1
|
Sun Y, Dong L, Kang L, Zhong W, Jackson D, Yang F. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. MOLECULAR PLANT 2024; 17:1019-1037. [PMID: 38877701 DOI: 10.1016/j.molp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Maize develops separate ear and tassel inflorescences with initially similar morphology but ultimately different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely unclear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel, we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. We identified 16 diverse gene clusters with differential spatiotemporal expression patterns and revealed biased regulation of redox, programmed cell death, and hormone signals during meristem differentiation between ear and tassel. Notably, based on their dynamic expression patterns, we revealed the roles of two RNA-binding proteins in regulating inflorescence meristem activity and axillary meristem formation. Moreover, using the transcriptional profiles of 53 910 single cells, we uncovered the cellular heterogeneity between ear and tassel florets. We found that multiple signals associated with either enhanced cell death or reduced growth are responsible for tassel pistil suppression, while part of the gibberellic acid signal may act non-cell-autonomously to regulate ear stamen arrest during sex differentiation. We further showed that the pistil-protection gene SILKLESS 1 (SK1) functions antagonistically to the known pistil-suppression genes through regulating common molecular pathways, and constructed a regulatory network for pistil-fate determination. Collectively, our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation for identifying new regulators and pathways for maize hybrid breeding and improvement.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Liu B, Zhang B, Yang Z, Liu Y, Yang S, Shi Y, Jiang C, Qin F. Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. THE PLANT CELL 2021; 33:2058-2071. [PMID: 33730156 PMCID: PMC8290287 DOI: 10.1093/plcell/koab083] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 05/21/2023]
Abstract
Drought poses a major environmental threat to maize (Zea mays) production worldwide. Since maize is a monoecious plant, maize grain yield is dependent on the synchronous development of male and female inflorescences. When a drought episode occurs during flowering, however, an asynchronism occurs in the anthesis and silking interval (ASI) that results in significant yield losses. The underlying mechanism responsible for this asynchronism is still unclear. Here, we obtained a comprehensive development-drought transcriptome atlas of maize ears. Genes that function in cell expansion and growth were highly repressed by drought in 50 mm ears. Notably, an association study using a natural-variation population of maize revealed a significant relationship between the level of α-expansin4 (ZmEXPA4) expression and drought-induced increases in ASI. Furthermore, genetic manipulation of ZmEXPA4 expression using a drought-inducible promoter in developing maize ears reduced the ASI under drought conditions. These findings provide important insights into the molecular mechanism underlying the increase in ASI in maize ears subjected to drought and provide a promising strategy that can be used for trait improvement.
Collapse
Affiliation(s)
- Boxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, 100097, China
| | - Zhirui Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunlu Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Author for correspondence:
| |
Collapse
|
3
|
Shen C, Li G, Dreni L, Zhang D. Molecular Control of Carpel Development in the Grass Family. FRONTIERS IN PLANT SCIENCE 2021; 12:635500. [PMID: 33664762 PMCID: PMC7921308 DOI: 10.3389/fpls.2021.635500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Carpel is the ovule-bearing female reproductive organ of flowering plants and is required to ensure its protection, an efficient fertilization, and the development of diversified types of fruits, thereby it is a vital element of most food crops. The origin and morphological changes of the carpel are key to the evolution and adaption of angiosperms. Progresses have been made in elucidating the developmental mechanisms of carpel establishment in the model eudicot plant Arabidopsis thaliana, while little and fragmentary information is known in grasses, a family that includes many important crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Here, we highlight recent advances in understanding the mechanisms underlying potential pathways of carpel development in grasses, including carpel identity determination, morphogenesis, and floral meristem determinacy. The known role of transcription factors, hormones, and miRNAs during grass carpel formation is summarized and compared with the extensively studied eudicot model plant Arabidopsis. The genetic and molecular aspects of carpel development that are conserved or diverged between grasses and eudicots are therefore discussed.
Collapse
Affiliation(s)
- Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Gang Li
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
4
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
5
|
Su S, Shao X, Zhu C, Xu J, Tang Y, Luo D, Huang X. An AGAMOUS-like factor is associated with the origin of two domesticated varieties in Cymbidium sinense (Orchidaceae). HORTICULTURE RESEARCH 2018; 5:48. [PMID: 30181888 PMCID: PMC6119200 DOI: 10.1038/s41438-018-0052-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 05/15/2023]
Abstract
Cymbidium has been artificially domesticated for centuries in Asia, which produced numerous cultivated varieties. Flowers with stamenoid tepals or those with multiple tepals have been found in different species of Cymbidium; however, the molecular basis controlling the formation of these phenotypes is still largely unknown. Previous work demonstrated that AGAMOUS/AG lineage MADS genes function in floral meristem determinacy as well as in reproductive organs development in both dicots and monocots, indicating a possible relationship with the origin of two flower varieties in Cymbidium. Here, we characterized and analyzed two AG lineage paralogues, CsAG1 and CsAG2, from Cymbidium sinense, both of which were highly expressed in the gynostemium column of a standard C. sinense. Interestingly, we detected ectopic expression of CsAG1 rather than CsAG2 in all floral organs of a stamenoid-tepal variety and significant down-regulation of CsAG1 in a variety with multiple tepals. Over-expression of CsAG1 in wild type Arabidopsis resulted in petal-to-stamen homeotic conversion, suggesting a conserved C-function of CsAG1 in the development of Cymbidium flower. Altogether, our results supported a hypothesis that disruption of a single AG-like factor would be associated with the formation of two domesticated varieties in C. sinense.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Aichi Japan
| | - Xiaoyu Shao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Changfa Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiayin Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Yuhuan Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Xia Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
6
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
7
|
Li Q, Liu B. Genetic regulation of maize flower development and sex determination. PLANTA 2017; 245:1-14. [PMID: 27770199 DOI: 10.1007/s00425-016-2607-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 10/14/2016] [Indexed: 05/23/2023]
Abstract
The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.
Collapse
Affiliation(s)
- Qinglin Li
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No. 61, Taian, 271018, Shandong, China.
| |
Collapse
|
8
|
Smith AR, Zhao D. Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 7:1503. [PMID: 27790226 PMCID: PMC5064672 DOI: 10.3389/fpls.2016.01503] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Natural floral organ degeneration or abortion results in unisexual or fully sterile flowers, while abiotic stresses lead to sterility after initiation of floral reproductive organs. Since normal flower development is essential for plant sexual reproduction and crop yield, it is imperative to have a better understanding of plant sterility under regular and stress conditions. Here, we review the functions of ABC genes together with their downstream genes in floral organ degeneration and the formation of unisexual flowers in Arabidopsis and several agriculturally significant cereal grains. We further explore the roles of hormones, including auxin, brassinosteroids, jasmonic acid, gibberellic acid, and ethylene, in floral organ formation and fertility. We show that alterations in genes affecting hormone biosynthesis, hormone transport and perception cause loss of stamens/carpels, abnormal floral organ development, poor pollen production, which consequently result in unisexual flowers and male/female sterility. Moreover, abiotic stresses, such as heat, cold, and drought, commonly affect floral organ development and fertility. Sterility is induced by abiotic stresses mostly in male floral organ development, particularly during meiosis, tapetum development, anthesis, dehiscence, and fertilization. A variety of genes including those involved in heat shock, hormone signaling, cold tolerance, metabolisms of starch and sucrose, meiosis, and tapetum development are essential for plants to maintain normal fertility under abiotic stress conditions. Further elucidation of cellular, biochemical, and molecular mechanisms about regulation of fertility will improve yield and quality for many agriculturally valuable crops.
Collapse
Affiliation(s)
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, MilwaukeeWI, USA
| |
Collapse
|
9
|
Rocha de Almeida AM, Yockteng R, Specht CD. Evolution of petaloidy in the zingiberales: An assessment of the relationship between ultrastructure and gene expression patterns. Dev Dyn 2015; 244:1121-1132. [DOI: 10.1002/dvdy.24280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ana Maria Rocha de Almeida
- Programa de Pós-Graduação em Genética e Biodiversidade, Universidade Federal da Bahia; Campus Ondina Salvador/BA Brazil
- Departments of Plant and Microbial Biology and Integrative Biology and the University and Jepson Herbaria; University of California; Berkeley California
| | - Roxana Yockteng
- Departments of Plant and Microbial Biology and Integrative Biology and the University and Jepson Herbaria; University of California; Berkeley California
- Corporación Colombiana de Investigación (CORPOICA); Bogotá Colombia
| | - Chelsea D. Specht
- Departments of Plant and Microbial Biology and Integrative Biology and the University and Jepson Herbaria; University of California; Berkeley California
| |
Collapse
|
10
|
Theißen G. My favourite flowering image: a cob of pod corn. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6751-6754. [PMID: 24980907 DOI: 10.1093/jxb/ert461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For good reasons scientists usually do not report the personal circumstances of their work when publishing their results. This means, however, that the scientific facts being reported may not accurately reflect the personal importance of the respective work for the individual scientists. Pictures of pod corn (or Tunicate maize) have been on my mind for much of my life, through good and through bad times. This is why...
Collapse
Affiliation(s)
- Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
11
|
Dreni L, Kater MM. MADS reloaded: evolution of the AGAMOUS subfamily genes. THE NEW PHYTOLOGIST 2014; 201:717-732. [PMID: 24164649 DOI: 10.1111/nph.12555] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 05/03/2023]
Abstract
AGAMOUS subfamily proteins are encoded by MADS-box family genes. They have been shown to play key roles in the determination of reproductive floral organs such as stamens, carpels and ovules. However, they also play key roles in ensuring a fixed number of floral organs by controlling floral meristem determinacy. Recently, an enormous amount of sequence data for nonmodel species have become available together with functional data on AGAMOUS subfamily members in many species. Here, we give a detailed overview of the most important information about this interesting gene subfamily and provide new insights into its evolution.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
12
|
Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L. Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:424-431. [PMID: 23286997 DOI: 10.1016/j.jplph.2012.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
MADS-box genes are core members of the ABCDE model for flower development where D-lineage genes play essential roles in ovule identity determination. We report here the cloning and functional characterization of two duplicated MADS-box genes, BdMADS2 and BdMADS4 from Brachypodium distachyon, the model plant of temperate grasses. BdMADS2 and BdMADS4 were highly similar to grass D-lineage MADS-box genes on the protein level and they fell in a distinctive clade on the phylogenetic tree, with conserved intron/exon structures to their rice and maize orthologues. Quantitative real time PCR revealed comparable expression levels were detected in all floral organs of Brachypodium for both genes, except for the carpel where the expression level of BdMADS2 was five times higher than that of BdMADS4. Over expression of these two genes in Arabidopsis caused curly rosette leaves, small sepals and petals, and early flowering. However, BdMADS4 showed stronger phenotypic effects than BdMADS2, suggesting functional divergence between the two genes. Cis-regulatory element prediction showed that the promoter region (including the first intron) of BdMADS4 possesses much less class I BPC protein binding motifs than that of BdMADS2 which may be responsible for the specific expression in carpels. Yeast two-hybrid assays showed that both BdMADS2 and BdMADS4 can interact with BdSEP3, but BdMADS2 can additionally interact with the putative APETALA1 orthologue (BdAP1), suggesting a deviation in their protein interaction patterns. Taken together, our data demonstrate a significant divergence between the two Brachypodium D-lineage MADS-box genes and provide evidences for their sub-functionalization.
Collapse
Affiliation(s)
- Bo Wei
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | | | | | | | |
Collapse
|
13
|
Sato H, Yoshida K, Mitsuda N, Ohme-Takagi M, Takamizo T. Male-sterile and cleistogamous phenotypes in tall fescue induced by chimeric repressors of SUPERWOMAN1 and OsMADS58. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:183-189. [PMID: 22195592 DOI: 10.1016/j.plantsci.2011.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
Since tall fescue (Festuca arundinacea Schreb.) is an anemophilous (wind-pollinated) grass species, male sterility is strongly desired for transgenic tall fescue to prevent pollen dispersal. To create male-sterile tall fescue, we applied Chimeric REpressor gene-Silencing Technology (CRES-T) based on rice APETALA3 (AP3) and AGAMOUS (AG) orthologues that specify the formation of stamens. We fused the coding regions of rice AP3 orthologue SUPERWOMAN1 (SPW1), and rice AG orthologues, Os12g0207000, Os01g0886200 and OsMADS58, respectively with the artificial sequence encoding the modified EAR-like motif repression domain (SRDX). We first introduced Os12g0207000SRDX, Os01g0886200SRDX and OsMADS58SRDX into rice for evaluation of their abilities to induce male sterility. The transgenic rice expressing OsMADS58SRDX had reiterated formation of lodicule-like organs instead of stamens and carpel, a typical phenotype of ag mutant. Thus, we found that OsMADS58SRDX was most suitable for our purpose. Next, we introduced SPW1SRDX and OsMADS58SRDX into tall fescue. Although the transgenic tall fescue did not have the stamen alterations seen in SPW1SRDX and OsMADS58SRDX rice, they either produced no pollen or produced immature pollen; thus, the anthers were not dehiscent and the plants were male-sterile. In addition to the male sterility, SPW1SRDX tall fescue showed a cleistogamous (closed) phenotype in which anthers were not observed outside the glumes, with thin, abnormally elongated lodicules. Some lines of OsMADS58SRDX tall fescue showed a cleistogamous phenotype in which the lodicules were homeotically transformed into lemma-like organs. In both cases, cleistogamous phenotype was associated with morphological changes to the lodicules. We also obtained a mild phenotype of OsMADS58SRDX tall fescue, which exhibited only the male sterility. In this study, we produced novel male-sterile phenotypes using chimeric repressors and thus suggest CRES-T as a tool for transgenic improvement of forage and turf grasses.
Collapse
Affiliation(s)
- Hiroko Sato
- Forage Crop Research Division, NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan.
| | | | | | | | | |
Collapse
|
14
|
Lv LL, Duan J, Xie JH, Liu YG, Wei CB, Liu SH, Zhang JX, Sun GM. Cloning and expression analysis of a PISTILLATA homologous gene from pineapple (Ananas comosus L. Merr). Int J Mol Sci 2012; 13:1039-1053. [PMID: 22312303 PMCID: PMC3269737 DOI: 10.3390/ijms13011039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/27/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022] Open
Abstract
PISTILLATA (PI)-like genes are crucial regulators of flowering in angiosperms. A homologue of PI, designated as AcPI (Genbank accession number HQ717796), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcPI is 907 bp in length and contains an open reading frame of 594 bp, which encodes a protein of 197 amino acids. The molecular weight was 2.29 kDa and the isoelectric point was 9.28. The alignment showed that AcPI had a high identity with CsPIC2 (78.6%), AoPI (77.4%), OrcPI (75.7%) and HPI2 (72.4%). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses in different tissues showed that the expression pattern of AcPI was different from the B-class genes in eudicots. AcPI was expressed in all the tissues investigated. The expression level was very low in fruit stems, bracts, leaves and sepals, high in petals and carpels, and moderate in apical meristems, flesh and stamens. The qRT-PCR analyses in different stages indicated that the expression of AcPI reached the highest level at 40 days after flower inducement, when the multiple fruit and floral organs were forming. It proved the important role of AcPI in floral organs and fruit development. The 35S::AcPI transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than wild type plants.
Collapse
Affiliation(s)
- Ling-Ling Lv
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China; E-Mails: (L.-L.L.); (J.-H.X.); (Y.-G.L.); (C.-B.W.); (S.-H.L.)
| | - Jun Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (J.D.); (J.-X.Z.)
| | - Jiang-Hui Xie
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China; E-Mails: (L.-L.L.); (J.-H.X.); (Y.-G.L.); (C.-B.W.); (S.-H.L.)
| | - Yu-Ge Liu
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China; E-Mails: (L.-L.L.); (J.-H.X.); (Y.-G.L.); (C.-B.W.); (S.-H.L.)
| | - Chang-Bin Wei
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China; E-Mails: (L.-L.L.); (J.-H.X.); (Y.-G.L.); (C.-B.W.); (S.-H.L.)
| | - Sheng-Hui Liu
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China; E-Mails: (L.-L.L.); (J.-H.X.); (Y.-G.L.); (C.-B.W.); (S.-H.L.)
| | - Jian-Xia Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mails: (J.D.); (J.-X.Z.)
| | - Guang-Ming Sun
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China; E-Mails: (L.-L.L.); (J.-H.X.); (Y.-G.L.); (C.-B.W.); (S.-H.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0759-2859155; Fax: +86-0759-2859155
| |
Collapse
|
15
|
Molecular aspects of flower development in grasses. ACTA ACUST UNITED AC 2011; 24:247-82. [PMID: 21877128 DOI: 10.1007/s00497-011-0175-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The grass family (Poaceae) of the monocotyledons includes about 10,000 species and represents one of the most important taxa among angiosperms. Their flower morphology is remarkably different from those of other monocotyledons and higher eudicots. The peculiar floral structure of grasses is the floret, which contains carpels and stamens, like eudicots, but lacks petals and sepals. The reproductive organs are surrounded by two lodicules, which correspond to eudicot petals, and by a palea and lemma, whose correspondence to eudicot organs remains controversial. The molecular and genetic analysis of floral morphogenesis and organ specification, primarily performed in eudicot model species, led to the ABCDE model of flower development. Several genes required for floral development in grasses correspond to class A, B, C, D, and E genes of eudicots, but others appear to have unique and diversified functions. In this paper, we outline the present knowledge on the evolution and diversification of grass genes encoding MIKC-type MADS-box transcription factors, based on information derived from studies in rice, maize, and wheat. Moreover, we review recent advances in studying the genes involved in the control of flower development and the extent of structural and functional conservation of these genes between grasses and eudicots.
Collapse
|
16
|
Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. PLANT PHYSIOLOGY 2011; 156:2037-52. [PMID: 21653782 PMCID: PMC3149921 DOI: 10.1104/pp.111.179499] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/07/2011] [Indexed: 05/21/2023]
Abstract
Sporisorium reilianum is a biotrophic maize (Zea mays) pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how S. reilianum changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. S. reilianum infection promoted the outgrowth of subapical ears, suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed "leafy ear" and "eary ear." In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, S. reilianum triggered a loss of organ and meristem identity and a loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied by transcriptional regulation of genes proposed to regulate floral organ and meristem identity as well as meristem determinacy in maize. S. reilianum colonization also led to a 30% increase in the total auxin content of the inflorescence as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be the basis for further molecular investigation of the underlying mechanism of S. reilianum-induced alteration of floral development.
Collapse
|
17
|
Bartlett ME, Specht CD. Evidence for the involvement of Globosa-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. THE NEW PHYTOLOGIST 2010; 187:521-541. [PMID: 20456055 DOI: 10.1111/j.1469-8137.2010.03279.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
*The MADS box transcription factor family has long been identified as an important contributor to the control of floral development. It is often hypothesized that the evolution of floral development across angiosperms and within specific lineages may occur as a result of duplication, functional diversification, and changes in regulation of MADS box genes. Here we examine the role of Globosa (GLO)-like genes, members of the B-class MADS box gene lineage, in the evolution of floral development within the monocot order Zingiberales. *We assessed changes in perianth and stamen whorl morphology in a phylogenetic framework. We identified GLO homologs (ZinGLO1-4) from 50 Zingiberales species and investigated the evolution of this gene lineage. Expression of two GLO homologs was assessed in Costus spicatus and Musa basjoo. *Based on the phylogenetic data and expression results, we propose several family-specific losses and gains of GLO homologs that appear to be associated with key morphological changes. The GLO-like gene lineage has diversified concomitant with the evolution of the dimorphic perianth and the staminodial labellum. *Duplications and expression divergence within the GLO-like gene lineage may have played a role in floral diversification in the Zingiberales.
Collapse
Affiliation(s)
- Madelaine E Bartlett
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| | - Chelsea D Specht
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Zhu Y, Fu J, Zhang J, Liu T, Jia Z, Wang J, Jin Y, Lian Y, Wang M, Zheng J, Hou W, Wang G. Genome-wide analysis of gene expression profiles during ear development of maize. PLANT MOLECULAR BIOLOGY 2009; 70:63-77. [PMID: 19160056 DOI: 10.1007/s11103-009-9457-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 01/08/2009] [Indexed: 05/27/2023]
Abstract
In order to unravel the molecular mechanism of maize ear development, a microarray containing approximately 56,000 probes was used to monitor the gene expression profiles of ears at four developmental stages. The results showed that 2,794 genes, accounting for 5.0% of the total probes, changed significantly during ear development. Among the 2,794 genes, 1,844 genes differentially expressed during the spikelet differentiation phase, 836 genes during the floret primordium differentiation phase and 645 genes during the floret organ differentiation phase. Hierarchical clustering revealed that the differentially expressed genes had 9 major expression patterns. Based on Mips Functional Catalogue, 684 differentially expressed genes were grouped into at least one functional category, including metabolism (30.4%), protein related function (29.2%), biogenesis of cellular components (15.4%) and transcription (13.7%). The analysis revealed that the auxin signaling pathway play an important role in ear development. Moreover, regulation of some transcription factors may play a key role during ear development. RT-PCR and in situ hybridization for some selected genes validated our microarray data and supplied additional information on ear developmental processes.
Collapse
Affiliation(s)
- Yun Zhu
- State Key Laboratory of Agrobiotechnology and National Center for Plant Gene Research (Beijing), China Agricultural University, Beijing, 100094, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dwivedi S, Perotti E, Ortiz R. Towards molecular breeding of reproductive traits in cereal crops. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:529-559. [PMID: 18507792 DOI: 10.1111/j.1467-7652.2008.00343.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transition from vegetative to reproductive phase, flowering per se, floral organ development, panicle structure and morphology, meiosis, pollination and fertilization, cytoplasmic male sterility (CMS) and fertility restoration, and grain development are the main reproductive traits. Unlocking their genetic insights will enable plant breeders to manipulate these traits in cereal germplasm enhancement. Multiple genes or quantitative trait loci (QTLs) affecting flowering (phase transition, photoperiod and vernalization, flowering per se), panicle morphology and grain development have been cloned, and gene expression research has provided new information about the nature of complex genetic networks involved in the expression of these traits. Molecular biology is also facilitating the identification of diverse CMS sources in hybrid breeding. Few Rf (fertility restorer) genes have been cloned in maize, rice and sorghum. DNA markers are now used to assess the genetic purity of hybrids and their parental lines, and to pyramid Rf or tms (thermosensitive male sterility) genes in rice. Transgene(s) can be used to create de novo CMS trait in cereals. The understanding of reproductive biology facilitated by functional genomics will allow a better manipulation of genes by crop breeders and their potential use across species through genetic transformation.
Collapse
Affiliation(s)
- Sangam Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India.
| | | | | |
Collapse
|
20
|
Paolacci AR, Tanzarella OA, Porceddu E, Varotto S, Ciaffi M. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Mol Genet Genomics 2007; 278:689-708. [PMID: 17846794 DOI: 10.1007/s00438-007-0285-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 08/18/2007] [Indexed: 01/07/2023]
Abstract
Transcription factors encoded by MIKC-type MADS-box genes control many important functions in plants, including flower development and morphogenesis. The cloning and characterization of 45 MIKC-type MADS-box full-length cDNA sequences of common wheat is reported in the present paper. Wheat EST databases were searched by known sequences of MIKC-type genes and primers were designed for cDNA cloning by RT-PCR. Full-length cDNAs were obtained by 5' and 3' RACE extension. Southern analysis showed that three copies of the MIKC sequences, corresponding to the three homoeologous genes, were present. This genome organization was further confirmed by aneuploid analysis of six SEP-like genes, each showing three copies located in different homoeologous chromosomes. Phylogenetic analysis included the wheat MIKC cDNAs into 11 of the 13 MIKC subclasses identified in plants and corresponding to most genes controlling the floral homeotic functions. The expression patterns of the cDNAs corresponding to different homeotic classes was analysed in 18 wheat tissues and floral organs by RT-PCR, real time RT-PCR and northern hybridisation. Potential functions of the genes corresponding to the cloned wheat cDNAs were predicted on the basis of sequence homology and comparable expression pattern with functionally characterized MADS-box genes from Arabidopsis and monocot species.
Collapse
Affiliation(s)
- Anna Rita Paolacci
- Dipartimento di Agrobiologia e Agrochimica, Università della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
| | | | | | | | | |
Collapse
|
21
|
Wang CJR, Harper L, Cande WZ. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. THE PLANT CELL 2006; 18:529-44. [PMID: 16461583 PMCID: PMC1383631 DOI: 10.1105/tpc.105.037838] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 12/14/2005] [Accepted: 01/11/2006] [Indexed: 05/06/2023]
Abstract
High-resolution cytogenetic maps provide important biological information on genome organization and function, as they correlate genetic distance with cytological structures, and are an invaluable complement to physical sequence data. The most direct way to generate a cytogenetic map is to localize genetically mapped genes onto chromosomes by fluorescence in situ hybridization (FISH). Detection of single-copy genes on plant chromosomes has been difficult. In this study, we developed a squash FISH procedure allowing successful detection of single-copy genes on maize (Zea mays) pachytene chromosomes. Using this method, the shortest probe that can be detected is 3.1 kb, and two sequences separated by approximately 100 kb can be resolved. To show the robust nature of this protocol, we localized nine genetically mapped single-copy genes on chromosome 9 in one FISH experiment. Integration of existing information from genetic maps and the BAC contig-based physical map with the cytological structure of chromosome 9 provides a comprehensive cross-referenced cytogenetic map and shows the dramatic reduction of recombination in the pericentromeric heterochromatic region. To establish a feasible mapping system for maize, we also developed a probe cocktail for unambiguous identification of the 10 maize pachytene chromosomes. These results provide a starting point toward constructing a high-resolution integrated cytogenetic map of maize.
Collapse
Affiliation(s)
- Chung-Ju Rachel Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
22
|
Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T, Kanno A. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 2006; 216:301-13. [PMID: 16463041 DOI: 10.1007/s00427-005-0057-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
The AGAMOUS (AG) family of MADS-box genes plays important roles in controlling the development of the reproductive organs of flowering plants. To understand the molecular mechanisms behind the floral development in the orchid, we isolated and characterized two AG-like genes from Phalaenopsis that we denoted PhalAG1 and PhalAG2. Phylogenetic analysis indicated that PhalAG1 and PhalAG2 fall into different phylogenetic positions in the AG gene family as they belong to the C- and D-lineages, respectively. Reverse transcription-polymerase chair reaction (RT-PCR) analyses showed that PhalAG1 and PhalAG2 transcripts were detected in flower buds but not in vegetative organs. Moreover, in situ hybridization experiments revealed that PhalAG1 and PhalAG2 hybridization signals were observed in the lip, column, and ovule during the floral development of Phalaenopsis, with little difference between the expression patterns of the two genes. These results suggest that both AG-like genes in Phalaenopsis act redundantly with each other in floral development.
Collapse
Affiliation(s)
- In-Ja Song
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T. A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Genet Genomics 2005; 275:44-54. [PMID: 16333667 DOI: 10.1007/s00438-005-0080-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 11/12/2005] [Indexed: 11/27/2022]
Abstract
A new MADS-box gene designated as IbMADS10 was cloned and its expression was characterized from sweet potato (Ipomoea batatas (L.) Lam.) cv. Beniazuma. The deduced amino acid sequence of the gene indicated high homology with members of the MADS-box family of transcription factors. IbMADS10 shares high amino acid sequence similarity with the DEFH28 of Antirrhinum majus (64%) and with BpMADS4 of Betula pendula (61%) of the SQUA subfamily. Southern blot analysis revealed that the IbMADS10 is present in one or low copy number in the sweet potato genome. The gene is specifically expressed in the pigmented tissues such as in the flower bud, in the pink and in red roots, and hence, it was speculated that the IbMADS10 gene might be correlated with anthocyanin biosynthesis in sweet potato. RNA blot expression of the anthocyanin biosynthesis genes encoding for CHS, CHI, F3H, DFR, ANS and UFTG carried out in the tissues where the IbMADS10 gene was expressed revealed similar transcript levels in all tissues where the IbMADS10 gene is highly expressed, indicating that the IbMADS10 gene is highly correlated with the anthocyanin biosynthesis genes. Another important aspect is the pigmented phenotypes of transgenic calli that ectopically express the IbMADS10 gene, thereby supporting its involvement in the developmental regulation of pigment formation. Tissue printing result further strengthens the hypothesis that the IbMADS10 gene is indeed involved in anthocyanin pigmentation in sweet potato. As the purpose of the IbMADS10 gene is pigmentation, its function, therefore, resembles that of the transparent testa (tt) genes of Arabidopsis.
Collapse
Affiliation(s)
- Antonio G Lalusin
- Laboratory of Plant Genetic Engineering, Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba City, 305-8572 Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
24
|
Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 2005; 366:266-74. [PMID: 16236468 DOI: 10.1016/j.gene.2005.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/23/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Studies have shown that several plant species possess AGAMOUS (AG) and SEEDSTICK (STK) orthologs. These genes are part of the so-called C- and D MADS-box gene lineages and play key roles in ovule development in Arabidopsis thaliana. We have cloned an AG- and STK ortholog in the orchid Dendrobium thyrsiflorum, named DthyrAG1 and DthyrAG2, respectively, and analyzed their expression patterns. Quantification by real-time RT-PCR analysis shows that both are transcribed in the mature flowers and during ovule development. Localization of the transcripts by in situ hybridization analysis in flowers reveals that both genes are transcribed in the rostellum, stigma, and stylar canal. Expression analysis during ovule development shows that DthyrAG1 is expressed only in the initial periods of placenta- and ovule development, whereas the DthyrAG2 is transcribed throughout ovule development. These results suggest that both C- and D lineage orthologs are involved in various aspects of flower development and that DthyrAG2 have a more prominent role than DthyrAG1 in late ovule development in D. thyrsiflorum.
Collapse
Affiliation(s)
- Martin Skipper
- Institute of Biology, University of Copenhagen, Gothersgade 140, DK-1123 Copenhagen K, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Yamaki S, Satoh H, Nagato Y. Gypsy embryo specifies ovule curvature by regulating ovule/integument development in rice. PLANTA 2005; 222:408-17. [PMID: 16001259 DOI: 10.1007/s00425-005-1547-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 03/14/2005] [Indexed: 05/03/2023]
Abstract
The embryo position in a seed is stable in most plant species, indicating the existence of a strict regulatory mechanism that specifies the embryo position in the seed. To elucidate this mechanism, we analyzed the gypsy embryo (gym) mutant of rice, in which the position of the mature embryo in the seed is altered at a low frequency. Analyses of early embryogenesis and ovule development showed that the ectopic embryo was derived from an ill-positioned egg cell, which resulted from the incomplete curvature of the ovule. Although the development of both the inner and outer integuments was impaired, the ovule curvature was associated closely with the extent of inner integument growth. Therefore, inner integument development controls ovule curvature in rice. The expression patterns of OSH1 and OsMADS13 indicated that, in gym, a small number of indeterminate cells are maintained on the style side of the ovule and then in the integument primordium at a low frequency. The prolonged survival of these indeterminate cells disturbs normal integument development. The gym fon2 double mutant suggests that GYM and FON2 are involved redundantly in floral meristem determinacy. Possible functions of the GYM gene and the ovule developmental mechanism are discussed.
Collapse
Affiliation(s)
- S Yamaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
26
|
Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY. Genetics and evolution of inflorescence and flower development in grasses. PLANT & CELL PHYSIOLOGY 2005; 46:69-78. [PMID: 15659432 DOI: 10.1093/pcp/pci504] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inflorescences and flowers in the grass species have characteristic structures that are distinct from those in eudicots. Owing to the availability of genetic tools and their genome sequences, rice and maize have become model plants for the grasses and for the monocots in general. Recent studies have provided much insight into the genetic control of inflorescence and flower development in grasses, especially in rice and maize. Progress in elucidating the developmental mechanisms in each of these plants may contribute greatly to our understanding of the evolution of development in higher plants.
Collapse
Affiliation(s)
- Peter Bommert
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
27
|
Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 2004; 166:1011-23. [PMID: 15020484 PMCID: PMC1470751 DOI: 10.1534/genetics.166.2.1011] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.
Collapse
Affiliation(s)
- Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
28
|
Petersen K, Didion T, Andersen CH, Nielsen KK. MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:439-47. [PMID: 15128031 DOI: 10.1078/0176-1617-01212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In contrast to well-studied dicot plants like Arabidopsis and Antirrhinum, relatively few genes controlling the transition to flowering and flower development of agronomically important monocot species have been identified. In perennial ryegrass (Lolium perenne) the transition from vegetative to reproductive growth is triggered by an obligate vernalization period (primary induction) of at least 12 weeks at temperatures below 5 degrees C under short days, followed by increased temperature and day length (secondary induction). Here we report the isolation of nine ryegrass MADS-box (LpMADS) genes by a differential display method specific to this family of transcription factors. Three of the nine MADS-box genes show homology to the APETALA 1 (AP1) subfamily, two to the SEPALLATA (SEP) subfamily, one to the AGAMOUS-LIKE 6 (AGL6) subfamily, and three show homology to the newly identified OsMADS1 subfamily. The three AP1 homologues are up-regulated, both in the shoot apex and in leaves, in response to vernalization, while expression of the other six are increased by secondary induction during inflorescence development, although not in leaves. Differences in the sequence and hierarchy of flowering gene expression patterns indicate that the Arabidopsis-based flowering model is not completely applicable to explain the molecular events leading to the floral transition in grasses.
Collapse
Affiliation(s)
- Klaus Petersen
- Plant Research Department, Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
29
|
Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics 2004. [DOI: 10.1093/genetics/166.2.1011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG -like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.
Collapse
Affiliation(s)
- Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - M Alejandra Jaramillo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
30
|
Theißen G, Becker A. Plant Breeding: The ABCs of Flower Development in Arabidopsis and Rice. PROGRESS IN BOTANY 2004. [DOI: 10.1007/978-3-642-18819-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
31
|
Tzeng TY, Chen HY, Yang CH. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:1827-36. [PMID: 12481066 PMCID: PMC166694 DOI: 10.1104/pp.007948] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 06/05/2002] [Accepted: 08/07/2002] [Indexed: 05/19/2023]
Abstract
Two MADS box genes, Lily MADS Box Gene 2 (LMADS2) and Eustoma grandiflorum MADS Box Gene 1 (EgMADS1), with an extensive similarity to the petunia (Petunia hybrida) FLORAL BINDING PROTEIN 7/11 and Arabidopsis AGL11, were characterized from the lily (Lilium longiflorum) and lisianthus (Eustoma grandiflorum). The expression of LMADS2 and EgMADS1 mRNA was restricted to the carpel and was absent in the other flower organs or vegetative leaves. LMADS2 mRNA was detected mainly in ovules and weakly in style tissues of the carpel, whereas EgMADS1 mRNA was only expressed in the ovules. Transgenic Arabidopsis plants ectopically expressing LMADS2 or EgMADS1 showed similar novel phenotypes resembling 35S::AGAMOUS plants by significantly reducing plant size, flowering early, and losing inflorescence indeterminacy. Ectopic expression of these two genes also generated similar ap2-like flowers by inducing homeotic conversion of the sepals into carpel-like structures in which stigmatic papillae and ovules were observed. In addition, the petals were converted into stamen-like structures in the second whorl of 35S::LMADS2 and 35S::EgMADS1 transgenic Arabidopsis. Our data indicated that LMADS2 and EgMADS1 are putative D functional MADS box genes in lily and lisianthus with a function similar to C functional genes once ectopically expressed in Arabidopsis.
Collapse
Affiliation(s)
- Tsai-Yu Tzeng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | | | | |
Collapse
|
32
|
Johansen B, Pedersen LB, Skipper M, Frederiksen S. MADS-box gene evolution-structure and transcription patterns. Mol Phylogenet Evol 2002; 23:458-80. [PMID: 12099799 DOI: 10.1016/s1055-7903(02)00032-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study presents a phylogenetic analysis of 198 MADS-box genes based on 420 parsimony-informative characters. The analysis includes only MIKC genes; therefore several genes from gymnosperms and pteridophytes are excluded. The strict consensus tree identifies all major monophyletic groups known from earlier analyses, and all major monophyletic groups are further supported by a common gene structure in exons 1-6 and by conserved C-terminal motifs. Transcription patterns are mapped on the tree to obtain an overview of MIKC gene transcription. Genes that are transcribed only in vegetative organs are located in the basal part of the tree, whereas genes involved in flower development have evolved later. As the universality of the ABC model has recently been questioned, special account is paid to the expression of A-, B-, and C-class genes. Mapping of transcription patterns on the phylogeny shows all three classes of MADS-box genes to be transcribed in the stamens and carpels. Thus the analysis does not support the ABC model as formulated at present.
Collapse
Affiliation(s)
- Bo Johansen
- Botanical Institute, University of Copenhagen, Gothersgade 140, Denmark.
| | | | | | | |
Collapse
|
33
|
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 2002; 19:801-14. [PMID: 12032236 DOI: 10.1093/oxfordjournals.molbev.a004137] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Characterization of seven MADS-box genes, termed PPM1-PPM4 and PpMADS1-PpMADS3, from the moss model species Physcomitrella patens is reported. Phylogeny reconstructions and comparison of exon-intron structures revealed that the genes described here represent two different classes of homologous, yet distinct, MIKC-type MADS-box genes, termed MIKC(c)-type genes-"(c)" stands for "classic"-(PPM1, PPM2, PpMADS1) and MIKC(*)-type genes (PPM3, PPM4, PpMADS2, PpMADS3). The two gene classes deviate from each other in a characteristic way, especially in a sequence stretch termed intervening region. MIKC(c)-type genes are abundantly present in all land plants which have been investigated in this respect, and give rise to well-known gene types such as floral meristem and organ identity genes. In contrast, LAMB1 from the clubmoss Lycopodium annotinum was identified as the only other MIKC(*)-type gene published so far. Our findings strongly suggest that the most recent common ancestor of mosses and vascular plants contained at least one MIKC(c)-type and one MIKC(*)-type gene. Our studies thus reveal an ancient duplication of an MIKC-type gene that occurred before the separation of the lineages that led to extant mosses and vascular plants more than about 450 MYA. The identification of bona fide K-domains in both MIKC(*)-type and MIKC(c)-type proteins suggests that the K-domain is more ancient than is suggested by a recent alternative hypothesis. MIKC(*)-type genes may have escaped identification in ferns and seed plants so far. It seems more likely, however, that they represent a class of genes which has been lost in the lineage which led to extant ferns and seed plants. The high number of P. patens MADS-box genes and the presence of a K-box in the coding region and of some potential binding sites for MADS-domain proteins and other transcription factors in the putative promoter regions of these genes suggest that MADS-box genes in mosses are involved in complex gene regulatory networks similar to those in flowering plants.
Collapse
Affiliation(s)
- Katrin Henschel
- Department of Molecular Plant Genetics, Max Planck Institute for Breeding Research, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
In sugarcane (Saccharum sp) as with other species of grass, at a certain moment of its life cycle the vegetative meristem is converted into an inflorescence meristem which has at least two distinct inflorescence branching steps before the spikelet meristem terminates in the production of a flower (floret). In model dicotyledonous species such successive conversions of meristem identities and the concentric arrangement of floral organs in specific whorls have both been shown to be genetically controlled. Using data from the Sugarcane Expressed Sequence Tag (EST) Project (SUCEST) database, we have identified all sugarcane proteins and genes putatively involved in reproductive meristem and flower development. Sequence comparisons of known flower-related genes have uncovered conserved evolutionary pathways of flower development and flower pattern formation between dicotyledons and monocotyledons, such as some grass species. We have paid special attention to the analysis of the MADS-box multigene family of transcription factors that together with the APETALA2 (AP2) family are the key elements of the transcriptional networks controlling plant reproductive development. Considerations on the evolutionary developmental genetics of grass flowers and their relation to the ABC homeotic gene activity model of flower development are also presented.
Collapse
|
35
|
Heuer S, Hansen S, Bantin J, Brettschneider R, Kranz E, Lörz H, Dresselhaus T. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis. PLANT PHYSIOLOGY 2001; 127:33-45. [PMID: 11553732 PMCID: PMC117960 DOI: 10.1104/pp.127.1.33] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 03/21/2001] [Accepted: 05/22/2001] [Indexed: 05/18/2023]
Abstract
MADS box genes represent a large gene family of transcription factors with essential functions during flower development and organ differentiation processes in plants. Addressing the question of whether MADS box genes are involved in the regulation of the fertilization process and early embryo development, we have isolated two novel MADS box cDNAs, ZmMADS1 and ZmMADS3, from cDNA libraries of maize (Zea mays) pollen and egg cells, respectively. The latter gene is allelic to ZAP1. Transcripts of both genes are detectable in egg cells and in in vivo zygotes of maize. ZmMADS1 is additionally expressed in synergids and in central and antipodal cells. During early somatic embryogenesis, ZmMADS1 expression is restricted to cells with the capacity to form somatic embryos, and to globular embryos at later stages. ZmMADS3 is detectable only by more sensitive reverse transcriptase-PCR analyses, but is likewise expressed in embryogenic cultures. Both genes are not expressed in nonembryogenic suspension cultures and in isolated immature and mature zygotic embryos. During flower development, ZmMADS1 and ZmMADS3 are co-expressed in all ear spikelet organ primordia at intermediate stages. Among vegetative tissues, ZmMADS3 is expressed in stem nodes and displays a gradient with highest expression in the uppermost node. Transgenic maize plants ectopically expressing ZmMADS3 are reduced in height due to a reduced number of nodes. Reduction of seed set and male sterility were observed in the plants. The latter was due to absence of anthers. Putative functions of the genes during reproductive and vegetative developmental processes are discussed.
Collapse
Affiliation(s)
- S Heuer
- West Africa Rice Development Association, B.P. 96, St. Louis, Senegal
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The development of the floral organs is specified by the combinations of three classes of gene for organ identity in the 'ABC' model. Recently, molecular genetic studies have shown this model is applicable to grass plants as well as most eudicots. Transcription factor complexes of ABC and homologous proteins form the molecular basis of the ABC model.
Collapse
Affiliation(s)
- K Goto
- Research Institute for Biological Sciences, Kayo-cho, Jobo, 716-1241, Okayama, Japan.
| | | | | |
Collapse
|
37
|
Münster T, Wingen LU, Faigl W, Werth S, Saedler H, Theissen G. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene 2001; 262:1-13. [PMID: 11179662 DOI: 10.1016/s0378-1119(00)00556-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Floral homeotic B-function genes are involved in specifying the identity of petals and stamens during flower development in higher eudicotyledonous plants. Monocotyledonous plants belonging to the grass family (Poaceae) have very similar B-function genes, except that these genes specify lodicules rather than petals. All B-function genes known so far are members of the MADS-box gene family encoding transcription factors. In some eudicot model systems such as Arabidopsis and Antirrhinum, the B-function is provided by heterodimeric protein complexes encoded by one DEF- and one GLO-like gene. In several different lineages of flowering plant species, however, more than one DEF- or GLO-like gene is found. A known example is the monocot model system rice, which contains two GLO-like genes, termed OSMADS2 and OSMADS4. Duplications of floral homeotic genes may have played a critical role in the diversification of floral homeotic functions and thus the evolution of flowers. In order to date the gene duplication event that gave rise to these two genes, we cloned cDNAs of three different GLO-like genes from maize, a distant relative of rice within the Poaceae family. Phylogeny reconstructions and chromosomal mapping indicate that one of these genes, named ZMM16, is orthologous to OSMADS2, and that the other two, ZMM18 and ZMM29, are probably orthologous to OSMADS4. The gene duplication which gave rise to OSMADS2- and OSMADS4-like genes occurred probably after the split of the lineages that resulted in extant Liliaceae and Poaceae, but before the separation of the lineages that gave rise to extant maize and rice about 50 MYA. Northern and in situ hybridization studies demonstrated that the maize genes are expressed in lodicules, stamens and carpels throughout spikelet development in male and female inflorescences. The GLO-like genes from rice have very similar patterns of mRNA accumulation. In addition, ZMM16 shows also weak expression in vegetative organs. Conservation of the expression in lodicules and stamens is in perfect agreement with a floral homeotic B-function of the GLO-like genes in grasses. The conserved expression in carpels is discussed. Moreover, circumstantial evidence for a functional diversification of GLO-like genes in grasses is provided.
Collapse
Affiliation(s)
- T Münster
- Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Jia H, Chen R, Cong B, Cao K, Sun C, Luo D. Characterization and transcriptional profiles of two rice MADS-box genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 155:115-122. [PMID: 10814814 DOI: 10.1016/s0168-9452(00)00191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant MADS-box gene family plays a key role in plant development, especially in flower development. We designed degenerate primer according to the MADS-box conserved region and isolated two cDNA from rice, FDRMADS6 and FDRMADS7, which are homologous to AP1. RT-PCR expression analyses by using total RNA isolated from root, shoot and flower showed that the FDRMADS6 transcript was detectable only in flower while FDRMADS7 was expressed in all three tissues. In situ hybridization experiments indicated that at the early stage of rice flower development, the transcripts of FDRMADS6 and FDRMADS7 were detected in the spikelet apical meristem, which were same as AP1. At the late stage, when flower organ primordia started differentiating, the expression of FDRMADS6 appeared to be specifically localized in developing stamens and the pistil primordia, while the transcripts of FDRMADS7 were detectable abundantly throughout the organ primordia. Our results suggest the two MADS-box genes may be members of the AP1 family, but may have different functions.
Collapse
Affiliation(s)
- H Jia
- Department of Biochemistry, Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Kitahara K, Matsumoto S. Rose MADS-box genes 'MASAKO C1 and D1' homologous to class C floral identity genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 151:121-134. [PMID: 10808068 DOI: 10.1016/s0168-9452(99)00206-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We isolated AGAMOUS-like cDNA clones called MASAKO C1-C6 (C4-C6 are 3' or 5' partial cDNA clones) and MASAKO D1 from wild rose (Rosa rugosa Thunb. ex Murray). We found that MASAKO C1 was a homologue of AGAMOUS on the basis of sequence similarity, conservation of intron positions, and stamen- and carpel-specific expression within reproductive organs. MASAKO C1-C6 seem to have arisen via alternative splicing, and a possible function of one of the different mRNAs 'MASAKO C6' is discussed in view of similarities between it and the ag-4 variant 2 within Arabidopsis thaliana. MASAKO D1 was also thought to be a homologue of AGAMOUS based on similarity of their sequences, and on the tissue specific expression pattern with GAG2, which is an AGAMOUS homologue in ginseng. Two types of AGAMOUS homologue genes are possibly present in wild rose, as has been observed in tobacco, petunia, cucumber, and maize.
Collapse
Affiliation(s)
- K Kitahara
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | | |
Collapse
|
40
|
McSteen P, Laudencia-Chingcuanco D, Colasanti J. A floret by any other name: control of meristem identity in maize. TRENDS IN PLANT SCIENCE 2000; 5:61-6. [PMID: 10664615 DOI: 10.1016/s1360-1385(99)01541-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The life of a plant unfolds as a series of developmental stages, with each stage defined by changes in meristem identity. In maize, there are several distinct stages: the transition from vegetative growth to flowering, the elaboration of the inflorescence, and the formation of flowers. Progress in understanding meristem identity and function has been made by analyzing maize mutants with defects at each of these stages. Recently cloned genes suggest that, although the molecular mechanisms controlling floral organ identity are conserved in maize and other model species, the control of meristem identity during earlier developmental stages might be less conserved.
Collapse
Affiliation(s)
- P McSteen
- Plant Gene Expression Center, 800 Buchanan St., Albany, CA 94710, USA
| | | | | |
Collapse
|
41
|
Lopez-Dee ZP, Wittich P, Enrico Pè M, Rigola D, Del Buono I, Gorla MS, Kater MM, Colombo L. OsMADS13, a novel rice MADS-box gene expressed during ovule development. DEVELOPMENTAL GENETICS 1999; 25:237-44. [PMID: 10528264 DOI: 10.1002/(sici)1520-6408(1999)25:3<237::aid-dvg6>3.0.co;2-l] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MADS-box genes have been shown to play a major role in defining plant architecture. Recently, several MADS-box genes have been reported that are highly expressed in the ovule. However, only for the Petunia genes FBP7 and FBP11 has a function in defining ovule identity been shown. We have isolated a rice MADS-box gene named OsMADS13. Expression analysis has shown that this gene is highly expressed in developing ovules. In order to facilitate a detailed characterization of rice ovule-expressed genes, a comprehensive morphological description of ovule development in rice has been performed. The predicted amino acid sequence of OsMADS13 shows significant homology with ZAG2, a maize MADS-box gene, which is also expressed mainly in the ovule. Mapping of the gene in the rice genome showed that it is located on chromosome 12, which is syntenic to two maize regions where ZAG2 and its paralogous gene ZMM1 have been mapped. Our results suggest that OsMADS13 is the ortholog of ZAG2 and ZMM1 and might play a role in rice ovule and seed development.
Collapse
Affiliation(s)
- Z P Lopez-Dee
- Department of Genetics and Microbiology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sundström J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theissen G, Engström P. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. DEVELOPMENTAL GENETICS 1999; 25:253-66. [PMID: 10528266 DOI: 10.1002/(sici)1520-6408(1999)25:3<253::aid-dvg8>3.0.co;2-p] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reproductive organs of conifers, the pollen cones and seed cones, differ in morphology from the angiosperm flower in several fundamental respects. In this report we present evidence to suggest that the two plant groups, in spite of these morphological differences and the long evolutionary distance between them, share important features in regulating the development of the reproductive organs. We present the cloning of three genes, DAL11, DAL12, and DAL13, from Norway spruce, all of which are related to the angiosperm B-class of homeotic genes. The B-class genes determine the identities of petals and stamens. They are members of a family of MADS-box genes, which also includes C-class genes that act to determine the identity of carpels and, in concert with B genes specify stamens in the angiosperm flower. Phylogenetic analyses and the presence of B-class specific C-terminal motifs in the DAL protein sequences imply homology to the B-class genes. Specific expression of all three genes in developing pollen cones suggests that the genes are involved in one aspect of B function, the regulation of development of the pollen-bearing organs. The different temporal and spatial expression patterns of the three DAL genes in the developing pollen cones indicate that the genes have attained at least in part distinct functions. The DAL11, DAL12, and 13 expression patterns in the pollen cone partly overlap with that of the previously identified DAL2 gene, which is structurally and functionally related to the angiosperm C-class genes. This result supports the hypothesis that an interaction between B- and C-type genes is required for male organ development in conifers like in the angiosperms. Taken together, our data suggests that central components in the regulatory mechanisms for reproductive organ development are conserved between conifers and angiosperms and, thus, among all seed plants.
Collapse
Affiliation(s)
- J Sundström
- Evolutionary Biology Centre, Department of Physiological Botany, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Theissen G, Saedler H. The golden decade of molecular floral development (1990-1999): A cheerful obituary. DEVELOPMENTAL GENETICS 1999; 25:181-93. [PMID: 10528259 DOI: 10.1002/(sici)1520-6408(1999)25:3<181::aid-dvg1>3.0.co;2-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cloning of genes involved in the specification of floral meristem and organ identity and in the transition to flowering in some model plants such as Arabidopsis, Antirrhinum, and Petunia during the last decade represents an unprecedented step forward towards an understanding of floral development. Most of these genes belong to conserved and widespread gene families encoding transcription factors, such as the MADS-box genes, FLO-like, and AP2-like genes. Current work on the molecular genetic basis of floral development still focuses on a deeper understanding of the classical model systems, which are all higher eudicots. However, in order to apply the current knowledge about floral developmental genetics to plant breeding and evolutionary biology, flowering plant diversity is now also seriously taken into account. In the next decade, developmental control genes will be studied less and less individually, but rather as components of complex gene regulatory networks. The necessary technology is currently being developed. Learning to understand the origin and evolution of these gene networks will also help to clarify the origin and diversification of flowers, one of the most "abominable" and long-standing mysteries of botany. Copyright 1999 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- G Theissen
- Max-Planck-Institut fur Zuchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linne-Weg 10, Koln, Germany
| | | |
Collapse
|
44
|
Moon YH, Kang HG, Jung JY, Jeon JS, Sung SK, An G. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. PLANT PHYSIOLOGY 1999; 120:1193-204. [PMID: 10444103 PMCID: PMC59353 DOI: 10.1104/pp.120.4.1193] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/1999] [Accepted: 05/17/1999] [Indexed: 05/18/2023]
Abstract
A MADS family gene, OsMADS6, was isolated from a rice (Oryza sativa L.) young flower cDNA library using OsAMDS1 as a probe. With this clone, various MADS box genes that encode for protein-to-protein interaction partners of the OsMADS6 protein were isolated by the yeast two-hybrid screening method. On the basis of sequence homology, OsMADS6 and the selected partners can be classified in the APETALA1/AGAMOUS-LIKE9 (AP1/AGL9) family. One of the interaction partners, OsMADS14, was selected for further study. Both genes began expression at early stages of flower development, and their expression was extended into the later stages. In mature flowers the OsMADS6 transcript was detectable in lodicules and also weakly in sterile lemmas and carpels, whereas the OsMADS14 transcript was detectable in sterile lemmas, paleas/lemmas, stamens, and carpels. Using the yeast two-hybrid system, we demonstrated that the region containing of the 109th to 137th amino acid residues of OsMADS6 is indispensable in the interaction with OsMADS14. Site-directed mutation analysis revealed that the four periodical leucine residues within the region are essential for this interaction. Furthermore, it was shown that the 14 amino acid residues located immediately downstream of the K domain enhance the interaction, and that the two leucine residues within this region play an important role in that enhancement.
Collapse
Affiliation(s)
- Y H Moon
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Rutledge R, Regan S, Nicolas O, Fobert P, Côté C, Bosnich W, Kauffeldt C, Sunohara G, Séguin A, Stewart D. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:625-34. [PMID: 9778845 DOI: 10.1046/j.1365-313x.1998.00250.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Advances in elucidating the molecular processes controlling flower initiation and development have provided unique opportunities to investigate the developmental genetics of non-flowering plants. In addition to providing insights into the evolutionary aspects of seed plants, identification of genes regulating reproductive organ development in gymnosperms could help determine the level of homology with current models of flower induction and floral organ identity. Based upon this, we have searched for putative developmental regulators in conifers with amino acid sequence homology to MADS-box genes. PCR cloning using degenerate primers targeted to the MADS-box domain revealed the presence of over 27 MADS-box genes within black spruce (Picea mariana), including several with extensive homology to either AP1 or AGAMOUS, both known to regulate flower development in Arabidopsis. This indicates that like angiosperms, conifers contain a large and diverse MADS-box gene family that probably includes regulators of reproductive organ development. Confirmation of this was provided by the characterization of an AGAMOUS-like cDNA clone called SAG1, whose conservation of intron position and tissue-specific expression within reproductive organs indicate that it is a homologue of AGAMOUS. Functional homology with AGAMOUS was demonstrated by the ability of SAG1 to produce homeotic conversions of sepals to carpels and petals to stamens when ectopically expressed in transgenic Arabidopsis. This suggests that some of the genetic pathways controlling flower and cone development are homologous, and antedate the 300-million-year-old divergence of angiosperms and gymnosperms.
Collapse
Affiliation(s)
- R Rutledge
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The past half decade has provided a wealth of information concerning the molecular and genetic control of floral organ and meristem identity in dicotyledonous plants. Comparatively little is understood about these processes in grass species in spite of the importance that these species play in human agriculture. The isolation of grass genes that are homologous to dicot floral homeotic genes in combination with recent advances in reverse genetic technology and improvements in cereal transformation opens the door for understanding molecular mechanisms of grass flower development. Such information will also focus attention on the evolutionary relationships between grass and dicot flowers and the degree to which the developmental pathways leading to reproductive organ development in divergent angiosperms have utilized conserved mechanisms.
Collapse
Affiliation(s)
- R J Schmidt
- Department of Biology, Center for Molecular Genetics, University of California, San Diego, CA 92093-0116, USA.
| | | |
Collapse
|
48
|
Abstract
Analysis of genes controlling flowering time (heading date) contributes to our understanding of fundamental principles of plant development and is of practical importance because of the effects of flowering time on plant adaptation and crop yield. This review discusses the extent to which plants may share common genetic mechanisms for the control of flowering time and the implications of such conservation for gene isolation from the major cereal crops. Gene isolation may exploit the small genome of rice in map-based approaches, utilizing the conservation of gene order that is revealed when common DNA markers are mapped in different species. Alternatively, mechanisms may be conserved within plants as a whole, in which case genes cloned from the model dicot Arabidopsis thaliana provide an alternative route.
Collapse
Affiliation(s)
- D A Laurie
- John Innes Centre, Norwich Research Park, Colney, UK
| |
Collapse
|
49
|
Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci U S A 1997; 94:2415-20. [PMID: 9122209 PMCID: PMC20102 DOI: 10.1073/pnas.94.6.2415] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Flowers sensu lato are short, specialized axes bearing closely aggregated sporophylls. They are typical for seed plants (spermatophytes) and are prominent in flowering plants sensu stricto (angiosperms), where they often comprise an attractive perianth. There is evidence that spermatophytes evolved from gymnosperm-like plants with a fern-like mode of reproduction called progymnosperms. It seems plausible, therefore, that the stamens/carpels and pollen sacs/nucelli of spermatophytes are homologous to fern sporophylls and sporangia, respectively. However, the exact mode and molecular basis of early seed and flower evolution is not yet known. Comparing flower developmental control genes to their homologs from lower plants that do not flower may help to clarify the issue. We have isolated and characterized MADS-box genes expressed in gametophytes and sporophytes of the fern Ceratopteris. The data indicate that at least two different MADS-box genes homologous to floral homeotic genes existed in the last common ancestor of contemporary vascular plants, some descendants of which underwent multiple duplications and diversifications and were recruited into novel developmental networks during the evolution of floral organs.
Collapse
Affiliation(s)
- T Münster
- Max Planck Institute for Breeding Research, Division of Molecular Plant Genetics, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
|