activated sugar-precursors.
Collapse
|
9
|
Jaén-Luchoro D, Aliaga-Lozano F, Gomila RM, Gomila M, Salvà-Serra F, Lalucat J, Bennasar-Figueras A. First insights into a type II toxin-antitoxin system from the clinical isolate Mycobacterium sp. MHSD3, similar to epsilon/zeta systems. PLoS One 2017; 12:e0189459. [PMID: 29236773 PMCID: PMC5728571 DOI: 10.1371/journal.pone.0189459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023] Open
Abstract
A putative type II toxin-antitoxin (TA) system was found in the clinical isolate Mycobacterium sp. MHSD3, a strain closely related to Mycobacterium chelonae. Further analyses of the protein sequences of the two genes revealed the presence of domains related to a TA system. BLAST analyses indicated the presence of closely related proteins in the genomes of other recently published M. chelonae strains. The functionality of both elements of the TA system was demonstrated when expressed in Escherichia coli cells, and the predicted structure of the toxin is very similar to those of well-known zeta-toxins, leading to the definition of a type II TA system similar to epsilon/zeta TA systems in strains that are closely related to M. chelonae.
Collapse
Affiliation(s)
- Daniel Jaén-Luchoro
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Francisco Aliaga-Lozano
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Laboratorio de Biología Molecular, Clínica Rotger, Palma de Mallorca, Spain
| | - Rosa Maria Gomila
- Serveis Cientifico-Tècnics, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Francisco Salvà-Serra
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Antoni Bennasar-Figueras
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
- Area de Enfermedades Infecciosas, Instituto Universitario de Investigaciones en Ciencias de la Salud (IUNICS-UIB), Universitat de les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
10
|
Valero-Rello A, López-Sanz M, Quevedo-Olmos A, Sorokin A, Ayora S. Molecular Mechanisms That Contribute to Horizontal Transfer of Plasmids by the Bacteriophage SPP1. Front Microbiol 2017; 8:1816. [PMID: 29018417 PMCID: PMC5615212 DOI: 10.3389/fmicb.2017.01816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023] Open
Abstract
Natural transformation and viral-mediated transduction are the main avenues of horizontal gene transfer in Firmicutes. Bacillus subtilis SPP1 is a generalized transducing bacteriophage. Using this lytic phage as a model, we have analyzed how viral replication and recombination systems contribute to the transfer of plasmid-borne antibiotic resistances. Phage SPP1 DNA replication relies on essential phage-encoded replisome organizer (G38P), helicase loader (G39P), hexameric replicative helicase (G40P), recombinase (G35P) and in less extent on the partially dispensable 5′→3′ exonuclease (G34.1P), the single-stranded DNA binding protein (G36P) and the Holliday junction resolvase (G44P). Correspondingly, the accumulation of linear concatemeric plasmid DNA, and the formation of transducing particles were blocked in the absence of G35P, G38P, G39P, and G40P, greatly reduced in the G34.1P, G36P mutants, and slightly reduced in G44P mutants. In contrast, establishment of injected linear plasmid DNA in the recipient host was independent of viral-encoded functions. DNA homology between SPP1 and the plasmid, rather than a viral packaging signal, enhanced the accumulation of packagable plasmid DNA. The transfer efficiency was also dependent on plasmid copy number, and rolling-circle plasmids were encapsidated at higher frequencies than theta-type replicating plasmids.
Collapse
Affiliation(s)
- Ana Valero-Rello
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alvaro Quevedo-Olmos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Universite Paris-SaclayJouy-en-Josas, France
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
11
|
Moreno-Del Álamo M, Tabone M, Lioy VS, Alonso JC. Toxin ζ Triggers a Survival Response to Cope with Stress and Persistence. Front Microbiol 2017; 8:1130. [PMID: 28690594 PMCID: PMC5481361 DOI: 10.3389/fmicb.2017.01130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria have evolved complex regulatory controls in response to various environmental stresses. Protein toxins of the ζ superfamily, found in prominent human pathogens, are broadly distributed in nature. We show that ζ is a uridine diphosphate-N-acetylglucosamine (UNAG)-dependent ATPase whose activity is inhibited in vitro by stoichiometric concentrations of ε2 antitoxin. In vivo, transient ζ expression promotes a reversible multi-level response by altering the pool of signaling purine nucleotides, which leads to growth arrest (dormancy), although a small cell subpopulation persists rather than tolerating toxin action. High c-di-AMP levels (absence of phosphodiesterase GdpP) decrease, and low c-di-AMP levels (absence of diadenylate cyclase DisA) increase the rate of ζ persistence. The absence of CodY, a transition regulator from exponential to stationary phase, sensitizes cells to toxin action, and suppresses persisters formed in the ΔdisA context. These changes, which do not affect the levels of stochastic ampicillin (Amp) persistence, sensitize cells to toxin and Amp action. Our findings provide an explanation for the connection between ζ-mediated growth arrest (with alterations in the GTP and c-di-AMP pools) and persistence formation.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| |
Collapse
|
12
|
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel) 2016; 8:toxins8100305. [PMID: 27782085 PMCID: PMC5086665 DOI: 10.3390/toxins8100305] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Collapse
|
13
|
Grohmann E, Goessweiner-Mohr N, Brantl S. DNA-Binding Proteins Regulating pIP501 Transfer and Replication. Front Mol Biosci 2016; 3:42. [PMID: 27563645 PMCID: PMC4981023 DOI: 10.3389/fmolb.2016.00042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling protein) and the VirB4-like ATPase, TraE. Both proteins are actively involved in conjugative DNA transport. Moreover, the operon encodes TraN, a small cytoplasmic protein, whose specific binding to a sequence upstream of the oriT nic-site was demonstrated. TraN seems to be an effective repressor of pIP501 transfer, as conjugative transfer rates were significantly increased in an E. faecalis pIP501ΔtraN mutant.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center FreiburgFreiburg im Breisgau, Germany; Life Sciences and Technology, Beuth University of Applied Sciences BerlinBerlin, Germany
| | - Nikolaus Goessweiner-Mohr
- Center for Structural System Biology, University Medical Center Hamburg-EppendorfHamburg, Germany; Deutsches Elektronen-SynchrotronHamburg, Germany; Institute of Molecular Biotechnology, Austrian Academy of SciencesVienna, Austria; Research Institute of Molecular PathologyVienna, Austria
| | - Sabine Brantl
- Lehrstuhl für Genetik, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena Jena, Germany
| |
Collapse
|
14
|
Dmowski M, Kern-Zdanowicz I. Omega (ParB) binding sites together with the RNA polymerase-recognized sequence are essential for centromeric functions of the Pωregion in the partition system of pSM19035. MICROBIOLOGY-SGM 2016; 162:1114-1124. [PMID: 27177883 DOI: 10.1099/mic.0.000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Partition systems contribute to stable plasmid inheritance in bacteria through the active separation of DNA molecules to daughter cells, and the centromeric sequence located either upstream or downstream of canonical partition operons plays an important role in this process. A specific DNA-binding protein binds to this sequence and interacts with the motor NTPase protein to form a nucleoprotein complex. The inc18-family plasmid pSM19035 is partitioned by products of δ and ω genes, with δ encoding a Walker-type ATPase and ω encoding a DNA-binding protein. As the two genes are transcribed separately, this system differs from others in its organization; nonetheless, expression of these genes is regulated by Omega, which also regulates the copy number of the plasmid (by controlling copS gene expression). Protein Omega specifically recognizes WATCACW heptad repeats. In this study, we constructed a synthetic δω operon to enable an analysis of the centromeric functions of Omega-binding sites Pδ, Pω and PcopS, discrete from their promoter functions. Our results show that these three regions do not support plasmid stabilization equally. We demonstrate that the Pω site alone can simultaneously drive the expression of partition genes from the synthetic δω operon and act as a unique centromeric sequence to promote the most efficient plasmid partitioning. Moreover, Pω can support the centromeric function in concert with the synthetic δω operon expressed from a heterologous promoter demonstrating that Pω is the main centromeric sequence of the δ-ω partition system. Additionally, the RNA polymerase-recognized sequence in Pω is essential for its centromeric function.
Collapse
Affiliation(s)
- Michał Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Izabela Kern-Zdanowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
16
|
The Interplay between Different Stability Systems Contributes to Faithful Segregation: Streptococcus pyogenes pSM19035 as a Model. Microbiol Spectr 2016; 2:PLAS-0007-2013. [PMID: 26104212 DOI: 10.1128/microbiolspec.plas-0007-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Streptococcus pyogenes pSM19035 low-copy-number θ-replicating plasmid encodes five segregation (seg) loci that contribute to plasmid maintenance. These loci map outside of the minimal replicon. The segA locus comprises β2 recombinase and two six sites, and segC includes segA and also the γ topoisomerase and two ssiA sites. Recombinase β2 plays a role both in maximizing random segregation by resolving plasmid dimers (segA) and in catalyzing inversion between two inversely oriented six sites. segA, in concert with segC, facilitates replication fork pausing at ssiA sites and overcomes the accumulation of "toxic" replication intermediates. The segB1 locus encodes ω, ε, and ζ genes. The short-lived ε2 antitoxin and the long-lived ζ toxin form an inactive ζε2ζ complex. Free ζ toxin halts cell proliferation upon decay of the ε2 antitoxin and enhances survival. If ε2 expression is not recovered, by loss of the plasmid, the toxin raises lethality. The segB2 locus comprises δ and ω genes and six parS sites. Proteins δ2 and ω2, by forming complexes with parS and chromosomal DNA, pair the plasmid copies at the nucleoid, leading to the formation of a dynamic δ2 gradient that separates the plasmids to ensure roughly equal distribution to daughter cells at cell division. The segD locus, which comprises ω2 (or ω2 plus ω22) and parS sites, coordinates expression of genes that control copy number, better-than-random segregation, faithful partition, and antibiotic resistance. The interplay of the seg loci and with the rep locus facilitates almost absolute plasmid stability.
Collapse
|
17
|
Yao X, Chen T, Shen X, Zhao Y, Wang M, Rao X, Yin S, Wang J, Gong Y, Lu S, Le S, Tan Y, Tang J, Fuquan H, Li M. The chromosomal SezAT toxin-antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. Mol Microbiol 2015; 98:243-57. [PMID: 26138696 DOI: 10.1111/mmi.13116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI-1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI-1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI-1 from the host cells have been unsuccessful. Here, we report that an SsPI-1-borne Epsilon/Zeta toxin-antitoxin system (designated SezAT) promotes SsPI-1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co-expression of SezA, but not by its later action. When devoid of a functional SezAT system, large-scale deletion of SsPI-1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI-1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.
Collapse
Affiliation(s)
- Xinyue Yao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Tian Chen
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaodong Shen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Min Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Supeng Yin
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yali Gong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, 210002, China
| | - Hu Fuquan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
18
|
Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 2013. [PMID: 23204366 DOI: 10.1128/mmbr.00030-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pneumococcal infections cause up to 2 million deaths annually and raise a large economic burden and thus constitute an important threat to mankind. Because of the increase in the antibiotic resistance of Streptococcus pneumoniae clinical isolates, there is an urgent need to find new antimicrobial approaches to triumph over pneumococcal infections. Toxin-antitoxin (TA) systems (TAS), which are present in most living bacteria but not in eukaryotes, have been proposed as an effective strategy to combat bacterial infections. Type II TAS comprise a stable toxin and a labile antitoxin that form an innocuous TA complex under normal conditions. Under stress conditions, TA synthesis will be triggered, resulting in the degradation of the labile antitoxin and the release of the toxin protein, which would poison the host cells. The three functional chromosomal TAS from S. pneumoniae that have been studied as well as their molecular characteristics are discussed in detail in this review. Furthermore, a meticulous bioinformatics search has been performed for 48 pneumococcal genomes that are found in public databases, and more putative TAS, homologous to well-characterized ones, have been revealed. Strikingly, several unusual putative TAS, in terms of components and genetic organizations previously not envisaged, have been discovered and are further discussed. Previously, we reported a novel finding in which a unique pneumococcal DNA signature, the BOX element, affected the regulation of the pneumococcal yefM-yoeB TAS. This BOX element has also been found in some of the other pneumococcal TAS. In this review, we also discuss possible relationships between some of the pneumococcal TAS with pathogenicity, competence, biofilm formation, persistence, and an interesting phenomenon called bistability.
Collapse
|
19
|
Brzozowska I, Brzozowska K, Zielenkiewicz U. Functioning of the TA cassette of streptococcal plasmid pSM19035 in various Gram-positive bacteria. Plasmid 2012; 68:51-60. [PMID: 22309878 DOI: 10.1016/j.plasmid.2012.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
Toxin-antitoxin (TA) systems are common in microorganisms and are frequently found in the chromosomes and low-copy number plasmids of bacterial pathogens. One such system is carried by the low copy number plasmid pSM19035 of the pathogenic bacterium Streptococcus pyogenes. This plasmid encodes an omega-epsilon-zeta cassette that ensures its stable maintenance by post-segregational killing of plasmid-free cells. In this study, the activity of the ω-ε-ζ cassette was examined in various Gram-positive bacteria with a low G/C content in their DNA. The broad host range of pSM19035 was confirmed and the copy number of a truncated derivative in transformed strains was determined by real-time qPCR.
Collapse
Affiliation(s)
- Iwona Brzozowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
20
|
Locke JB, Rahawi S, Lamarre J, Mankin AS, Shaw KJ. Genetic environment and stability of cfr in methicillin-resistant Staphylococcus aureus CM05. Antimicrob Agents Chemother 2012; 56:332-40. [PMID: 22024827 PMCID: PMC3256036 DOI: 10.1128/aac.05420-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/17/2011] [Indexed: 11/20/2022] Open
Abstract
The Cfr methyltransferase confers resistance to many 50S ribosomal subunit-targeted antibiotics, including linezolid (LZD), via methylation of the 23S rRNA base A2503 in the peptidyl transferase center. Methicillin-resistant Staphylococcus aureus strain CM05 is the first clinical isolate documented to carry cfr. While cfr is typically plasmid borne, in CM05 it is located on the chromosome and is coexpressed with ermB as part of the mlr operon. Here we evaluated the chromosomal locus, association with mobile genetic elements, and stability of the cfr insertion region in CM05. The cfr-containing mlr operon is located within a 15.5-kb plasmid-like insertion into 23S rRNA allele 4. The region surrounding the cfr gene has a high degree of sequence similarity to the broad-host-range toxin/antitoxin multidrug resistance plasmid pSM19035, including a second ermB gene downstream of the mlr locus and istAS-istBS. Analysis of several individual CM05 colonies revealed two distinct populations for which LZD MICs were either 8 or 2 μg/ml. In the LZD(s) colonies (designated CM05Δ), a recombination event involving the two ermB genes had occurred, resulting in the deletion of cfr and the 3' flanking region (cfr-istAS-istBS-ermB). The fitness advantage of CM05Δ over CM05 (though not likely due to the cfr deletion itself) results in the predominance of CM05Δ in the absence of selective pressure. Minicircles resulting from the ermB recombination event and the novel association of cfr with the pSM19035 plasmid system support the potential for the continued dissemination of cfr.
Collapse
|
21
|
Mutschler H, Meinhart A. ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development. J Mol Med (Berl) 2011; 89:1183-94. [PMID: 21822621 PMCID: PMC3218275 DOI: 10.1007/s00109-011-0797-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 12/17/2022]
Abstract
Cell death in bacteria can be triggered by activation of self-inflicted molecular mechanisms. Pathogenic bacteria often make use of suicide mechanisms in which the death of individual cells benefits survival of the population. Important elements for programmed cell death in bacteria are proteinaceous toxin-antitoxin systems. While the toxin generally resides dormant in the bacterial cytosol in complex with its antitoxin, conditions such as impaired de novo synthesis of the antitoxin or nutritional stress lead to antitoxin degradation and toxin activation. A widespread toxin-antitoxin family consists of the ε/ζ systems, which are distributed over plasmids and chromosomes of various pathogenic bacteria. In its inactive state, the bacteriotoxic ζ toxin protein is inhibited by its cognate antitoxin ε. Upon degradation of ε, the ζ toxin is released allowing this enzyme to poison bacterial cell wall synthesis, which eventually triggers autolysis. ε/ζ systems ensure stable plasmid inheritance by inducing death in plasmid-deprived offspring cells. In contrast, chromosomally encoded ε/ζ systems were reported to contribute to virulence of pathogenic bacteria, possibly by inducing autolysis in individual cells under stressful conditions. The capability of toxin-antitoxin systems to kill bacteria has made them potential targets for new therapeutic compounds. Toxin activation could be hijacked to induce suicide of bacteria. Likewise, the unique mechanism of ζ toxins could serve as template for new drugs. Contrarily, inhibition of virulence-associated ζ toxins might attenuate infections. Here we provide an overview of ε/ζ toxin-antitoxin family and its potential role in the development of new therapeutic approaches in microbial defense.
Collapse
Affiliation(s)
- Hannes Mutschler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | |
Collapse
|
22
|
Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol 2011; 46:386-408. [PMID: 21819231 DOI: 10.3109/10409238.2011.600437] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes for toxin-antitoxin (TA) complexes are widespread in prokaryote genomes, and species frequently possess tens of plasmid and chromosomal TA loci. The complexes are categorized into three types based on genetic organization and mode of action. The toxins universally are proteins directed against specific intracellular targets, whereas the antitoxins are either proteins or small RNAs that neutralize the toxin or inhibit toxin synthesis. Within the three types of complex, there has been extensive evolutionary shuffling of toxin and antitoxin genes leading to considerable diversity in TA combinations. The intracellular targets of the protein toxins similarly are varied. Numerous toxins, many of which are sequence-specific endoribonucleases, dampen protein synthesis levels in response to a range of stress and nutritional stimuli. Key resources are conserved as a result ensuring the survival of individual cells and therefore the bacterial population. The toxin effects generally are transient and reversible permitting a set of dynamic, tunable responses that reflect environmental conditions. Moreover, by harboring multiple toxins that intercede in protein synthesis in response to different physiological cues, bacteria potentially sense an assortment of metabolic perturbations that are channeled through different TA complexes. Other toxins interfere with the action of topoisomersases, cell wall assembly, or cytoskeletal structures. TAs also play important roles in bacterial persistence, biofilm formation and multidrug tolerance, and have considerable potential both as new components of the genetic toolbox and as targets for novel antibacterial drugs.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK.
| | | |
Collapse
|
23
|
Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 2011; 16:541-54. [PMID: 20569265 DOI: 10.1111/j.1469-0691.2010.03226.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mobile genetic elements (MGEs) including plasmids and transposons are pivotal in the dissemination and persistence of antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium. Enterococcal MGEs have also been shown to be able to transfer resistance determinants to more pathogenic bacteria such as Staphylococcus aureus. Despite their importance, we have a limited knowledge about the prevalence, distribution and genetic content of specific MGEs in enterococcal populations. Molecular epidemiological studies of enterococcal MGEs have been hampered by the lack of standardized molecular typing methods and relevant genome information. This review focuses on recent developments in the detection of MGEs and their contribution to the spread of antimicrobial resistance in clinically relevant enterococci.
Collapse
Affiliation(s)
- K Hegstad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North-Norway.
| | | | | | | | | |
Collapse
|
24
|
Soberón NE, Lioy VS, Pratto F, Volante A, Alonso JC. Molecular anatomy of the Streptococcus pyogenes pSM19035 partition and segrosome complexes. Nucleic Acids Res 2010; 39:2624-37. [PMID: 21138966 PMCID: PMC3074150 DOI: 10.1093/nar/gkq1245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vancomycin or erythromycin resistance and the stability determinants, δω and ωεζ, of Enterococci and Streptococci plasmids are genetically linked. To unravel the mechanisms that promoted the stable persistence of resistance determinants, the early stages of Streptococcus pyogenes pSM19035 partitioning were biochemically dissected. First, the homodimeric centromere-binding protein, ω2, bound parS DNA to form a short-lived partition complex 1 (PC1). The interaction of PC1 with homodimeric δ [δ2 even in the apo form (Apo-δ2)], significantly stimulated the formation of a long-lived ω2·parS complex (PC2) without spreading into neighbouring DNA sequences. In the ATP·Mg2+ bound form, δ2 bound DNA, without sequence specificity, to form a transient dynamic complex (DC). Second, parS bound ω2 interacted with and promoted δ2 redistribution to co-localize with the PC2, leading to transient segrosome complex (SC, parS·ω2·δ2) formation. Third, δ2, in the SC, interacted with a second SC and promoted formation of a bridging complex (BC). Finally, increasing ω2 concentrations stimulated the ATPase activity of δ2 and the BC was disassembled. We propose that PC, DC, SC and BC formation were dynamic processes and that the molar ω2:δ2 ratio and parS DNA control their temporal and spatial assembly during partition of pSM19035 before cell division.
Collapse
Affiliation(s)
- Nora E Soberón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
Haug MC, Tanner SA, Lacroix C, Meile L, Stevens MJA. Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. FEMS Microbiol Lett 2010; 313:111-9. [PMID: 21029153 DOI: 10.1111/j.1574-6968.2010.02131.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Enterococci are among the most notorious bacteria involved in the spread of antibiotic resistance (ABR) determinants via horizontal gene transfer, a process that leads to increased prevalence of antibiotic-resistant bacteria. In complex microbial communities with a high background of ABR genes, detection of gene transfer is possible only when the ABR determinant is marked. Therefore, the conjugative multiresistance plasmid pRE25, originating from a sausage-associated Enterococcus faecalis, was tagged with a 34-bp random sequence marker spliced by tet(M). The plasmid constructed, designated pRE25(*) , was introduced into E. faecalis CG110/gfp, a strain containing a gfp gene as chromosomal marker. The plasmid pRE25(*) is fully functional compared with its parental pRE25, occurs at one to two copies per chromosome, and can be transferred to Listeria monocytogenes and Listeria innocua at frequencies of 6 × 10(-6) to 8 × 10(-8) transconjugants per donor. The markers on the chromosome and the plasmid enable independent quantification of donor and plasmid, even if ABR genes occur at high numbers in the background ecosystem. Both markers were stable for at least 200 generations, permitting application of the strain in long-running experiments. Enterococcus faecalis CG110/gfp/pRE25(*) is a potent tool for the investigation of horizontal ABR gene transfer in complex environments such as food matrices, biofilms or colonic models.
Collapse
Affiliation(s)
- Martina C Haug
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, Fegan M, Pruvost O, Elbaz M, Calteau A, Salvignol G, Mornico D, Mangenot S, Barbe V, Médigue C, Prior P. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 2010; 11:379. [PMID: 20550686 PMCID: PMC2900269 DOI: 10.1186/1471-2164-11-379] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 06/15/2010] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. RESULTS The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. CONCLUSIONS Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic distances between strains, in conjunction with CGH analysis of a larger set of strains, revealed differences great enough to consider reclassification of the R. solanacearum species complex into three species. The data are still too fragmentary to link genomic classification and phenotypes, but these new genome sequences identify a pan-genome more representative of the diversity in the R. solanancearum species complex.
Collapse
Affiliation(s)
- Benoît Remenant
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint Pierre F-97410, La Réunion, France
| | - Bénédicte Coupat-Goutaland
- Université de Lyon, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, UMR CNRS 5557 Ecologie Microbienne, IFR41 Bio Environnement et Santé, Université Lyon I, Villeurbanne cedex F-69622, France
| | - Alice Guidot
- CNRS-INRA, Laboratoire Interactions Plantes-Microorganismes, UMR2594, BP52627, Castanet-Tolosan F-31326, France
| | - Gilles Cellier
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint Pierre F-97410, La Réunion, France
- AgroParisTech, ENGREF, 19 avenue du Maine, Paris F-75732, France
| | - Emmanuel Wicker
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint Pierre F-97410, La Réunion, France
| | - Caitilyn Allen
- University of Wisconsin-Madison, Department of Plant Pathology, 1630 Linden Drive, Madison, WI 53706, USA
| | - Mark Fegan
- Biosciences Research Division, Department of Primary Industries, 475 Mickleham Rd, Attwood, VIC, 3049, Australia
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint Pierre F-97410, La Réunion, France
| | - Mounira Elbaz
- CNRS-INRA, Laboratoire Interactions Plantes-Microorganismes, UMR2594, BP52627, Castanet-Tolosan F-31326, France
| | - Alexandra Calteau
- CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, Evry cedex F-91006, France
| | - Gregory Salvignol
- CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, Evry cedex F-91006, France
| | - Damien Mornico
- CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, Evry cedex F-91006, France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, Evry cedex F-91006, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, Evry cedex F-91006, France
| | - Claudine Médigue
- CNRS-UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, 2 rue Gaston Crémieux, 91057 Evry Cedex, Evry cedex F-91006, France
| | - Philippe Prior
- INRA-CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint Pierre F-97410, La Réunion, France
| |
Collapse
|
28
|
Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid 2010; 64:1-17. [PMID: 20403380 DOI: 10.1016/j.plasmid.2010.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/15/2022]
Abstract
pSM19035 is a low-copy-number theta-replicating plasmid, which belongs to the Inc18 family. Plasmids of this family, which show a modular organization, are functional in evolutionarily diverse bacterial species of the Firmicutes Phylum. This review summarizes our understanding, accumulated during the last 20 years, on the genetics, biochemistry, cytology and physiology of the five pSM19035 segregation (seg) loci, which map outside of the minimal replicon. The segA locus plays a role both in maximizing plasmid random segregation, and in avoiding replication fork collapses in those plasmids with long inverted repeated regions. The segB1 locus, which acts as the ultimate determinant of plasmid maintenance, encodes a short-lived epsilon(2) antitoxin protein and a long-lived zeta toxin protein, which form a complex that neutralizes zeta toxicity. The cells that do not receive a copy of the plasmid halt their proliferation upon decay of the epsilon(2) antitoxin. The segB2 locus, which encodes two trans-acting, ParA- and ParB-like proteins and six cis-acting parS centromeres, actively ensures equal or roughly equal distribution of plasmid copies to daughter cells. The segC locus includes functions that promote the shift from the use of DNA polymerase I to the replicase (PolC-PolE DNA polymerases). The segD locus, which encodes a trans-acting transcriptional repressor, omega(2), and six cis-acting cognate sites, coordinates the expression of genes that control copy number, better-than-random segregation and partition, and assures the proper balance of these different functions. Working in concert the five different loci achieve almost absolute plasmid maintenance with a minimal growth penalty.
Collapse
|
29
|
Hallez R, Geeraerts D, Sterckx Y, Mine N, Loris R, Van Melderen L. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol Microbiol 2010; 76:719-32. [PMID: 20345661 DOI: 10.1111/j.1365-2958.2010.07129.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Type II toxin-antitoxin (TA) systems are considered as protein pairs in which a specific toxin is associated with a specific antitoxin. We have identified a novel antitoxin family (paaA) that is associated with parE toxins. The paaA-parE gene pairs form an operon with a third component (paaR) encoding a transcriptional regulator. Two paralogous paaR-paaA-parE systems are found in E. coli O157:H7. Deletions of the paaA-parE pairs in O157:H7 allowed us to show that these systems are expressed in their natural host and that PaaA antitoxins specifically counteract toxicity of their associated ParE toxin. For the paaR2-paaA2-parE2 system, PaaR2 and Paa2-ParE2 complex are able to regulate the operon expression and both are necessary to ensure complete repression. The paaR2-paaA2-parE2 system mediates ClpXP-dependent post-segregational killing. The PaaR2 regulator appears to be essential for this function, most likely by maintaining an appropriate antitoxin : toxin ratio in steady-state conditions. Ectopic overexpression of ParE2 is bactericidal and is not resuscitated by PaaA2 expression. ParE2 colocalizes with the nucleoid, while it is diffusely distributed in the cytoplasm when PaaA2 is coexpressed. This indicates that ParE2 interacts with DNA-gyrase cycling on DNA and that coexpression of PaaA2 antitoxin sequesters ParE2 away from its target by protein-protein complex formation.
Collapse
Affiliation(s)
- Régis Hallez
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires (IBMM), Faculté des Sciences, Université Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
30
|
Rosvoll TC, Pedersen T, Sletvold H, Johnsen PJ, Sollid JE, Simonsen GS, Jensen LB, Nielsen KM, Sundsfjord A. PCR-based plasmid typing inEnterococcus faeciumstrains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTβ-related replicons associated with glycopeptide resistance and stabilizing toxin–antitoxin systems. ACTA ACUST UNITED AC 2010; 58:254-68. [DOI: 10.1111/j.1574-695x.2009.00633.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Pratto F, Suzuki Y, Takeyasu K, Alonso JC. Single-molecule analysis of proteinxDNA complexes formed during partition of newly replicated plasmid molecules in Streptococcus pyogenes. J Biol Chem 2009; 284:30298-306. [PMID: 19726689 DOI: 10.1074/jbc.m109.035410] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Streptococcus pyogenes pSM19035 partition locus is ubiquitous among plasmids from vancomycin- or methicillin-resistant bacteria. An increasing understanding of this segregation system may highlight novel protein targets that could be blocked to curb bacterial proliferation. pSM19035 segregation depends on two homodimeric (delta(2) (ParA) and omega(2) (ParB)) proteins and six cis-acting centromeric noncurved parS sites. In the presence of ATPxMg(2+), delta(2) (delta x ATP x Mg(2+))(2) binds DNA in a sequence-independent manner. Protein omega(2) binds with high affinity and cooperatively to B-form parS DNA. Atomic force microscopy experiments indicate that about 10 omega(2) molecules bind parS, consisting of 10 contiguous iterons. Protein (delta x ATP x Mg(2+))(2), by interacting with the N terminus of omega(2) bound to parS, loses its association with DNA and relocalizes with omega(2).parS to form a ternary complex ((deltaxATPxMg(2+))(2) x omega(2) x parS) with the DNA remaining in straight B-form. Then, the interaction of two (delta x ATP x Mg(2+))(2).omega(2).parS complexes via delta(2) promotes pairing of a plasmid subfraction. (deltaD60A x ATP x Mg(2+))(2), which binds but does not hydrolyze ATP, leads to accumulation of pairing intermediates, suggesting that ATP hydrolysis induces plasmid separation. We propose that the molar omega(2):delta(2) ratio regulates the different stages of pSM19035 segregation, pairing, and delta(2) polymerization, before cell division.
Collapse
Affiliation(s)
- Florencia Pratto
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
32
|
In vivo interactions between toxin-antitoxin proteins epsilon and zeta of streptococcal plasmid pSM19035 in Saccharomyces cerevisiae. J Bacteriol 2009; 191:3677-84. [PMID: 19346303 DOI: 10.1128/jb.01763-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread prokaryotic toxin-antitoxin (TA) systems involve conditional interaction between two TA proteins. The interaction between the Epsilon and Zeta proteins, constituting the TA system of plasmid pSM19035 from Streptococcus pyogenes, was detected in vivo using a yeast two-hybrid system. As we showed using Saccharomyces cerevisiae, the Zeta toxin hybrid gene also exerts its toxic effects in a dose-dependent manner in eukaryotic cells. Analysis of mutant proteins in the two-hybrid system demonstrated that the N-terminal part of Zeta and the N-terminal region of Epsilon are involved in the interaction. The N-terminal region of the Zeta protein and its ATP/GTP binding motif were found to be responsible for the toxicity.
Collapse
|
33
|
Sletvold H, Johnsen PJ, Hamre I, Simonsen GS, Sundsfjord A, Nielsen KM. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter. Plasmid 2008; 60:75-85. [PMID: 18511120 DOI: 10.1016/j.plasmid.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
Collapse
Affiliation(s)
- H Sletvold
- Department of Pharmacy, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
34
|
Pratto F, Cicek A, Weihofen WA, Lurz R, Saenger W, Alonso JC. Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res 2008; 36:3676-89. [PMID: 18477635 PMCID: PMC2441792 DOI: 10.1093/nar/gkn170] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The accurate partitioning of Firmicute plasmid pSM19035 at cell division depends on ATP binding and hydrolysis by homodimeric ATPase δ2 (ParA) and binding of ω2 (ParB) to its cognate parS DNA. The 1.83 Å resolution crystal structure of δ2 in a complex with non-hydrolyzable ATPγS reveals a unique ParA dimer assembly that permits nucleotide exchange without requiring dissociation into monomers. In vitro, δ2 had minimal ATPase activity in the absence of ω2 and parS DNA. However, stoichiometric amounts of ω2 and parS DNA stimulated the δ2 ATPase activity and mediated plasmid pairing, whereas at high (4:1) ω2 : δ2 ratios, stimulation of the ATPase activity was reduced and δ2 polymerized onto DNA. Stimulation of the δ2 ATPase activity and its polymerization on DNA required ability of ω2 to bind parS DNA and its N-terminus. In vivo experiments showed that δ2 alone associated with the nucleoid, and in the presence of ω2 and parS DNA, δ2 oscillated between the nucleoid and the cell poles and formed spiral-like structures. Our studies indicate that the molar ω2 : δ2 ratio regulates the polymerization properties of (δ•ATP•Mg2+)2 on and depolymerization from parS DNA, thereby controlling the temporal and spatial segregation of pSM19035 before cell division.
Collapse
Affiliation(s)
- Florencia Pratto
- Department of Microbial Biotechnology, National Centre of Biotechnology, CSIC, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
O'Connor EB, O'Sullivan O, Stanton C, Danielsen M, Simpson PJ, Callanan MJ, Ross RP, Hill C. pEOC01: A plasmid from Pediococcus acidilactici which encodes an identical streptomycin resistance (aadE) gene to that found in Campylobacter jejuni. Plasmid 2007; 58:115-26. [PMID: 17395262 DOI: 10.1016/j.plasmid.2007.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The complete nucleotide sequence of pEOC01, a plasmid (11,661 bp) from Pediococcus acidilactici NCIMB 6990 encoding resistance to clindamycin, erythromycin, and streptomycin was determined. The plasmid, which also replicates in Lactococcus and Lactobacillus species contains 16 putative open reading frames (ORFs), including regions annotated to encode replication, plasmid maintenance and multidrug resistance functions. Based on an analysis the plasmid replicates via a theta replicating mechanism closely related to those of many larger Streptococcus and Enterococcus plasmids. Interestingly, genes homologous to a toxin/antitoxin plasmid maintenance system are present and are highly similar to the omega-epsilon-zeta operon of Streptococcus plasmids. The plasmid contains two putative antibiotic resistance homologs, an ermB gene encoding erythromycin and clindamycin resistance, and a streptomycin resistance gene, aadE. Of particular note is the aadE gene which holds 100% identity to an aadE gene found in Campylobacter jejuni plasmid but which probably originated from a Gram-positive source. This observation is significant in that it provides evidence for recent horizontal transfer of streptomycin resistance from a lactic acid bacterium to a Gram-negative intestinal pathogen and as such infers a role for such plasmids for dissemination of antibiotic resistance genes possibly in the human gut.
Collapse
Affiliation(s)
- E B O'Connor
- Moorepark Food Research Centre, Teagasc, Fermoy, Co. Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sanchez H, Cozar MC, Martinez-Jimenez MI. Targeting the Bacillus subtilis genome: An efficient and clean method for gene disruption. J Microbiol Methods 2007; 70:389-94. [PMID: 17604139 DOI: 10.1016/j.mimet.2007.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/04/2007] [Accepted: 05/05/2007] [Indexed: 10/23/2022]
Abstract
A method to disrupt multiple Bacillus subtilis genes is described. A resistance cassette is used to interrupt an amplified target sequence from the B. subtilis chromosome. The cassette is composed of a gene conferring resistance to chloramphenicol (Cm) or spectinomycin (Sp) flanked by two directly oriented beta cognate sites (six site) (SCS or SSS, respectively). The linearized construct is used to transform B. subtilis competent cells with selection for Cm or Sp resistance. Transformants with the desired gene disrupted by the SCS or SSS cassette, integrated by a double cross-over event, were confirmed by PCR analysis. A segregationally unstable plasmid-borne beta site-specific recombinase is transferred into the background. Protein beta catalyzes excision of the intervening sequence between the two six sites leading to a target gene disrupted only by a six site. This site has an internal promoter capable of reading downstream genes. To generate multiple disruptions, the cycle can be repeated many times provided that two six sites are separated by about a 70-kb interval.
Collapse
Affiliation(s)
- Humberto Sanchez
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, CSIC, Darwin 3, Campus de la Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
37
|
Khoo SK, Loll B, Chan WT, Shoeman RL, Ngoo L, Yeo CC, Meinhart A. Molecular and structural characterization of the PezAT chromosomal toxin-antitoxin system of the human pathogen Streptococcus pneumoniae. J Biol Chem 2007; 282:19606-18. [PMID: 17488720 DOI: 10.1074/jbc.m701703200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chromosomal pezT gene of the Gram-positive pathogen Streptococcus pneumoniae encodes a protein that is homologous to the zeta toxin of the Streptococcus pyogenes plasmid pSM19035-encoded epsilon-zeta toxin-antitoxin system. Overexpression of pezT in Escherichia coli led to severe growth inhibition from which the bacteria recovered approximately 3 h after induction of expression. The toxicity of PezT was counteracted by PezA, which is encoded immediately upstream of pezT and shares weak sequence similarities in the C-terminal region with the epsilon antitoxin. The pezAT genes form a bicistronic operon that is co-transcribed from a sigma(70)-like promoter upstream of pezA and is negatively autoregulated with PezA functioning as a transcriptional repressor and PezT as a co-repressor. Both PezA and the non-toxic PezA(2)PezT(2) protein complex bind to a palindrome sequence that overlaps the promoter. This differs from the epsilon-zeta system in which epsilon functions solely as the antitoxin and transcriptional regulation is carried out by another protein designated omega. Results from site-directed mutagenesis experiments demonstrated that the toxicity of PezT is dependent on a highly conserved phosphoryltransferase active site and an ATP/GTP nucleotide binding site. In the PezA(2)PezT(2) complex, PezA neutralizes the toxicity of PezT by blocking the nucleotide binding site through steric hindrance.
Collapse
Affiliation(s)
- Seok Kooi Khoo
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Moritz EM, Hergenrother PJ. Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 2006; 104:311-6. [PMID: 17190821 PMCID: PMC1765457 DOI: 10.1073/pnas.0601168104] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common hospital pathogens that are resistant to most major classes of antibiotics. The incidence of VRE is increasing rapidly, to the point where over one-quarter of enterococcal infections in intensive care units are now resistant to vancomycin. The exact mechanism by which VRE maintains its plasmid-encoded resistance genes is ill-defined, and novel targets for the treatment of VRE are lacking. In an effort to identify novel protein targets for the treatment of VRE infections, we probed the plasmids obtained from 75 VRE isolates for the presence of toxin-antitoxin (TA) gene systems. Remarkably, genes for one particular TA pair, the mazEF system (originally identified on the Escherichia coli chromosome), were present on plasmids from 75/75 (100%) of the isolates. Furthermore, mazEF was on the same plasmid as vanA in the vast majority of cases (>90%). Plasmid stability tests and RT-PCR raise the possibility that this plasmid-encoded mazEF is indeed functional in enterococci. Given this ubiquity of mazEF in VRE and the deleterious activity of the MazF toxin, disruption of mazEF with pharmacological agents is an attractive strategy for tailored antimicrobial therapy.
Collapse
Affiliation(s)
| | - Paul J. Hergenrother
- Chemistry, and
- Biochemistry, Roger Adams Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Huang J, Guo S, Mahillon J, Van der Auwera GA, Wang L, Han D, Yu Z, Sun M. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis. BMC Genomics 2006; 7:270. [PMID: 17059605 PMCID: PMC1626470 DOI: 10.1186/1471-2164-7-270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 10/23/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. RESULTS A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb) of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165), an origin of replication (ori165) and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10) were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMbeta1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. CONCLUSION The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMbeta1 family replicons.
Collapse
Affiliation(s)
- Junyan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Géraldine A Van der Auwera
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Dongmei Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
40
|
Lioy VS, Martín MT, Camacho AG, Lurz R, Antelmann H, Hecker M, Hitchin E, Ridge Y, Wells JM, Alonso JC. pSM19035-encoded zeta toxin induces stasis followed by death in a subpopulation of cells. MICROBIOLOGY-SGM 2006; 152:2365-2379. [PMID: 16849801 DOI: 10.1099/mic.0.28950-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The toxin-antitoxin operon of pSM19035 encodes three proteins: the omega global regulator, the epsilon labile antitoxin and the stable zeta toxin. Accumulation of zeta toxin free of epsilon antitoxin induced loss of cell proliferation in both Bacillus subtilis and Escherichia coli cells. Induction of a zeta variant (zetaY83C) triggered stasis, in which B. subtilis cells were viable but unable to proliferate, without selectively affecting protein translation. In E. coli cells, accumulation of free zeta toxin induced stasis, but this was fully reversed by expression of the epsilon antitoxin within a defined time window. The time window for reversion of zeta toxicity by expression of epsilon antitoxin was dependent on the initial cellular level of zeta. After 240 min of constitutive expression, or inducible expression of high levels of zeta toxin for 30 min, expression of epsilon failed to reverse the toxic effect exerted by zeta in cells growing in minimal medium. Under the latter conditions, zeta inhibited replication, transcription and translation and finally induced death in a fraction (approximately 50 %) of the cell population. These results support the view that zeta interacts with its specific target and reversibly inhibits cell proliferation, but accumulation of zeta might lead to cell death due to pleiotropic effects.
Collapse
Affiliation(s)
- Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - M Teresa Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Ana G Camacho
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Rudi Lurz
- Max-Planck-Institut für molekulare Genetik, D-14195 Berlin, Germany
| | - Haike Antelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Greifswald, Germany
| | - Ed Hitchin
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Yvonne Ridge
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Jerry M Wells
- University of Amsterdam, Swammerdam Institute of Life Sciences, 1018 WV Amsterdam, The Netherlands
- Department of Food Safety Science, BBSRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| |
Collapse
|
41
|
Dmowski M, Sitkiewicz I, Ceglowski P. Characterization of a novel partition system encoded by the delta and omega genes from the streptococcal plasmid pSM19035. J Bacteriol 2006; 188:4362-72. [PMID: 16740943 PMCID: PMC1482978 DOI: 10.1128/jb.01922-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High segregational stability of the streptococcal plasmid pSM19035 is achieved by the concerted action of systems involved in plasmid copy number control, multimer resolution, and postsegregational killing. In this study, we demonstrate the role of two genes, delta and omega, in plasmid stabilization by a partition mechanism. We show that these two genes can stabilize the native pSM19035 replicon as well as other theta- and sigma-type plasmids in Bacillus subtilis. In contrast to other known partition systems, in this case the two genes are transcribed separately; however, they are coregulated by the product of the parB-like gene omega. Analysis of mutants of the parA-like gene delta showed that the Walker A ATPase motif is necessary for plasmid stabilization. The ParB-like product of the omega gene binds to three regions containing repeated WATCACW heptamers, localized in the copS (regulation of plasmid copy number), delta, and omega promoter regions. We demonstrate that all three of these regions can cause partition-mediated incompatibility. Moreover, our data suggest that each of these could play the role of a centromere-like sequence. We conclude that delta and omega constitute a novel type of plasmid stabilization system.
Collapse
Affiliation(s)
- Michal Dmowski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiskiego 5A, 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
42
|
Bhardwaj A, Welfle K, Misselwitz R, Ayora S, Alonso JC, Welfle H. Conformation and stability of the Streptococcus pyogenes pSM19035-encoded site-specific β recombinase, and identification of a folding intermediate. Biol Chem 2006; 387:525-33. [PMID: 16740123 DOI: 10.1515/bc.2006.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Solution properties of β recombinase were studied by circular dichroism and fluorescence spectroscopy, size exclusion chromatography, analytical ultracentrifugation, denaturant-induced unfolding and thermal unfolding experiments. In high ionic strength buffer (1 M NaCl) β recombinase forms mainly dimers, and strongly tends to aggregate at ionic strength lower than 0.3 M NaCl. Urea and guanidinium chloride denaturants unfold β recombinase in a two-step process. The unfolding curves have bends at approximately 5 M and 2.2 M in urea and guanidinium chloride-containing buffers. Assuming a three-state unfolding model (N2→2I→2U), the total free energy change from 1 mol of native dimers to 2 mol of unfolded monomers amounts to ΔG
tot=17.9 kcal/mol, with ΔG
N2→2I=4.2 kcal/mol for the first transition and ΔG
I→U=6.9 kcal/mol for the second transition. Using sedimentation-equilibrium analytical ultracentrifugation, the presence of β recombinase monomers was indicated at 5 M urea, and the urea dependence of the circular dichroism at 222 nm strongly suggests that folded monomers represent the unfolding intermediate.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, D-13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Weihofen WA, Cicek A, Pratto F, Alonso JC, Saenger W. Structures of omega repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Res 2006; 34:1450-8. [PMID: 16528102 PMCID: PMC1401508 DOI: 10.1093/nar/gkl015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Repressor omega regulates transcription of genes required for copy number control, accurate segregation and stable maintenance of inc18 plasmids hosted by Gram-positive bacteria. omega belongs to homodimeric ribbon-helix-helix (RHH2) repressors typified by a central, antiparallel beta-sheet for DNA major groove binding. Homodimeric omega2 binds cooperatively to promotors with 7 to 10 consecutive non-palindromic DNA heptad repeats (5'-(A)/(T)ATCAC(A)/(T)-3', symbolized by -->) in palindromic inverted, converging (--><--) or diverging (<---->) orientation and also, unique to omega2 and contrasting other RHH2 repressors, to non-palindromic direct (-->-->) repeats. Here we investigate with crystal structures how omega2 binds specifically to heptads in minimal operators with (-->-->) and (--><--) repeats. Since the pseudo-2-fold axis relating the monomers in omega(2) passes the central C-G base pair of each heptad with approximately 0.3 A downstream offset, the separation between the pseudo-2-fold axes is exactly 7 bp in (-->-->), approximately 0.6 A shorter in (--><--) but would be approximately 0.6 A longer in (<---->). These variations grade interactions between adjacent omega2 and explain modulations in cooperative binding affinity of omega2 to operators with different heptad orientations.
Collapse
Affiliation(s)
| | | | - Florencia Pratto
- Departamento de Biotecnología Microbiana, Centro Nacional de BiotecnologíaCSIC, 28049 Madrid, Spain
| | - Juan Carlos Alonso
- Departamento de Biotecnología Microbiana, Centro Nacional de BiotecnologíaCSIC, 28049 Madrid, Spain
| | - Wolfram Saenger
- To whom correspondence should be addressed. Tel: +49 30 838 53412; Fax: +49 30 838 56702;
| |
Collapse
|
44
|
Abstract
pSM19035 of the pathogenic bacterium Streptococcus pyogenes is a low-copy-number plasmid carrying erythromycin resistance, stably maintained in a broad range of gram-positive bacteria. We show here that the omega-epsilon-zeta operon of this plasmid constitutes a novel proteic plasmid addiction system in which the epsilon and zeta genes encode an antitoxin and toxin, respectively, while omega plays an autoregulatory function. Expression of toxin Zeta is bactericidal for the gram-positive Bacillus subtilis and bacteriostatic for the gram-negative Escherichia coli. The toxic effects of zeta gene expression in both bacterial species are counteracted by proper expression of epsilon. The epsilon-zeta toxin-antitoxin cassette stabilizes plasmids in E. coli less efficiently than in B. subtilis.
Collapse
Affiliation(s)
- Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | | |
Collapse
|
45
|
Li Z, Hiasa H, DiGate R. Bacillus cereus DNA topoisomerase I and IIIalpha: purification, characterization and complementation of Escherichia coli TopoIII activity. Nucleic Acids Res 2005; 33:5415-25. [PMID: 16192570 PMCID: PMC1236973 DOI: 10.1093/nar/gki846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus cereus genome possesses three type IA topoisomerase genes. These genes, encoding DNA topoisomerase I and IIIα (bcTopo I, bcTopo IIIα), have been cloned into T7 RNA polymerase-regulated plasmid expression vectors and the enzymes have been overexpressed, purified and characterized. The proteins exhibit similar biochemical activity to their Escherichia coli counterparts, DNA topoisomerase I and III (ecTopo I, ecTopo III). bcTopo I is capable of efficiently relaxing negatively supercoiled DNA in the presence of Mg2+ but does not possess an efficient DNA decatenation activity. bcTopo IIIα is an active topoisomerase that is capable of relaxing supercoiled DNA at a broad range of Mg2+ concentrations; however, its DNA relaxation activity is not as efficient as that of bcTopo I. In addition, bcTopo III is a potent DNA decatenase that resolves oriC-based plasmid replication intermediates in vitro. Interestingly, bcTopo I and bcTopo IIIα are both able to compensate for the loss of ecTopo III in E.coli cells that lack ecTopo I. In contrast, ecTopo I cannot substitute for ecTopo III under these conditions.
Collapse
Affiliation(s)
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical SchoolMN, USA
| | - Russell DiGate
- To whom correspondence should be addressed. Tel: +1 215 596 8805; Fax: +1 215 596 8977;
| |
Collapse
|
46
|
Zhang YX, Li J, Guo XK, Wu C, Bi B, Ren SX, Wu CF, Zhao GP. Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome. Cell Res 2004; 14:208-16. [PMID: 15225414 DOI: 10.1038/sj.cr.7290221] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Comparative genomic analysis of the coding sequences (CDSs) of Leptospira interrogans revealed a pair of closely linked genes homologous to the vapBC loci of many other bacteria with respect to both deduced amino acid sequences and operon organizations. Expression of single vapC gene in Escherichia coli resulted in inhibition of bacterial growth, whereas co-expression of vapBC restored the growth effectively. This phenotype is typical for three other characterized toxin-antitoxin systems of bacteria, i.e., mazEF, relBE and chpIK. The VapC proteins of bacteria and a thermophilic archeae, Solfolobus tokodaii, form a structurally distinguished group of toxin different from the other known toxins of bacteria. Phylogenetic analysis of both toxins and antitoxins of all categories indicated that although toxins were evolved from divergent sources and may or may not follow their speciation paths (as indicated by their 16s RNA sequences), co-evolution with their antitoxins was obvious.
Collapse
Affiliation(s)
- Yi Xuan Zhang
- Research Center of Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gupta A, Vlamakis H, Shoemaker N, Salyers AA. A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol 2004; 69:6455-63. [PMID: 14602600 PMCID: PMC262298 DOI: 10.1128/aem.69.11.6455-6463.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The erythromycin resistance gene ermB has been found in a variety of gram-positive bacteria. This gene has also been found in Bacteroides species but only in six recently isolated strains; thus, the gene seems to have entered this genus only recently. One of the six Bacteroides ermB-containing isolates, WH207, could transfer ermB to Bacteroides thetaiotaomicron strain BT4001 by conjugation. WH207 was identified as a Bacteroides uniformis strain based on the sequence of its 16S rRNA gene. Results of pulsed-field gel electrophoresis experiments demonstrated that the transferring element was normally integrated into the Bacteroides chromosome. The element was estimated from pulsed-field gel data to be about 100 kb in size. Since the element appeared to be a conjugative transposon (CTn), it was designated CTnBST. CTnBST was able to mobilize coresident plasmids and the circular form of the mobilizable transposon NBU1 to Bacteroides and Escherichia coli recipients. A 13-kb segment that contained ermB was cloned and sequenced. Most of the open reading frames in this region had little similarity at the amino acid sequence level to any proteins in the sequence databases, but a 1,723-bp DNA segment that included a 950-bp segment downstream of ermB had a DNA sequence that was virtually identical to that of a segment of DNA found previously in a Clostridium perfringens strain. This finding, together with the finding that ermB is located on a CTn, supports the hypothesis that CTnBST could have entered Bacteroides from some other genus, possibly from gram-positive bacteria. Moreover, this finding supports the hypothesis that many transmissible antibiotic resistance genes in Bacteroides are carried on CTns.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
48
|
Geis A, El Demerdash HAM, Heller KJ. Sequence analysis and characterization of plasmids from Streptococcus thermophilus. Plasmid 2003; 50:53-69. [PMID: 12826058 DOI: 10.1016/s0147-619x(03)00029-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nucleotide sequences of eight plasmids isolated from seven Streptococcus thermophilus strains have been determined. Plasmids pSt04, pER1-1, and pJ34 are related and replicate via a rolling circle mechanism. Plasmid pJ34 encodes for a replication initiation protein (RepA) and a small polypeptide with unknown function. Plasmids pSt04 and pER1-1 carry in addition to repA genes coding for small heat shock proteins (sHsp). Expression of these proteins is induced at elevated temperatures or low pH and increases the thermo- and acid resistance. Plasmids pER1-2 and pSt22-2 show identical sequences with five putative open reading frames (ORFs). The gene products of ORF1 and ORF4 reveal some similarities to transposon encoded proteins of Bacillus subtilis and Tn916. ORF1 of plasmid pSt106 encodes a protein similar to resolvases of different Gram-positive bacteria. Integrity of ORF2 and 3, encoding a putative DNA primase and a replication protein, is essential for replication. ORF1 to 3 of plasmid pSt08, which are organized in a tricistronic operon, encode a RepA protein, an adenosine-specific methyltransferase, and a type II restriction endonuclease. Another type II restriction-modification (R/M) system is encoded on plasmid pSt0 which is highly similar to those encoded on lactococcal plasmid pHW393 and B. subtilis plasmid pXH13. Plasmid-free derivatives of strains St0 and St08 show increased phage sensitivity, indicating that in the wild-type strains the R/M systems are functionally expressed. Recombinant plasmids based on the replicons of plasmids pSt04, pJ34, pSt106, pSt08, and pSt0, are able to replicate in Lactococcus lactis and B. subtilis, respectively, whereas constructs carrying pER1-2 only replicate in S. thermophilus.
Collapse
Affiliation(s)
- Arnold Geis
- Federal Dairy Research Centre, Institute for Microbiology, Hermann-Weigmann-Strasse 1, 24103 Kiel, Germany.
| | | | | |
Collapse
|
49
|
Meinhart A, Alonso JC, Sträter N, Saenger W. Crystal structure of the plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci U S A 2003; 100:1661-6. [PMID: 12571357 PMCID: PMC149889 DOI: 10.1073/pnas.0434325100] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death in prokaryotes is frequently found as postsegregational killing. It relies on antitoxin/toxin systems that secure stable inheritance of low and medium copy number plasmids during cell division and kill cells that have lost the plasmid. The broad-host-range, low-copy-number plasmid pSM19035 from Streptococcus pyogenes carries the genes encoding the antitoxin/toxin system epsilon/zeta and antibiotic resistance proteins, among others. The crystal structure of the biologically nontoxic epsilon(2)zeta(2) protein complex at a 1.95-A resolution and site-directed mutagenesis showed that free zeta acts as phosphotransferase by using ATPGTP. In epsilon(2)zeta(2), the toxin zeta is inactivated because the N-terminal helix of the antitoxin epsilon blocks the ATPGTP-binding site. To our knowledge, this is the first prokaryotic postsegregational killing system that has been entirely structurally characterized.
Collapse
Affiliation(s)
- Anton Meinhart
- Institut für Kristallographie, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Camacho AG, Misselwitz R, Behlke J, Ayora S, Welfle K, Meinhart A, Lara B, Saenger W, Welfle H, Alonso JC. In vitro and in vivo stability of the epsilon2zeta2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system. Biol Chem 2002; 383:1701-13. [PMID: 12530535 DOI: 10.1515/bc.2002.191] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Streptococcus pyogenes pSM19035-encoded epsilon (10.7 kDa) and zeta (32.4 kDa) proteins are necessary to secure stable plasmid inheritance in bacteria, with zeta acting as toxin that kills plasmid-deprived cells and epsilon as an antitoxin that neutralises the activity of zeta. The epsilon and zeta proteins co-purify as a stable complex that, according to analytical ultracentrifugation and gel filtration, exists as epsilon2zeta2 heterotetramer in solution. Co-crystals of the epsilon2zeta2 complex contain epsilon and zeta in 1:1 molar ratio. Unfolding studies monitoring circular dichroic and fluorescence changes show that the zeta protein has a significantly lower thermodynamic stability than the epsilon protein both in free state and in the complex. Proteolytic studies indicate that zeta protein is more stable in the epsilon2zeta2 complex than in the free state. In vivo studies reveal a short half-life of the epsilon antitoxin (-18 min) and a long lifetime of the zeta toxin (>60 min). When transcription-translation of a plasmid containing the epsilon and zeta genes was inhibited, cell death was observed after a short lag phase that correlates with the disappearance of the epsilon protein from the background.
Collapse
Affiliation(s)
- Ana G Camacho
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnología, C.S.I.C., E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|