1
|
Zhu H, Zhou A, Zhang M, Pan L, Wu X, Fu C, Gong L, Yang W, Liu D, Cheng Y. Comprehensive analysis of an endoplasmic reticulum stress-related gene prediction model and immune infiltration in idiopathic pulmonary fibrosis. Front Immunol 2024; 14:1305025. [PMID: 38274787 PMCID: PMC10808546 DOI: 10.3389/fimmu.2023.1305025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease. This study aimed to investigate the involvement of endoplasmic reticulum stress (ERS) in IPF and explore its correlation with immune infiltration. Methods ERS-related differentially expressed genes (ERSRDEGs) were identified by intersecting differentially expressed genes (DEGs) from three Gene Expression Omnibus datasets with ERS-related gene sets. Gene Set Variation Analysis and Gene Ontology were used to explore the potential biological mechanisms underlying ERS. A nomogram was developed using the risk signature derived from the ERSRDEGs to perform risk assessment. The diagnostic value of the risk signature was evaluated using receiver operating characteristics, calibration, and decision curve analyses. The ERS score of patients with IPF was measured using a single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm. Subsequently, a prognostic model based on the ERS scores was established. The proportion of immune cell infiltration was assessed using the ssGSEA and CIBERSORT algorithms. Finally, the expression of ERSRDEGs was validated in vivo and in vitro via RT-qPCR. Results This study developed an 8-ERSRDEGs signature. Based on the expression of these genes, we constructed a diagnostic nomogram model in which agouti-related neuropeptide had a significantly greater impact on the model. The area under the curve values for the predictive value of the ERSRDEGs signature were 0.975 and 1.000 for GSE70866 and GSE110147, respectively. We developed a prognostic model based on the ERS scores of patients with IPF. Furthermore, we classified patients with IPF into two subtypes based on their signatures. The RT-qPCR validation results supported the reliability of most of our conclusions. Conclusion We developed and verified a risk model using eight ERSRDEGs. These eight genes can potentially affect the progression of IPF by regulating ERS and immune responses.
Collapse
Affiliation(s)
- Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital (The First People’s Hospital of Zunyi) of Zunyi Medical University, Zunyi, China
| | - Aiming Zhou
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Menglin Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Anshun, Anshun, China
| | - Lin Pan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Chenkun Fu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital (The First People’s Hospital of Zunyi) of Zunyi Medical University, Zunyi, China
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daishun Liu
- Department of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Yiju Cheng
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Respiratory and Critical Care Medicine, The Fourth People’s Hospital of Guiyang, Guiyang, China
| |
Collapse
|
2
|
Overcoming IMiD Resistance in T-cell Lymphomas Through Potent Degradation of ZFP91 and IKZF1. Blood 2021; 139:2024-2037. [PMID: 34936696 DOI: 10.1182/blood.2021014701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Immunomodulatory (IMiD) agents like lenalidomide and pomalidomide induce the recruitment of IKZF1 and other targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and degradation. These agents are highly active in B-cell lymphomas and a subset of myeloid diseases but have compromised effects in T-cell lymphomas (TCLs). Here we show that two factors determine resistance to IMiDs among TCLs. First, limited CRBN expression reduces IMiD activity in TCLs but can be overcome by newer-generation degrader CC-92480. Using mass spectrometry, we show that CC-92480 selectively degrades IKZF1 and ZFP91 in TCL cells with greater potency than pomalidomide. As a result, CC-92480 is highly active against multiple TCL subtypes and showed greater efficacy than pomalidomide across 4 in vivo TCL models. Second, we demonstrate that ZFP91 functions as a bona fide transcription factor that co-regulates cell survival with IKZF1 in IMiD-resistant TCLs. By activating keynote genes from WNT, NF-kB, and MAP kinase signaling, ZFP91 directly promotes resistance to IKZF1 loss. Moreover, lenalidomide-sensitive TCLs can acquire stable resistance via ZFP91 rewiring, which involves casein kinase 2 (CK2) mediated c-Jun inactivation. Overall, these findings identify a critical transcription factor network within TCLs and provide clinical proof of concept for the novel therapy using next-generation degraders.
Collapse
|
3
|
Pan H, Yang L, Bai H, Luo J, Deng Y. Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization. J Ginseng Res 2021; 46:636-645. [PMID: 36090681 PMCID: PMC9459078 DOI: 10.1016/j.jgr.2021.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 01/26/2023] Open
Abstract
Background Ginsenoside Rg3 and gemcitabine have mutual enhancing antitumor effects. However, the underlying mechanisms are not clear. This study explored the influence of ginsenoside Rg3 on Zinc finger protein 91 homolog (ZFP91) expression in pancreatic adenocarcinoma (PAAD) and their regulatory mechanisms on gemcitabine sensitivity. Methods RNA-seq and survival data from The Cancer Genome Atlas (TCGA)-PAAD and Genotype-Tissue Expression (GTEx) were used for in-silicon analysis. PANC-1, BxPC-3, and PANC-1 gemcitabine-resistant (PANC-1/GR) cells were used for in vitro analysis. PANC-1 derived tumor xenograft nude mice model was used to assess the influence of ginsenoside Rg3 and ZFP91 on tumor growth in vivo. Results Ginsenoside Rg3 reduced ZFP91 expression in PAAD cells in a dose-dependent manner. ZFP91 upregulation was associated with significantly shorter survival of patients with PAAD. ZFP91 overexpression induced gemcitabine resistance, which was partly conquered by ginsenoside Rg3 treatment. ZFP91 depletion sensitized PANC-1/GR cells to gemcitabine treatment. ZFP91 interacted with Testis-Specific Y-Encoded-Like Protein 2 (TSPYL2), induced its poly-ubiquitination, and promoted proteasomal degradation. Ginsenoside Rg3 treatment weakened ZFP91-induced TSPYL2 poly-ubiquitination and degradation. Enforced TSPYL2 expression increased gemcitabine sensitivity of PAAD cells and partly reversed induced gemcitabine resistance in PANC-1/GR cells. Conclusion Ginsenoside Rg3 can increase gemcitabine sensitivity of pancreatic adenocarcinoma at least via reducing ZFP91 mediated TSPYL2 destabilization.
Collapse
Affiliation(s)
- Haixia Pan
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linhan Yang
- Outpatient Department, Chengdu Aurora Huan Hua Xiang, Chengdu, China
| | - Hansong Bai
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author. Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ying Deng
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author. Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Tang DE, Dai Y, Xu Y, Lin LW, Liu DZ, Hong XP, Ou ML, Jiang HW, Xu SH. The ubiquitinase ZFP91 promotes tumor cell survival and confers chemoresistance through FOXA1 destabilization. Carcinogenesis 2020; 41:56-66. [PMID: 31046116 DOI: 10.1093/carcin/bgz085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
The forkhead box A1 (FOXA1), one of the forkhead class of DNA-binding proteins, functions as a transcription factor and plays a vital role in cellular control of embryonic development and cancer progression. Downregulation of FOXA1 has reported in several types of cancer, which contributes to cancer cell survival and chemoresistance. However, the mechanism for FOXA1 downregulation in cancer remains unclear. Here, we report that the ubiquitination enzyme zinc finger protein 91 (ZFP91) ubiquitinates and destabilizes FOXA1, which promotes cancer cell growth. High level of ZFP91 expression correlates with low level of FOXA1 protein in human gastric cancer (GC) cell lines and patient samples. Furthermore, ZFP91 knockdown reduces FOXA1 polyubiquitination, which decreases FOXA1 turnover and enhances cellular sensitivity to chemotherapy. Taken together, our findings reveal ZFP91-FOXA1 axis plays an important role in promoting GC progression and provides us a potential therapeutic intervention in the treatment of GC.
Collapse
Affiliation(s)
- Dong-E Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Lie-Wen Lin
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Dong-Zhou Liu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Xiao-Ping Hong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Ming-Lin Ou
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Hao-Wu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Song-Hui Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China.,Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Yang Z, Liu Z, Chang Z, Yan G. MicroRNA‑188‑5p inhibits the progression of breast cancer by targeting zinc finger protein 91. Oncol Rep 2020; 44:1479-1488. [PMID: 32945499 PMCID: PMC7448417 DOI: 10.3892/or.2020.7731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed malignant cancer in women. BC is the main cause of cancer-related death in women and seriously threatens the life and health of women worldwide. MicroRNAs (miRNAs/miRs) have been reported to regulate the development and progression of different types of cancer. However, the regulatory functions of miR-188-5p in BC have not been thoroughly demonstrated. In this present research, we identified that miR-188-5p was downregulated in BC tissues and several BC cell lines. Downregulation of miR-188-5p was significantly associated with advanced TNM stage. Moreover, we identified that miR-188-5p mimics significantly inhibited proliferation using CCK-8 assay, colony formation and xenograft animal model, suppressed invasion and migration detected by Transwell invasion assay, and increased the cellular apoptosis of BC cells as determined by cell apoptosis assay. Moreover miR-188-5p mimics also reduced the expression of NF-κB p65(Rel). To further investigate its regulatory mechanism, transcription factor zinc finger protein 91 (ZFP91) was predicted as the targeted protein of miR-188-5p by bioinformatic method. We confirmed their specific binding by dual luciferase (DLR) assay. We demonstrated that the overexpression of miR-188-5p significantly inhibited the expression of ZFP91 in BC cell lines and reduced the expression of NF-κB p65(Rel). An inverse correlation was found between the expression of miR-188-5p and ZFP91 in BC tissues. Importantly, we demonstrated that the restoration of ZFP91 was able to block the effect of miR-188-5p on the progression of MDA-MB-231 cells. Therefore, our study showed that miR-188-5p may be one of the important indicators and could inhibit the progression of human BC via targeting the ZFP91/NF-κB p65(Rel) signaling pathway, suggesting that miR-188-5p may be a promising future target for BC treatment.
Collapse
Affiliation(s)
- Zhiguang Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guangxin Yan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
6
|
Roles of miR-640 and Zinc Finger Protein 91 (ZFP91) in Angiopoietin-1-Induced In Vitro Angiogenesis. Cells 2020; 9:cells9071602. [PMID: 32630670 PMCID: PMC7408170 DOI: 10.3390/cells9071602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-1 (Ang-1) is a ligand of Tie-2 receptors that promotes angiogenesis. It has been established that regulatory loops exist between angiogenic growth factors and distinct pro or anti-angiogenic miRNAs, but the nature and the roles of Ang-1-regulated miRNAs remain unclear. In this study, we assessed the role of miR-640 in Ang-1-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Exposure to Ang-1 (300 ng/mL) from 6 to 72 h significantly decreased expression of mature miR-640, a response that was mediated by Tie-2 receptors and was also observed in response to Ang-2, the vascular endothelial growth factor, and transforming growth factor β. Increasing miR-640 levels using a mimic inhibited Ang-1-induced cell migration and capillary-like tube formation whereas inhibition of miR-640 enhanced these responses. Pull down assays of biotinylated miR-640 revealed that miR-640 directly targets Zinc Finger Protein 91 (ZFP91), an atypical E3-ubiquitin ligase. Ang-1 exposure induced ZFP91 expression through down-regulation of miR-640. Silencing of ZFP91 significantly inhibited Ang-1-induced cell migration and tube formation. We conclude that Ang-1 upregulates ZFP91 expression through transcriptional down-regulation of miR-640 and that ZFP91 plays important roles in the promotion of Ang-1-induced endothelial cell migration and differentiation.
Collapse
|
7
|
Kim Y, Ghil S. Regulators of G-protein signaling, RGS2 and RGS4, inhibit protease-activated receptor 4-mediated signaling by forming a complex with the receptor and Gα in live cells. Cell Commun Signal 2020; 18:86. [PMID: 32517689 PMCID: PMC7285472 DOI: 10.1186/s12964-020-00552-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) is a seven transmembrane G-protein coupled receptor (GPCR) activated by endogenous proteases, such as thrombin. PAR4 is involved in various pathophysiologies including cancer, inflammation, pain, and thrombosis. Although regulators of G-protein signaling (RGS) are known to modulate GPCR/Gα-mediated pathways, their specific effects on PAR4 are not fully understood at present. We previously reported that RGS proteins attenuate PAR1- and PAR2-mediated signaling through interactions with these receptors in conjunction with distinct Gα subunits. METHODS We employed a bioluminescence resonance energy transfer technique and confocal microscopy to examine potential interactions among PAR4, RGS, and Gα subunits. The inhibitory effects of RGS proteins on PAR4-mediated downstream signaling and cancer progression were additionally investigated by using several assays including ERK phosphorylation, calcium mobilization, RhoA activity, cancer cell proliferation, and related gene expression. RESULTS In live cells, RGS2 interacts with PAR4 in the presence of Gαq while RGS4 binding to PAR4 occurs in the presence of Gαq and Gα12/13. Co-expression of PAR4 and Gαq induced a shift in the subcellular localization of RGS2 and RGS4 from the cytoplasm to plasma membrane. Combined PAR4 and Gα12/13 expression additionally promoted translocation of RGS4 from the cytoplasm to the membrane. Both RGS2 and RGS4 abolished PAR4-activated ERK phosphorylation, calcium mobilization and RhoA activity, as well as PAR4-mediated colon cancer cell proliferation and related gene expression. CONCLUSIONS RGS2 and RGS4 forms ternary complex with PAR4 in Gα-dependent manner and inhibits its downstream signaling. Our findings support a novel physiological function of RGS2 and RGS4 as inhibitors of PAR4-mediated signaling through selective PAR4/RGS/Gα coupling. Video Abstract.
Collapse
Affiliation(s)
- Yukeyoung Kim
- Department of Life Science, Kyonggi University, Suwon, 16227, South Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, 16227, South Korea.
| |
Collapse
|
8
|
Tian YJ, Wang YH, Xiao AJ, Li PL, Guo J, Wang TJ, Zhao DJ. Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1730-1737. [PMID: 31062614 DOI: 10.1080/21691401.2019.1608221] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
LncRNA SBF2-AS1 has been reported to be implicated in the deterioration of multiple human cancers. However, the roles and underlying mechanisms of SBF2-AS1 in acute myeloid leukemia (AML) are still unclear. In the present study, the online GEPIA database showed that SBF2-AS1 expression was significantly increased in AML samples. QRT-PCR results showed that SBF2-AS1 expression was upregulated in AML cells. CCK-8 assay revealed that SBF2-AS1 inhibition decreased AML cells proliferation ability in vitro. Flow cytometry assays showed that SBF2-AS1 inhibition induced AML cells apoptosis and arrested AML cells in G0/G1 phase. Mechanistically, miR-188-5p was identified as a direct target of SBF2-AS1. SBF2-AS1 upregulated the expression level of ZFP91 by sponging miR-188-5p. And the effects of SBF2-AS1 suppression on AML cells progression could be abolished by miR-188-5p inhibitors. Moreover, we found that SBF2-AS1 inhibition reduced tumor growth in vivo. Taken together, our findings elucidated that SBF2-AS1 could act as a miRNA sponge in AML progression, and provided a potential therapeutic strategy for AML treatment.
Collapse
Affiliation(s)
- Yun-Jiao Tian
- a Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| | - Yan-Hua Wang
- a Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| | - Ai-Ju Xiao
- a Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| | - Pei-Ling Li
- a Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| | - Jia Guo
- a Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| | - Tuan-Jie Wang
- b Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| | - Dong-Ju Zhao
- a Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui , People's Republic of China
| |
Collapse
|
9
|
Paschke L, Jopek K, Szyszka M, Tyczewska M, Malendowicz LK, Rucinski M. ZFP91 zinc finger protein expression pattern in normal tissues and cancers. Oncol Lett 2019; 17:3599-3606. [PMID: 30867803 DOI: 10.3892/ol.2019.9963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Zinc finger protein 91 (ZFP91) gene has been recently acknowledged to possess oncogenic properties. To date, its expression has been examined only in a handful of human organs and cancer types. The aim of the present study was to characterize, for the first time, the ZFP91 expression pattern in a range of human tissues and cancer types. ZFP91 mRNA expression was examined using Cancer Survey cDNA sets. Utilized cDNA samples represented 15 human organs and 17 cancer types. ZFP91 mRNA expression was the highest in the testes and lymph nodes. It was downregulated in testis cancer, lymphoma and thyroid cancer, and upregulated in prostate cancer. Among the analyzed cancer types, ZFP91 expression was markedly elevated in sarcomas and melanoma. On a protein level, a large-scale reverse phase protein array was employed providing samples from 11 organ types and from cancers derived from these organs. ZFP91 protein expression was revealed to be generally stable across the tested samples and was only moderately elevated in breast, ovarian and pancreatic cancers. To the best of our knowledge, this is the first study to thoroughly analyze the ZFP91 expression pattern in human tissues and cancers. The obtained results provide the foundation for further work aiming to reveal its full biological significance.
Collapse
Affiliation(s)
- Lukasz Paschke
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
10
|
Mi C, Wang Z, Li MY, Zhang ZH, Ma J, Jin X. Zinc finger protein 91 positively regulates the production of IL-1β in macrophages by activation of MAPKs and non-canonical caspase-8 inflammasome. Br J Pharmacol 2018; 175:4338-4352. [PMID: 30182366 DOI: 10.1111/bph.14493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE IL-1β is a cytokine of critical importance in inflammatory, infectious and autoimmune diseases. Zinc finger protein 91 (ZFP91) has been reported to be involved in multiple biological processes. Here, we identified a previously unknown role for ZFP91 in the production of biologically active IL-1β and investigated the underlying mechanisms of its effects. EXPERIMENTAL APPROACH In vitro, the underlying mechanisms of ZFP91 at inhibiting the expression of IL-1β were investigated by ELISA, RT-PCR, Western blotting, immunoprecipitation and immunofluorescence assays. In vivo, colitis was induced by giving 4% dextran sulfate sodium (DSS) p.o. in drinking water for 5 days. Peritonitis was induced by injecting 700 μg alum i.p. for 12 h. KEY RESULTS ZFP91 activated the non-canonical caspase-8 inflammasome, which resulted in robust IL-1β secretion. Using an immunoprecipitation assay and immunofluorescence assay, we found that ZFP91 promoted the assembly of the non-canonical caspase-8 inflammasome complex. Moreover, ZFP91 enhanced the activation of ERK, p38 MAPK and JNK in macrophages. In addition, our data demonstrate that the synthesis of pro-IL-1β is dependent on activation of these MAPK signalling pathways. In vivo experiments, the symptoms and colonic inflammation associated with DSS-induced colitis were ameliorated in mice deficient in ZFP91. Furthermore, the inflammation in alum-induced peritonitis was also attenuated in mice deficient in ZFP91. CONCLUSIONS AND IMPLICATIONS Our research describes a mechanism by which ZFP91 promotes production of IL-1β under physiological conditions and suggests that ZFP91 may be a promising therapeutic target for intervention in inflammatory, infectious and autoimmune-related diseases.
Collapse
Affiliation(s)
- Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhe Wang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Zhi Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
11
|
Ma J, Mi C, Wang KS, Lee JJ, Jin X. Zinc finger protein 91 (ZFP91) activates HIF-1α via NF-κB/p65 to promote proliferation and tumorigenesis of colon cancer. Oncotarget 2017; 7:36551-36562. [PMID: 27144516 PMCID: PMC5095020 DOI: 10.18632/oncotarget.9070] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc finger protein 91 (ZFP91) has been reported to be involved in various biological processes. However, the clinical significance and biological role of ZFP91 in colon cancer remains unknown. Here, we show that ZFP91 expression is upregulated in patients with colon cancer. We found that ZFP91 upregulated HIF-1α at the levels of promoter and protein in colon cancer cells. Using chromatin immunoprecipitation, electrophoretic mobility shift assay and luciferase reporter gene assay, we found that NF-κB/p65 is required for the binding of ZFP91 to the HIF-1α promoter at -197/-188 base pairs and for the transcriptional activation of HIF-1α gene mediated by ZFP91. Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and tumor xenograft assay demonstrated that ZFP91 enhanced cell proliferation of colon cancer through upregulating HIF-1α in vitro and in vivo. Furthermore, ZFP91 is positively associated with HIF-1α in human colon cancer. Thus, we concluded that ZFP91 activates transcriptional coregulatory protein HIF-1α through transcription factor NF-κB/p65 in the promotion of proliferation and tumorigenesis in colon cancer cell. ZFP91 may serve as a driver gene to activate HIF-1α transcription in the development of cancer.
Collapse
Affiliation(s)
- Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chunliu Mi
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ke Si Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jung Joon Lee
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| |
Collapse
|
12
|
ZFP91: A Noncanonical NF- κB Signaling Pathway Regulator with Oncogenic Properties Is Overexpressed in Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6963582. [PMID: 27975057 PMCID: PMC5128685 DOI: 10.1155/2016/6963582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023]
Abstract
Novel molecular targets are being searched to aid in prostate cancer diagnosis and therapy. Recently, ZFP91 zinc finger protein has been found to be upregulated in prostate cancer cell lines. It is a potentially important oncogenic protein; however only limited data regarding its biological function and expression patterns are available. To date, ZFP91 has been shown to be a key factor in activation of noncanonical NF-κB signaling pathway as well as to be involved in HIF-1α signaling in cancer cells. The present study aimed to characterize ZFP91 expression in prostate cancer specimens. Furthermore, since our earlier reports showed discrepancies between ZFP91 mRNA and protein levels, we studied this interrelationship in LNCaP and PC-3 prostate cancer cell lines using siRNA mediated knockdown. QPCR analysis revealed marked upregulation of ZFP91 mRNA in the majority of prostate cancer specimens. Transfection of prostate cancer cells with ZFP91 siRNA resulted in a 10-fold decrease in mRNA levels. On a protein level, however, no inhibitory effect was observed over the time of the cell culture. We conclude that ZFP91 is overexpressed in prostate cancer and that potential accumulation of the ZFP91 protein in studied cells may be of importance in prostate cancer biology.
Collapse
|
13
|
Paschke L, Rucinski M, Ziolkowska A, Zemleduch T, Malendowicz W, Kwias Z, Malendowicz LK. ZFP91-a newly described gene potentially involved in prostate pathology. Pathol Oncol Res 2013; 20:453-9. [PMID: 24272675 PMCID: PMC3973948 DOI: 10.1007/s12253-013-9716-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/18/2013] [Indexed: 12/03/2022]
Abstract
In search for novel molecular targets in benign prostate hyperplasia (BPH), a PCR Array based screening of 84 genes was performed. Of those, expression of ZFP91 (ZFP91 zinc finger protein) was notably upregulated. Limited data concerning the function of ZFP91 product show that it is a potential transcription factor upregulated in human acute myelogenous leukemia and most recently found to be the non-canonical NF-κB pathway regulator. In order to test this finding on a larger number of samples, prostate specimens were obtained from patients undergoing adenomectomy for BPH (n = 21), and as a control, from patients undergoing radical cystectomy for bladder cancer (prostates unchanged pathologically, n = 18). Similar studies were performed on cultured human prostate cancer cell lines: LNCaP, DU145, 22Rv1, PC-3; as well as normal prostate epithelial cells—PrEC. Methods employed included: Human Obesity PCR Array (Qiagen), QPCR and Western blotting. QPCR studies confirmed significant overexpression of ZFP91 in BPH samples. On a protein level, however, comparison between normal and BPH prostates revealed insignificant differences. As for prostate cell lines examined, all expressed ZFP91 mRNA. Western blotting analysis showed markedly higher protein levels of ZFP91 in all cancer cell lines in comparison with normal (PrEC) cells. In conclusion, the upregulated ZFP91 mRNA in BPH, not accompanied by parallel changes in ZFP91 protein levels, together with ZFP91 protein abundance in prostate cancer cell lines suggest ZFP91 involvement in these prostate diseases.
Collapse
Affiliation(s)
- Lukasz Paschke
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecicki St., 60-781, Poznan, Poland,
| | | | | | | | | | | | | |
Collapse
|
14
|
Expression pattern of cellular nucleic acid-binding protein (CNBP) during embryogenesis and spermatogenesis of gibel carp. Mol Biol Rep 2008; 36:1491-6. [DOI: 10.1007/s11033-008-9340-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/12/2008] [Indexed: 11/26/2022]
|
15
|
Ito Y, Wiese S, Funk N, Chittka A, Rossoll W, Bömmel H, Watabe K, Wegner M, Sendtner M. Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Proc Natl Acad Sci U S A 2006; 103:7871-6. [PMID: 16684879 PMCID: PMC1472537 DOI: 10.1073/pnas.0602332103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ciliary neurotrophic factor (Cntf) plays an essential role in postnatal maintenance of spinal motoneurons. Whereas the expression of this neurotrophic factor is low during embryonic development, it is highly up-regulated after birth in myelinating Schwann cells of rodents. To characterize the underlying transcriptional mechanisms, we have analyzed and compared the effects of various glial transcription factors. In contrast to Pit-1, Oct-1, Unc-86 homology region (POU) domain class 3, transcription factor 1 (Oct6/SCIP/Tst-1) and paired box gene 3 (Pax3), SRY-box-containing gene 10 (Sox10) induces Cntf expression in Schwann cells. Subsequent promoter analysis using luciferase reporter gene and EMSA identified the corresponding response elements within the Cntf promoter. Overexpression of Sox10 in primary sciatic nerve Schwann cells leads to a >100-fold up-regulation of Cntf protein, and suppression of Sox10 by RNA interference in the spontaneously immortalized Schwann cell line 32 reduces Cntf expression by >80%. Mice with heterozygous inactivation of the Sox10 gene show significantly reduced Cntf protein levels in sciatic nerves, indicating that Sox10 is necessary and sufficient for regulating Cntf expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Yasuhiro Ito
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Stefan Wiese
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Natalja Funk
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Alexandra Chittka
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Wilfried Rossoll
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Heike Bömmel
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
| | - Kazuhiko Watabe
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan; and
| | - Michael Wegner
- Institute of Biochemistry, Erlangen University, D-91054 Erlangen, Germany
| | - Michael Sendtner
- *Institute for Clinical Neurobiology, University of Wuerzburg, D-97080 Wuerzburg, Germany
- To whom correspondence should be addressed at:
Institute for Clinical Neurobiology, Josef-Schneider-Strasse 11, University of Wuerzburg, D-97080 Wuerzburg, Germany. E-mail:
| |
Collapse
|
16
|
Deleyrolle L, Marchal-Victorion S, Dromard C, Fritz V, Saunier M, Sabourin JC, Tran Van Ba C, Privat A, Hugnot JP. Exogenous and Fibroblast Growth Factor 2/Epidermal Growth Factor-Regulated Endogenous Cytokines Regulate Neural Precursor Cell Growth and Differentiation. Stem Cells 2006; 24:748-62. [PMID: 16166253 DOI: 10.1634/stemcells.2005-0138] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurospheres (NSs) are clonal cellular aggregates composed of neural stem cells and progenitors. A comprehensive description of their proliferation and differentiation regulation is an essential prerequisite for their use in biotherapies. Cytokines are essential molecules regulating cell precursor fate. Using a gene-array strategy, we conducted a descriptive and functional analysis of endogenous cytokines and receptors expressed by spinal cord-derived NSs during their growth or their differentiation into neuronal and glial cells. NSs were found to express approximately 100 receptor subunits and cytokine/secreted developmental factors. Several angiogenic factors and receptors that could mediate neural precursor cell-endothelial cell relationships were detected. Among them, receptor B for endothelins was highly expressed, and endothelins were found to increase NS growth. In contrast, NSs express receptors for ciliary neurotrophic factor (CNTF), bone morphogenetic protein (BMP), interferon (IFN)-gamma, or tumor necrosis factor (TNF)-alpha, which, when added in the growth phase, led to a dramatic growth reduction followed by a reduction or a loss of oligodendrocyte formation on differentiation. In addition, NSs synthesize fibroblast growth factor 2/epidermal growth factor (FGF2/EGF)-regulated endogenous cytokines that participate in their growth and differentiation. Notably, BMP-7 and CNTF were expressed during expansion, but upon differentiation there was a remarkable switch from BMP-7 to BMP-4 and -6 and a sharp increase of CNTF. Reintroduction of growth factors reverses the BMP expression profile, indicating growth factor-BMP cross-regulations. The role of endogenous CNTF was investigated by deriving NSs from CNTF knockout mice. These NSs have an increased growth rate associated with reduction of apoptosis and generate astrocytes with a reduced glial fibulary acidic protein (GFAP) content. These results demonstrate the combined role of endogenous and exogenous cytokines in neural precursor cell growth and differentiation.
Collapse
Affiliation(s)
- Loïc Deleyrolle
- INSERM U583, INM-Hôpital Saint Eloi, 80 rue Augustin Fliche, 34295 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu JX, Gui JF. Expression pattern and developmental behaviour of cellular nucleic acid-binding protein (CNBP) during folliculogenesis and oogenesis in fish. Gene 2005; 356:181-92. [PMID: 16002243 DOI: 10.1016/j.gene.2005.04.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/23/2005] [Accepted: 04/27/2005] [Indexed: 11/18/2022]
Abstract
In vertebrates, folliculogeneis establishes an intricate system for somatic cell-oocyte interaction, and ultimately leads to the acquisition of their respective competences. Although the formation process and corresponding interactions are strikingly similar in diverse organisms, knowledge of genes and signaling pathways involved in follicle formation is very incomplete and the underlying molecular mechanisms remain enigmatic. CNBP has been identified for more than ten years, and the highest level of CNBP transcripts has been observed in adult zebrafish ovary, but little is known about its functional significance during folliculogeneis and oogenesis. In this study, we clone CNBP cDNA from gibel carp (Carassius auratus gibelio), and demonstrate its predominant expression in gibel carp ovary and testis not only by RT-PCR but also by Western blot. Its full-length cDNA is 1402 bp, and has an ORF of 489 nt for encoding a peptide of 163 aa. And its complete amino acid sequence shared 68.5%-96.8% identity with CNBPs from other vertebrates. Based on the expression characterization, we further analyze its expression pattern and developmental behaviour during folliculogeneis and oogenesis. Following these studies, we reveal an unexpected discovery that the CagCNBP is associated with follicular cells and oocytes, and significant distribution changes have occurred in degenerating and regenerating follicles. More interestingly, the CagCNBP is more highly expressed in some clusters of interconnected cells within ovarian cysts, no matter whether the cell clusters are formed from the original primordial germ cells or from the newly formed cells from follicular cells that invaded into the atretic oocytes. It is the first time to reveal CNBP relevance to folliculogeneis and oogenesis. Moreover, a similar stage-specific and cell-specific expression pattern has also been observed in the gibel carp testis. Therefore, further studies on CNBP expression pattern and developmental behaviour will be of significance for understanding functional roles of CNBP during gametogenesis.
Collapse
Affiliation(s)
- Jing-Xia Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan 430072, China
| | | |
Collapse
|
18
|
Sylvester SR, Roy A. A 3'-truncated transferrin messenger RNA is expressed in rat testicular germ cells. Biol Reprod 2002; 67:895-9. [PMID: 12193400 DOI: 10.1095/biolreprod67.3.895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Rat germ cells express a 0.9-kilobase (kb) message with a sequence similar to that of the 3' portion of mammalian transferrins. The sequence of this transcript, called hemiferrin, was considered unique, suggesting that it was encoded by a gene different from that of rat transferrin. Difficulties in conducting experiments using hemiferrin sequence primers led us to question the original sequence. Ribonuclease protection assays revealed that the hemiferrin sequence provided protection only for bovine sequences and not for rat mRNA. Conversely, a 3' rat transferrin sequence protected only rat liver and testis RNA sequences and not bovine sequences, indicating that the 0.9-kb transcript in germ cells is a truncated form of rat transferrin. Western analysis and immunoprecipitation of germ cell proteins metabolically radiolabeled in vitro and in vivo failed to detect a protein of the predicted size regardless of whether anti-rat transferrin or anti-hemiferrin antibodies were used. The findings suggest that a foreshortened transcript of the transferrin gene is produced in rat germ cells and that little or no protein is made from that transcript.
Collapse
Affiliation(s)
- Steven R Sylvester
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Vancouver, Washington 98686, USA.
| | | |
Collapse
|
19
|
Armas P, Cabada MO, Calcaterra NB. Primary structure and developmental expression of Bufo arenarum cellular nucleic acid-binding protein: changes in subcellular localization during early embryogenesis. Dev Growth Differ 2001; 43:13-23. [PMID: 11148448 DOI: 10.1046/j.1440-169x.2001.00551.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Bufo arenarum cellular nucleic acid-binding protein (bCNBP) full-length cDNA was cloned. bCNBP is a 19.4 kDa protein containing seven CCHC zinc finger motifs, an RGG box and a Ser-rich region. Amino acid comparisons showed high values of homology in vertebrates and smaller values in insects or inferior eukaryotes. Northern blot analysis during oogenesis and early development revealed two transcripts with different expressions of pattern behavior. One of them is present in all stages analyzed, whereas the other is only detected from the beginning of zygotic transcription. Immunocytochemistry assays carried out on sections of ovary and early embryos showed that there was no specific staining of previtellogenic oocytes. In early vitellogenic oocytes, in oocytes at stages V/VI and in embryos at early blastula stage, reaction was observed inside the cytoplasm. At mid-blastula stage, CNBP was mainly detected in the epiblast. At the late gastrula stage, two layers of cells were stained in the archenteron roof, in which the internal one presented as strong staining. Nuclei in this layer were stained even stronger than the cytoplasm. Changes in mRNA expression patterns, accompanied by changes in subcellular localization, suggest that CNBP might interact with both nuclear and cytoplasmic nucleic acids.
Collapse
Affiliation(s)
- P Armas
- División Biología del Desarrollo, IBR, CONICET - Area de Biología General, Dpto. de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (2000) Rosario, República Argentina
| | | | | |
Collapse
|
20
|
Wong JC, Alon N, Norga K, Kruyt FA, Youssoufian H, Buchwald M. Cloning and analysis of the mouse Fanconi anemia group A cDNA and an overlapping penta zinc finger cDNA. Genomics 2000; 67:273-83. [PMID: 10936049 DOI: 10.1006/geno.2000.6252] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a model system, we cloned and characterized the mouse homolog of the human FANCA cDNA. The mouse cDNA (Fanca) encodes a 161-kDa protein that shares 65% amino acid sequence identity with human FANCA. Fanca is located at the distal region of mouse chromosome 8 and has a ubiquitous pattern of expression in embryonic and adult tissues. Expression of the mouse cDNA in human FA-A cells restores the cellular drug sensitivity to normal levels. Thus, the expression pattern, protein structure, chromosomal location, and function of FANCA are conserved in the mouse. We also isolated a novel zinc finger protein, Zfp276, which has five C(2)H(2) domains. Interestingly, Zfp276 is situated in the Fanca locus, and the 3'UTR of its cDNA overlaps with the last four exons of Fanca in a tail-to-tail manner. Zfp276 is expressed in the same tissues as Fanca, but does not complement the mitomycin C (MMC)-sensitive phenotype of FA-A cells. The overlapping genomic organization between Zfp276 and Fanca may have relevance to the disease phenotype of FA.
Collapse
Affiliation(s)
- J C Wong
- Program in Genetics and Genomics Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Ruble DM, Foster DN. Molecular cloning and characterization of a highly conserved chicken cellular nucleic acid binding protein cDNA. Gene 1998; 218:95-101. [PMID: 9751807 DOI: 10.1016/s0378-1119(98)00383-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A chicken cellular nucleic acid binding protein (cCNBP) cDNA was isolated from a chicken Con-A-stimulated immune cell library by differential screening. cCNBP is a Cys/Cys-His/Cys zinc finger DNA binding protein of unknown function. The chicken CNBP nucleotide and deduced amino acid sequence showed extraordinary sequence conservation (between 81-98% similarities) when compared to human, mouse and rat CNBP. The CNBP gene was shown to be a single copy and to cross-hybridize to human and mouse genomic DNA. A Northern blot analysis revealed cCNBP to be a constitutively expressed gene in a wide variety of tissues and to be differentially expressed in cultured chicken spleen and bursal cells after mitogen stimulation.
Collapse
Affiliation(s)
- D M Ruble
- University of Minnesota, Division of Animal Physiology, Department of Animal Science, St. Paul, MN 55108, USA
| | | |
Collapse
|
22
|
Ito Y, Yamamoto M, Li M, Doyu M, Tanaka F, Mutch T, Mitsuma T, Sobue G. Differential temporal expression of mRNAs for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and their receptors (CNTFR alpha, LIFR beta, IL-6R alpha and gp130) in injured peripheral nerves. Brain Res 1998; 793:321-7. [PMID: 9630704 DOI: 10.1016/s0006-8993(98)00242-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mRNA expression of the neuropoietic cytokines, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and their receptor components (CNTFRalpha, LIFRbeta, IL-6Ralpha and gp130) was examined in peripheral nerves after two different types of injury, crush and transection. The CNTF mRNA expression levels decreased after injury and remained low in the transected model, but recovered in 4 weeks in the crushed model. The LIF mRNA rapidly increased after damage and returned gradually to control levels. The IL-6 mRNA expression increased rapidly within 1 day after injury but dramatically decreased soon after. The CNTFRalpha mRNA levels gradually increased after nerve injury. LIFRbeta was expressed in the intact nerve and decreased slightly after injury. The IL-6Ralpha expression was observed faintly in the intact nerve and increased significantly soon after injury. There was also an increase in the expression of gp130. Although the temporal expression of these neuropoietic cytokines and receptors was extremely different, their pattern was similar between the crushed and transected models, except for CNTF. These results suggest that the expression of the ligands and receptors are differentially regulated after peripheral nerve injury, implying that each cytokine and signal transduction system has entirely distinctive functions in neuronal regeneration and repair.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Ciliary Neurotrophic Factor
- Cytokine Receptor gp130
- Disease Models, Animal
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/genetics
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Male
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred Strains
- Nerve Growth Factors/biosynthesis
- Nerve Growth Factors/genetics
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/pathology
- Peripheral Nervous System Diseases/physiopathology
- RNA, Messenger/biosynthesis
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Ciliary Neurotrophic Factor
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Interleukin-6/biosynthesis
- Receptors, Interleukin-6/genetics
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Receptors, OSM-LIF
Collapse
Affiliation(s)
- Y Ito
- Department of Neurology, Nagoya University, School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ennulat DJ, Cohen BM. Multiplex differential display identifies a novel zinc-finger protein repressed during withdrawal from cocaine. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:299-302. [PMID: 9387892 DOI: 10.1016/s0169-328x(97)00217-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiplex differential display (MDD), a modification of differential display reverse transcriptase polymerase chain reaction (DD-PCR), was used to identify cocaine-dependent regulation of previously known and unknown gene products. Direct comparison of the MDD amplification profiles of duplicate, total RNA samples from the caudate putamen (CPu) of either vehicle or cocaine treated Sprague-Dawley rats indicated that the relative induction of a 240 bp (8G247) product, likely to represent c-fos mRNA, closely paralleled changes in c-fos mRNA as measured by Northern blot analysis. MDD and Northern blot analysis also revealed substantial repression of another PCR product (8G226) at 1 h and 1 day after repeated administration of cocaine. At 2 days after cocaine exposure, the level of 8G226 had returned to control levels. The DNA sequence of 8G226 exhibited near identity with a mouse zinc-finger protein (PZf) and is thus likely to represent a transcriptional regulator. Interestingly, the repression of 8G226 immediately after cocaine treatment is in direct contrast to the cocaine-dependent increase in expression documented for NGFI-A, another zinc-finger protein which also functions as a transcriptional regulator. Detailed characterization of the prolonged reduction in the expression of 8G226 may lead to the identification of additional regulatory pathways that produce changes in cellular response after repeated cocaine exposure.
Collapse
Affiliation(s)
- D J Ennulat
- McLean Hospital and Harvard Medical School, Belmont, MA 02178-9106, USA.
| | | |
Collapse
|
24
|
Trachtulec Z, Mnuková-Fajdelová M, Hamvas RM, Gregorová S, Mayer WE, Lehrach HR, Vincek V, Forejt J, Klein J. Isolation of candidate hybrid sterility 1 genes by cDNA selection in a 1.1 megabase pair region on mouse chromosome 17. Mamm Genome 1997; 8:312-6. [PMID: 9107673 DOI: 10.1007/s003359900430] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Hybrid sterility 1 (Hst1) gene causes male infertility in crosses between certain inbred strains of the laboratory and wild mouse, Mus musculus. To identify the causative gene, we have searched YAC clones encompassing the Hst1 region for testis-expressed sequences, using the cDNA selection method. We isolated 12 non-overlapping cDNA clones, sequenced them, and placed them on a physical map based on the analysis of YAC clones and total genomic DNA. The cDNA clones map to ten loci. Three cDNA sequences correspond to the proteasome subunit C5 (locus Psmb1), ornithine decarboxylase (Odc-rs15), and penta-zinc finger (Zfp91-rs1) transcripts. Three of the ten testis-expressed loci described in this report (D17Ph4e, Psmb1, and Zfp91-rs1) co-segregate with all Hst1 recombinants and, together with the Tbp gene, are therefore potential candidates for the Hst1 gene. The presented physical and genetic mapping data indicate there are no gross rearrangements distinguishing the Hst1(f) and Hst1(s) alleles.
Collapse
MESH Headings
- Animals
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/genetics
- Electrophoresis, Gel, Pulsed-Field
- Female
- Gene Expression
- Hybridization, Genetic
- Infertility, Male/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
Collapse
Affiliation(s)
- Z Trachtulec
- Department of Microbiology and Immunology, University of Miami School of Medicine, 1600 N.W. 10th Avenue, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mack HG, Beck F, Bowtell DD. A search for a mammalian homologue of the Drosophila photoreceptor development gene glass yields Zfp64, a zinc finger encoding gene which maps to the distal end of mouse chromosome 2. Gene 1997; 185:11-7. [PMID: 9034307 DOI: 10.1016/s0378-1119(96)00607-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Whilst searching for a mammalian homologue of the Drosophila glass gene we cloned a mouse cDNA whose deduced sequence encodes a 614 amino acid (aa) protein with ten Cys2-His2 (C2H2) zinc finger (Zf) motifs. Zfp64 is expressed in all developing and mature mouse tissues examined, except the mouse erythroleukemia (MEL) cell line. Zfp64 maps to the distal region of mouse chromosome 2 close to lens opacity 4 (Lop4), a semidominant cataract mutation. Sequence analysis shows that Zfp64 has multiple potential phosphorylation sites for casein kinase II (CK II), protein kinase C (PKC), tyrosine kinase (TK) and c-AMP- and c-GMP-dependent protein kinase (cA/GMPDPK).
Collapse
Affiliation(s)
- H G Mack
- Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Vic., Australia
| | | | | |
Collapse
|
26
|
Winter CG, Saotome Y, Levison SW, Hirsh D. A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Natl Acad Sci U S A 1995; 92:5865-9. [PMID: 7597043 PMCID: PMC41602 DOI: 10.1073/pnas.92.13.5865] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Within the central nervous system (CNS) ciliary neurotrophic factor (CNTF) is expressed by astrocytes where it remains stored as an intracellular protein; its release and function as an extracellular ligand are thought to occur in the event of cellular injury. We find that overexpression of CNTF in transgenic mice recapitulates the glial response to CNS lesion, as does its injection into the uninjured brain. These results demonstrate that CNTF functions as an inducer of reactive gliosis, a condition associated with a number of neurological diseases of the CNS.
Collapse
Affiliation(s)
- C G Winter
- Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|