1
|
Lin J, Chong SY, Oh MW, Lew SQ, Zhu L, Zhang X, Witola WH, Lau GW. Signal recognition particle RNA is critical for genetic competence and virulence of Streptococcus pneumoniae. J Bacteriol 2024; 206:e0000424. [PMID: 39171913 PMCID: PMC11412328 DOI: 10.1128/jb.00004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) causes a wide range of important human infectious diseases, including pneumonia, pneumonia-derived sepsis, otitis media, and meningitis. Pneumococcus produces numerous secreted proteins that are critical for normal physiology and pathogenesis. The membrane targeting and translocation of these secreted proteins are partly mediated by the signal recognition particle (SRP) complex, which consists of 4.5S small cytoplasmic RNA (ScRNA), and the Ffh, and FtsY proteins. Here, we report that pneumococcal ∆scRNA, ∆ffh, and ∆ftsY mutants were significantly impaired in competence induction, competence pili production, exogenous DNA uptake, and genetic transformation. Also, the ∆scRNA mutant was significantly attenuated in the mouse models of bacteremia and pneumonia. Interestingly, unlike the ∆scRNA, both ∆ffh and ∆ftsY mutants had growth defects on Todd-Hewitt Agar, which were alleviated by the provision of free amino acids or serum. Differences in nutritional requirements between ∆ffh and ∆ftsY vs ∆scRNA suggest that Ffh and FtsY may be partially functional in the absence of ScRNA. Finally, the insertase YidC2, which could functionally rescue some SRP mutations in other streptococcal species, was not essential for pneumococcal genetic transformation. Collectively, these results indicate that ScRNA is crucial for the successful development of genetic competence and virulence in pneumococcus. IMPORTANCE Streptococcus pneumoniae (pneumococcus) causes multiple important infectious diseases in humans. The signal recognition particle (SRP) complex, which comprised 4.5S small cytoplasmic RNA (ScRNA), and the Ffh and FtsY proteins, mediates membrane targeting and translocation of secreted proteins in all organisms. However, the role of SRP and ScRNA has not been characterized during the induction of the competence system for genetic transformation and virulence in pneumococcus. By using a combination of genetic, biochemical, proteomic, and imaging approaches, we demonstrated that the SRP complex plays a significant role in membrane targeting of competence system-regulated effectors important for genetic transformation, virulence during bacteremia and pneumonia infections, and nutritional acquisition.
Collapse
Affiliation(s)
- Jingjun Lin
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Sook Yin Chong
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Myung Whan Oh
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Shi Qian Lew
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Luchang Zhu
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Xuejin Zhang
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - William H. Witola
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| | - Gee W. Lau
- Department of
Pathobiology, College of Veterinary Medicine, University of Illinois at
Urbana-Champaign, Urbana,
Illinois, USA
| |
Collapse
|
2
|
Antezana BS, Lohsen S, Wu X, Vidal JE, Tzeng YL, Stephens DS. Dissemination of Tn 916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms. Microbiol Spectr 2023; 11:e0375922. [PMID: 36912669 PMCID: PMC10101023 DOI: 10.1128/spectrum.03759-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10-7. GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10-4 in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10-7). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10-4 in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Brenda S. Antezana
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Sarah Lohsen
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David S. Stephens
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Milly TA, Engler ER, Chichura KS, Buttner AR, Koirala B, Tal-Gan Y, Bertucci MA. Harnessing Multiple, Nonproteogenic Substitutions to Optimize CSP:ComD Hydrophobic Interactions in Group 1 Streptococcus pneumoniae. Chembiochem 2021; 22:1940-1947. [PMID: 33644965 DOI: 10.1002/cbic.202000876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/27/2021] [Indexed: 11/12/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a human pathobiont that causes drastic antibiotic-resistant infections and is responsible for millions of deaths universally. Pneumococcus pathogenicity relies on the competence-stimulating peptide (CSP)-mediated quorum-sensing (QS) pathway that controls competence development for genetic transformation and, consequently, the spread of antibiotic resistance and virulence genes. Modulation of QS in S. pneumoniae can therefore be used to enervate pneumococcal infectivity as well as minimize the susceptibility to resistance development. In this work, we sought to optimize the interaction of CSP1 with its cognate transmembrane histidine kinase receptor (ComD1) through substitution of proteogenic and nonproteogenic amino acids on the hydrophobic binding face of CSP1. The findings from this study not only provided additional structure-activity data that are significant in optimizing CSP1 potency, but also led to the development of potent QS modulators. These CSP-based QS modulators could be used as privileged scaffolds for the development of antimicrobial agents against pneumococcal infections.
Collapse
Affiliation(s)
- Tahmina A Milly
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Emilee R Engler
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, PA 18018, USA
| | - Kylie S Chichura
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, PA 18018, USA
| | - Alec R Buttner
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, PA 18018, USA
| | - Bimal Koirala
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Michael A Bertucci
- Department of Chemistry, Moravian College, 1200 Main Street, Bethlehem, PA 18018, USA
| |
Collapse
|
4
|
Streptococcus pneumoniae Elaborates Persistent and Prolonged Competent State during Pneumonia-Derived Sepsis. Infect Immun 2020; 88:IAI.00919-19. [PMID: 31988172 DOI: 10.1128/iai.00919-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/21/2020] [Indexed: 01/18/2023] Open
Abstract
The competence regulon of pneumococcus regulates both genetic transformation and virulence. However, competence induction during host infection has not been examined. By using the serotype 2 strain D39, we transcriptionally fused the firefly luciferase (luc) to competence-specific genes and spatiotemporally monitored the competence development in a mouse model of pneumonia-derived sepsis. In contrast to the universally reported short transient burst of competent state in vitro, the naturally developed competent state was prolonged and persistent during pneumonia-derived sepsis. The competent state began at approximately 20 h postinfection (hpi) and facilitated systemic invasion and sepsis development and progressed in different manners. In some mice, acute pneumonia quickly led to sepsis and death, accompanied by increasing intensity of the competence signal. In the remaining mice, pneumonia lasted longer, with the competence signal decreasing at first but increasing as the infection became septic. The concentration of pneumococcal inoculum (1 × 106 to 1 × 108 CFU/mouse) and postinfection lung bacterial burden did not appreciably impact the kinetics of competence induction. Exogenously provided competence stimulating peptide 1 (CSP1) failed to modulate the onset kinetics of competence development in vivo The competence shutoff regulator DprA was highly expressed during pneumonia-derived sepsis but failed to turn off the competent state in mice. Competent D39 bacteria propagated the competence signal through cell-to-cell contact rather than the classically described quorum-sensing mechanism. Finally, clinical pneumococcal strains of different serotypes were also able to develop natural competence during pneumonia-derived sepsis.
Collapse
|
5
|
Jalal N, Lee SF. The MsrAB reducing pathway of Streptococcus gordonii is needed for oxidative stress tolerance, biofilm formation, and oral colonization in mice. PLoS One 2020; 15:e0229375. [PMID: 32084213 PMCID: PMC7034828 DOI: 10.1371/journal.pone.0229375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The ability of Streptococcus gordonii to cope with oxidative stress is important for survival and persistence in dental plaque. In this study, we used mutational, phenotypic, and biochemical approaches to characterize the role of a methionine sulfoxide reductase (MsrAB) and proteins encoded by genes in the msrAB operon and an adjacent operon in oxidative stress tolerance in S. gordonii. The results showed that MsrAB and four other proteins encoded in the operons are needed for protection from H2O2 and methionine sulfoxide. These five proteins formed a reducing pathway that was needed for oxidative stress tolerance, biofilm formation, and oral colonization in mice. In the pathway, MsrAB was the enzyme that repaired oxidatively damaged proteins, and the two thioredoxin-like lipoproteins (SdbB and Sgo_1177) and two CcdA proteins were proteins that maintained the catalytic cycle of MsrAB. Consistent with the role in oxidative stress tolerance, the production of MsrAB, SdbB, and Sgo_11777 was induced in aerobic growth and planktonic cells.
Collapse
Affiliation(s)
- Naif Jalal
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
| | - Song F. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
6
|
Tian XL, Li M, Scinocca Z, Rutherford H, Li YH. ClpP is required for proteolytic regulation of type II toxin-antitoxin systems and persister cell formation in Streptococcus mutans. Access Microbiol 2019; 1:e000054. [PMID: 32974554 PMCID: PMC7470404 DOI: 10.1099/acmi.0.000054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/18/2022] Open
Abstract
The type II toxin-antitoxin (TA) modules, mazEF and relBE, in Streptococcus mutans have been implicated in stress response, antibiotic tolerance and persister cell formation. However, how S. mutans regulates these systems to prevent unwanted toxin activation and persister cell formation is unclear. In this study, we provide evidence that ClpP is required for the proteolytic regulation of these TA systems and persister cell formation in S. mutans following antibiotic challenge. A persister viability assay showed that S. mutans UA159 (WT) formed a larger quantity of persister cells than its isogenic mutant ΔclpP following antibiotic challenge. However, the lux reporter assay revealed that clpP deletion did not affect the transcriptional levels of mazEF and relBE, since no significant differences (P>0.05) in the reporter activities were detected between the wild-type and ΔclpP background. Instead, all antibiotics tested at a sub-minimum inhibitory concentration (sub-MIC) induced transcriptional levels of mazEF and relBE operons. We then examined the protein profiles of His-tagged MazE and RelB proteins in the UA159 and ΔclpP backgrounds by Western blotting analysis. The results showed that S. mutans strains grown under non-stress conditions expressed very low but detectable levels of MazE and RelB antitoxin proteins. Antibiotics at sub-MICs induced the levels of the MazE and RelB proteins, but the protein levels decreased rapidly in the wild-type background. In contrast, a stable level of MazE and RelB proteins could be detected in the ΔclpP mutant background, suggesting that both proteins accumulated in the ΔclpP mutant. We conclude that ClpP is required for the proteolytic regulation of cellular levels of the MazE and RelB antitoxins in S. mutans , which may play a critical role in modulating the TA activities and persister cell formation of this organism following antibiotic challenge.
Collapse
Affiliation(s)
- Xiao-Lin Tian
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada
| | - Miao Li
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada.,Lanzhou University, Gansu, PR China
| | - Zachariah Scinocca
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada
| | - Heather Rutherford
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada
| | - Yung-Hua Li
- Department of Applied Oral Sciences, Dalhousie Universit, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Recombination of the Phase-Variable spnIII Locus Is Independent of All Known Pneumococcal Site-Specific Recombinases. J Bacteriol 2019; 201:JB.00233-19. [PMID: 31085693 PMCID: PMC6620402 DOI: 10.1128/jb.00233-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 02/03/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination. Streptococcus pneumoniae is one of the world’s leading bacterial pathogens, causing pneumonia, septicemia, and meningitis. In recent years, it has been shown that genetic rearrangements in a type I restriction-modification system (SpnIII) can impact colony morphology and gene expression. By generating a large panel of mutant strains, we have confirmed a previously reported result that the CreX (also known as IvrR and PsrA) recombinase found within the locus is not essential for hsdS inversions. In addition, mutants of homologous recombination pathways also undergo hsdS inversions. In this work, we have shown that these genetic rearrangements, which result in different patterns of genome methylation, occur across a wide variety of serotypes and sequence types, including two strains (a 19F and a 6B strain) naturally lacking CreX. Our gene expression analysis, by transcriptome sequencing (RNAseq), confirms that the level of creX expression is impacted by these genomic rearrangements. In addition, we have shown that the frequency of hsdS recombination is temperature dependent. Most importantly, we have demonstrated that the other known pneumococcal site-specific recombinases XerD, XerS, and SPD_0921 are not involved in spnIII recombination, suggesting that a currently unknown mechanism is responsible for the recombination of these phase-variable type I systems. IMPORTANCEStreptococcus pneumoniae is a leading cause of pneumonia, septicemia, and meningitis. The discovery that genetic rearrangements in a type I restriction-modification locus can impact gene regulation and colony morphology led to a new understanding of how this pathogen switches from harmless colonizer to invasive pathogen. These rearrangements, which alter the DNA specificity of the type I restriction-modification enzyme, occur across many different pneumococcal serotypes and sequence types and in the absence of all known pneumococcal site-specific recombinases. This finding suggests that this is a truly global mechanism of pneumococcal gene regulation and the need for further investigation of mechanisms of site-specific recombination.
Collapse
|
8
|
Identification of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in Streptococcus gordonii. J Bacteriol 2019; 201:JB.00030-19. [PMID: 30804044 DOI: 10.1128/jb.00030-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
We previously identified a novel thiol-disulfide oxidoreductase, SdbA, in Streptococcus gordonii that formed disulfide bonds in substrate proteins and played a role in multiple phenotypes. In this study, we used mutational, phenotypic, and biochemical approaches to identify and characterize the redox partners of SdbA. Unexpectedly, the results showed that SdbA has multiple redox partners, forming a complex oxidative protein-folding pathway. The primary redox partners of SdbA that maintain its active site in an oxidized state are a surface-exposed thioredoxin family lipoprotein called SdbB (Sgo_1171) and an integral membrane protein annotated as CcdA2. Inactivation of sdbB and ccdA2 simultaneously, but not individually, recapitulated the sdbA mutant phenotype. The sdbB-ccdA2 mutant had defects in a range of cellular processes, including autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release. AtlS, the natural substrate of SdbA produced by the sdbB-ccdA2 mutant lacked activity and an intramolecular disulfide bond. The redox state of SdbA in the sdbB-ccdA2 mutant was found to be in a reduced form and was restored when sdbB and ccdA2 were knocked back into the mutant. In addition, we showed that SdbB formed a disulfide-linked complex with SdbA in the cell. Recombinant SdbB and CcdA2 exhibited oxidase activity and reoxidized reduced SdbA in vitro Collectively, our results demonstrate that S. gordonii uses multiple redox partners for oxidative protein folding.IMPORTANCE Streptococcus gordonii is a commensal bacterium of the human dental plaque. Previously, we identified an enzyme, SdbA, that forms disulfide bonds in substrate proteins and plays a role in a number of cellular processes in S. gordonii Here, we identified the redox partners of SdbA. We showed that SdbA has multiple redox partners, SdbB and CcdA2, forming a complex oxidative protein-folding pathway. This pathway is essential for autolysis, bacteriocin production, genetic competence, and extracellular DNA (eDNA) release in S. gordonii These cellular processes are considered to be important for the success of S. gordonii as a dental plaque organism. This is the first example of an oxidative protein-folding pathway in Gram-positive bacteria that consists of an enzyme that uses multiple redox partners to function.
Collapse
|
9
|
Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-Level Macrolide Resistance Due to the Mega Element [ mef(E)/ mel] in Streptococcus pneumoniae. Front Microbiol 2019; 10:868. [PMID: 31105666 PMCID: PMC6491947 DOI: 10.3389/fmicb.2019.00868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/04/2019] [Indexed: 01/06/2023] Open
Abstract
Transferable genetic elements conferring macrolide resistance in Streptococcus pneumoniae can encode the efflux pump and ribosomal protection protein, mef(E)/mel, in an operon of the macrolide efflux genetic assembly (Mega) element- or induce ribosomal methylation through a methyltransferase encoded by erm(B). During the past 30 years, strains that contain Mega or erm(B) or both elements on Tn2010 and other Tn916-like composite mobile genetic elements have emerged and expanded globally. In this study, we identify and define pneumococcal isolates with unusually high-level macrolide resistance (MICs > 16 μg/ml) due to the presence of the Mega element [mef(E)/mel] alone. High-level resistance due to mef(E)/mel was associated with at least two specific genomic insertions of the Mega element, designated Mega-2.IVa and Mega-2.IVc. Genome analyses revealed that these strains do not possess erm(B) or known ribosomal mutations. Deletion of mef(E)/mel in these isolates eliminated macrolide resistance. We also found that Mef(E) and Mel of Tn2010-containing pneumococci were functional but the high-level of macrolide resistance was due to Erm(B). Using in vitro competition experiments in the presence of macrolides, high-level macrolide-resistant S. pneumoniae conferred by either Mega-2.IVa or erm(B), had a growth fitness advantage over the lower-level, mef(E)/mel-mediated macrolide-resistant S. pneumoniae phenotypes. These data indicate the ability of S. pneumoniae to generate high-level macrolide resistance by macrolide efflux/ribosomal protection [Mef(E)/Mel] and that high-level resistance regardless of mechanism provides a fitness advantage in the presence of macrolides.
Collapse
Affiliation(s)
- Max R Schroeder
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - Sarah Lohsen
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott T Chancey
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| | - David S Stephens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, GA, United States
| |
Collapse
|
10
|
Wholey WY, Abu-Khdeir M, Yu EA, Siddiqui S, Esimai O, Dawid S. Characterization of the Competitive Pneumocin Peptides of Streptococcus pneumoniae. Front Cell Infect Microbiol 2019; 9:55. [PMID: 30915281 PMCID: PMC6422914 DOI: 10.3389/fcimb.2019.00055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
In the polymicrobial environment of the human nasopharynx, Streptococcus pneumoniae (pneumococcus) competes with other members of the microbial community for limited nutrients in part by secreting small peptide bacteriocins called pneumocins. Pneumocin production is controlled by a quorum sensing system encoded by the blp locus. Although the locus is found in all pneumococci, there is significant variability in the repertoire of pneumocins and associated immunity proteins encoded in the Bacteriocin Immunity Region (BIR) and in the presence or absence of a functional Blp transporter. Strains without an active Blp transporter are inactive in plate overlay assays and rely on a homologous transporter that is only produced during brief periods of competence to stimulate the blp locus and secrete pneumocins. The variability of the locus suggests that selective pressure is influencing the content to promote the optimal competitive environment. Much of the variability in the blp locus has been described at the genome level; the phenotypic activity attributable to the various BIR genes has not been fully described. To examine the role of the predicted pneumocin peptides in competition, 454 isolates were screened for competence independent blp pheromone secretion using plate assays. Active strains were characterized for inhibition, BIR content, BlpC pherotype and serotype. Deletion analysis on inhibitory strains demonstrated that BlpI and BlpJ peptides function as a two-peptide bacteriocin and that BlpIJ immunity is encoded by the co-transcribed blpU4/5 genes. BlpIJ secretion promotes inhibitory activity against the majority of pneumococcal isolates when expressed in a Blp transporter intact background. Intermediate levels of competition in biofilms were noted when BlpIJ containing strains carried the non-functional Blp transporter. Based on genome data, the combination of BlpIJ in a Blp transporter intact strain is surprisingly rare, despite clear advantages during colonization and biofilm growth. In contrast, we show that the blpK/pncF operon encoding the single-peptide pneumocin BlpK and its immunity protein is found in the majority of isolates. Unlike, BlpIJ and BlpK were shown to promote a limited spectrum of inhibition due in part to immunity that is independent of activation of the blp locus.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maha Abu-Khdeir
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Emily A Yu
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Saher Siddiqui
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ogenna Esimai
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Suzanne Dawid
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Gain- and Loss-of-Function Screens Coupled to Next-Generation Sequencing for Antibiotic Mode of Action and Resistance Studies in Streptococcus pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.02381-18. [PMID: 30783004 DOI: 10.1128/aac.02381-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Two whole-genome screening approaches are described for studying the mode of action and the mechanisms of resistance to trimethoprim (TMP) in the Gram-positive Streptococcus pneumoniae The gain-of-function approach (Int-Seq) relies on a genomic library of DNA fragments integrated into a fucose-inducible cassette. The second approach, leading to both gain- and loss-of-function mutation, is based on chemical mutagenesis coupled to next-generation sequencing (Mut-Seq). Both approaches pointed at the drug target dihydrofolate reductase (DHFR) as a major resistance mechanism to TMP. Resistance was achieved by dhfr overexpression either through the addition of fucose (Int-Seq) or by mutations upstream of the gene (Mut-Seq). Three types of mutations increased expression by disrupting a predicted Rho-independent terminator upstream of dhfr Known and novel DHFR mutations were also detected by Mut-Seq, and these were functionally validated for TMP resistance. The two approaches also suggested that an increase in the metabolic flux from purine synthesis to GTP and then to folate can modulate the susceptibility to TMP. Finally, we provide evidence for a novel role of the ABC transporter PatAB in TMP susceptibility. Our genomic screens highlighted novel aspects on the mode of action and mechanisms of resistance to antibiotics.
Collapse
|
12
|
Hu FZ, Król JE, Tsai CHS, Eutsey RA, Hiller LN, Sen B, Ahmed A, Hillman T, Buchinsky FJ, Nistico L, Dice B, Longwell M, Horsey E, Ehrlich GD. Deletion of genes involved in the ketogluconate metabolism, Entner-Doudoroff pathway, and glucose dehydrogenase increase local and invasive virulence phenotypes in Streptococcus pneumoniae. PLoS One 2019; 14:e0209688. [PMID: 30620734 PMCID: PMC6324787 DOI: 10.1371/journal.pone.0209688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae displays increased resistance to antibiotic therapy following biofilm formation. A genome-wide search revealed that SP 0320 and SP 0675 (respectively annotated as 5-keto-D-gluconate-5-reductase and glucose dehydrogenase) contain the highest degree of homology to CsgA of Myxococcus xanthus, a signaling factor that promotes cell aggregation and biofilm formation. Single and double SP 0320 and SP 0675 knockout mutants were created in strain BS72; however, no differences were observed in the biofilm-forming phenotypes of mutants compared to the wild type strain. Using the chinchilla model of otitis media and invasive disease, all three mutants exhibited greatly increased virulence compared to the wild type strain (increased pus formation, tympanic membrane rupture, mortality rates). The SP 0320 gene is located in an operon with SP 0317, SP 0318 and SP 0319, which we bioinformatically annotated as being part of the Entner-Doudoroff pathway. Deletion of SP 0317 also resulted in increased mortality in chinchillas; however, mutations in SP 0318 and SP 0319 did not alter the virulence of bacteria compared to the wild type strain. Complementing the SP 0317, SP 0320 and SP 0675 mutant strains reversed the virulence phenotype. We prepared recombinant SP 0317, SP 0318, SP 0320 and SP 0675 proteins and confirmed their functions. These data reveal that disruption of genes involved in the degradation of ketogluconate, the Entner-Doudoroff pathway, and glucose dehydrogenase significantly increase the virulence of bacteria in vivo; two hypothetical models involving virulence triggered by reduced in carbon-flux through the glycolytic pathways are presented.
Collapse
Affiliation(s)
- Fen Z. Hu
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail: (FZH); (GDE)
| | - Jarosław E. Król
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Chen Hsuan Sherry Tsai
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Rory A. Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Luisa N. Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Bhaswati Sen
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Azad Ahmed
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Todd Hillman
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Farrel J. Buchinsky
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Laura Nistico
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Bethany Dice
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Mark Longwell
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Edward Horsey
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
- * E-mail: (FZH); (GDE)
| |
Collapse
|
13
|
Iannelli F, Santoro F, Santagati M, Docquier JD, Lazzeri E, Pastore G, Cassone M, Oggioni MR, Rossolini GM, Stefani S, Pozzi G. Type M Resistance to Macrolides Is Due to a Two-Gene Efflux Transport System of the ATP-Binding Cassette (ABC) Superfamily. Front Microbiol 2018; 9:1670. [PMID: 30108557 PMCID: PMC6079230 DOI: 10.3389/fmicb.2018.01670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022] Open
Abstract
The mef(A) gene was originally identified as the resistance determinant responsible for type M resistance to macrolides, a phenotype frequently found in clinical isolates of Streptococcus pneumoniae and Streptococcus pyogenes. MefA was defined as a secondary transporter of the major facilitator superfamily driven by proton-motive force. However, when characterizing the mef(A)-carrying elements Tn1207.1 and Φ1207.3, another macrolide resistance gene, msr(D), was found adjacent to mef(A). To define the respective contribution of mef(A) and msr(D) to macrolide resistance, three isogenic deletion mutants were constructed by transformation of a S. pneumoniae strain carrying Φ1207.3: (i) Δmef(A)–Δmsr(D); (ii) Δmef(A)–msr(D); and (iii) mef(A)–Δmsr(D). Susceptibility testing of mutants clearly showed that msr(D) is required for macrolide resistance, while deletion of mef(A) produced only a twofold reduction in the minimal inhibitory concentration (MIC) for erythromycin. The contribution of msr(D) to macrolide resistance was also studied in S. pyogenes, which is the original host of Φ1207.3. Two isogenic strains of S. pyogenes were constructed: (i) FR156, carrying Φ1207.3, and (ii) FR155, carrying Φ1207.3/Δmsr(D). FR155 was susceptible to erythromycin, whereas FR156 was resistant, with an MIC value of 8 μg/ml. Complementation experiments showed that reintroduction of the msr(D) gene could restore macrolide resistance in Δmsr(D) mutants. Radiolabeled erythromycin was retained by strains lacking msr(D), while msr(D)-carrying strains showed erythromycin efflux. Deletion of mef(A) did not affect erythromycin efflux. This data suggest that type M resistance to macrolides in streptococci is due to an efflux transport system of the ATP-binding cassette (ABC) superfamily, in which mef(A) encodes the transmembrane channel, and msr(D) the two ATP-binding domains.
Collapse
Affiliation(s)
- Francesco Iannelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Santagati
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Elisa Lazzeri
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabiria Pastore
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Cassone
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco R Oggioni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian M Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Stefania Stefani
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
14
|
A Quorum Sensing-Regulated Protein Binds Cell Wall Components and Enhances Lysozyme Resistance in Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00701-17. [PMID: 29555699 DOI: 10.1128/jb.00701-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/10/2018] [Indexed: 12/28/2022] Open
Abstract
The Rgg2/3 quorum sensing (QS) system is conserved among all sequenced isolates of group A Streptococcus (GAS; Streptococcus pyogenes). The molecular architecture of the system consists of a transcriptional activator (Rgg2) and a transcriptional repressor (Rgg3) under the control of autoinducing peptide pheromones (SHP2 and SHP3). Activation of the Rgg2/3 pathway leads to increases in biofilm formation and resistance to the bactericidal effects of the host factor lysozyme. In this work, we show that deletion of a small gene, spy49_0414c, abolished both phenotypes in response to pheromone signaling. The gene encodes a small, positively charged, secreted protein, referred to as StcA. Analysis of recombinant StcA showed that it can directly interact with GAS cell wall preparations containing phosphodiester-linked carbohydrate polymers but not with preparations devoid of them. Immunofluorescence microscopy detected antibody against StcA bound to the surface of paraformaldehyde-fixed wild-type cells. Expression of StcA in bacterial culture induced a shift in the electrostatic potential of the bacterial cell surface, which became more positively charged. These results suggest that StcA promotes phenotypes by way of ionic interactions with the GAS cell wall, most likely with negatively charged cell wall-associated polysaccharides.IMPORTANCE This study focuses on a small protein, StcA, that is expressed and secreted under induction of Rgg2/3 QS, ionically associating with negatively charged domains on the cell surface. These data present a novel mechanism of resistance to the host factor lysozyme by GAS and have implications in the relevance of this circuit in the interaction between the bacterium and the human host that is mediated by the bacterial cell surface.
Collapse
|
15
|
Coassociation between Group B Streptococcus and Candida albicans Promotes Interactions with Vaginal Epithelium. Infect Immun 2018; 86:IAI.00669-17. [PMID: 29339458 DOI: 10.1128/iai.00669-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal sepsis, pneumonia, and meningitis worldwide. In the majority of cases, GBS is transmitted vertically from mother to neonate, making maternal vaginal colonization a key risk factor for neonatal disease. The fungus Candida albicans is an opportunistic pathogen of the female genitourinary tract and the causative agent of vaginal thrush. Carriage of C. albicans has been shown to be an independent risk factor for vaginal colonization by GBS. However, the nature of interactions between these two microbes is poorly understood. This study provides evidence of a reciprocal, synergistic interplay between GBS and C. albicans that may serve to promote their cocolonization of the vaginal mucosa. GBS strains NEM316 (serotype III) and 515 (serotype Ia) are shown to physically interact with C. albicans, with the bacteria exhibiting tropism for candidal hyphal filaments. This interaction enhances association levels of both microbes with the vaginal epithelial cell line VK2/E6E7. The ability of GBS to coassociate with C. albicans is dependent upon expression of the hypha-specific adhesin Als3. In turn, expression of GBS antigen I/II family adhesins (Bsp polypeptides) facilitates this coassociation and confers upon surrogate Lactococcus lactis the capacity to exhibit enhanced interactions with C. albicans on vaginal epithelium. As genitourinary tract colonization is an essential first step in the pathogenesis of GBS and C. albicans, the coassociation mechanism reported here may have important implications for the risk of disease involving both of these pathogens.
Collapse
|
16
|
Zhang X, Cui J, Wu Y, Wang H, Wang J, Qiu Y, Mo Y, He Y, Zhang X, Yin Y, Xu W. Streptococcus pneumoniae Attenuated Strain SPY1 with an Artificial Mineral Shell Induces Humoral and Th17 Cellular Immunity and Protects Mice against Pneumococcal Infection. Front Immunol 2018; 8:1983. [PMID: 29375585 PMCID: PMC5768616 DOI: 10.3389/fimmu.2017.01983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a major pathogen leading to substantial morbidity and mortality in children under 5 years of age. Vaccination is an effective strategy to prevent S. pneumoniae infection. SPY1 is a pneumococcal vaccine candidate strain obtained in our previous study. To improve its stability and immunogencity, in this study, we constructed the SPY1ΔlytA strain that lacks autolysin activity and was coated with an artificial exterior surface calcium phosphate shell by in situ mineralization. The resulting strain SPY1ΔlytACaPi displayed enhanced thermal stability enabling storage at 37°C for 1 week. Furthermore, mucosal and subcutaneous immunization with the SPY1ΔlytACaPi strain induced better protective effects than SPY1ΔlytA in anti-colonization after challenging with 19F and anti-invasion by D39 in mice. Subcutaneous immunization with SPY1ΔlytACaPi elicited higher IgG level while mucosal immunization primarily elicited an immune response which is supposed to be related to Th17 cells. Taken together, the mineralized strain may be a promising candidate for an attenuated S. pneumoniae vaccine.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jingjing Cui
- Department of Clinical Laboratory, Chongqing Hospital for Women and Children, Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yunjun Mo
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Bandara M, Skehel JM, Kadioglu A, Collinson I, Nobbs AH, Blocker AJ, Jenkinson HF. The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation. Microbes Infect 2017; 19:402-412. [PMID: 28456649 PMCID: PMC5526788 DOI: 10.1016/j.micinf.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/04/2023]
Abstract
In Streptococcus pneumoniae TIGR4, genes encoding a SecY2A2 accessory Sec system are present within a locus encoding a serine-rich repeat surface protein PsrP. Mutant strains deleted in secA2 or psrP were deficient in biofilm formation, while the ΔsecA2 mutant was reduced in binding to airway epithelial cells. Cell wall protein (CWP) fractions from the ΔsecA2 mutant, but not from the ΔpsrP mutant, were reduced in haemolytic (pneumolysin) activity. Contact-dependent pneumolysin (Ply) activity of wild type TIGR4 cells was ten-fold greater than that of ΔsecA2 mutant cells suggesting that Ply was not active at the ΔsecA2 cell surface. Ply protein was found to be present in the CWP fraction from the ΔsecA2 mutant, but showed aberrant electrophoretic migration indicative of protein modification. Proteomic analyses led to the discovery that the ΔsecA2 mutant CWP fraction was deficient in two glycosidases as well as other enzymes involved in carbohydrate metabolism. Taken collectively the results suggest that positioning of Ply into the cell wall compartment in active form, together with glycosyl hydrolases and adhesins, requires a functional accessory Sec system.
Collapse
Affiliation(s)
- Mikaila Bandara
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK; School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK
| | - Ariel J Blocker
- School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK; School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| |
Collapse
|
18
|
A tetracycline-inducible integrative expression system for Streptococcus pneumoniae. FEMS Microbiol Lett 2017; 364:3038572. [DOI: 10.1093/femsle/fnx044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
|
19
|
Salvadori G, Junges R, Morrison DA, Petersen FC. Overcoming the Barrier of Low Efficiency during Genetic Transformation of Streptococcus mitis. Front Microbiol 2016; 7:1009. [PMID: 27458432 PMCID: PMC4932118 DOI: 10.3389/fmicb.2016.01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 01/31/2023] Open
Abstract
Objective:Streptococcus mitis is a predominant oral colonizer, but difficulties in genetic manipulation of this species have hampered our understanding of the mechanisms it uses for colonization of oral surfaces. The aim of this study was to reveal optimal conditions for natural genetic transformation in S. mitis and illustrate its application in direct genome editing. Methods: Luciferase reporter assays were used to assess gene expression of the alternative sigma factor (σX) in combination with natural transformation experiments to evaluate the efficiency by which S. mitis activates the competence system and incorporates exogenous DNA. Optimal amounts and sources of donor DNA (chromosomal, amplicon, or replicative plasmid), concentrations of synthetic competence-stimulating peptide, and transformation media were assessed. Results: A semi-defined medium showed much improved results for response to the competence stimulating peptide when compared to rich media. The use of a donor amplicon with large homology flanking regions also provided higher transformation rates. Overall, an increase of transformation efficiencies from 0.001% or less to over 30% was achieved with the developed protocol. We further describe the construction of a markerless mutant based on this high efficiency strategy. Conclusion: We optimized competence development in S. mitis, by use of semi-defined medium and appropriate concentrations of synthetic competence factor. Combined with the use of a large amplicon of donor DNA, this method allowed easy and direct editing of the S. mitis genome, broadening the spectrum of possible downstream applications of natural transformation in this species.
Collapse
Affiliation(s)
- Gabriela Salvadori
- Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway
| | - Roger Junges
- Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway
| | - Donald A Morrison
- Department of Biological Sciences, College of Liberal Arts and Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Fernanda C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway
| |
Collapse
|
20
|
Pratt SD, David CA, Black-Schaefer C, Dandliker PJ, Xuei X, Warrior U, Burns DJ, Zhong P, Cao Z, Saiki AYC, Lerner CG, Chovan LE, Soni NB, Nilius AM, Wagenaar FL, Merta PJ, Traphagen LM, Beutel BA. A Strategy for Discovery of Novel Broad-Spectrum Antibacterials Using a High-Throughput Streptococcus pneumoniae Transcription/Translation Screen. ACTA ACUST UNITED AC 2016; 9:3-11. [PMID: 15006143 DOI: 10.1177/1087057103260876] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors report the development of a high-throughput screen for inhibitors of Streptococcus pneumoniae transcription and translation (TT) using a luciferase reporter, and the secondary assays used to determine the biochemical spectrum of activity and bacterial specificity. More than 220,000 compounds were screened in mixtures of 10 compounds per well, with 10,000 picks selected for further study. False-positive hits from inhibition of luciferase activity were an extremely common artifact. After filtering luciferase inhibitors and several known classes of antibiotics, approximately 50 hits remained. These compounds were examined for their ability to inhibit Escherichia coli TT, uncoupled S. pneumoniae translation or transcription, rabbit reticulocyte translation, and in vitro toxicity in human and bacterial cells. One of these compounds had the desired profile of broad-spectrum biochemical activity in bacteria and selectivity versus mammalian biochemical and whole-cell assays. ( Journal of Biomolecular Screening 2004:3-11)
Collapse
Affiliation(s)
- Steven D Pratt
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6217,USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 2016; 113:E3012-21. [PMID: 27162331 DOI: 10.1073/pnas.1520693113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Innovative strategies are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. Here we develop a sensitive method, which we term Cosmid Sequencing (or "Cos-Seq"), based on functional cloning coupled to next-generation sequencing. Cos-Seq identified >60 loci in the Leishmania genome that were enriched via drug selection with methotrexate and five major antileishmanials (antimony, miltefosine, paromomycin, amphotericin B, and pentamidine). Functional validation highlighted both known and previously unidentified drug targets and resistance genes, including novel roles for phosphatases in resistance to methotrexate and antimony, for ergosterol and phospholipid metabolism genes in resistance to miltefosine, and for hypothetical proteins in resistance to paromomycin, amphothericin B, and pentamidine. Several genes/loci were also found to confer resistance to two or more antileishmanials. This screening method will expedite the discovery of drug targets and resistance mechanisms and is easily adaptable to other microorganisms.
Collapse
|
22
|
Tian M, Qu J, Bao Y, Gao J, Liu J, Wang S, Sun Y, Ding C, Yu S. Construction of pTM series plasmids for gene expression in Brucella species. J Microbiol Methods 2016; 123:18-23. [DOI: 10.1016/j.mimet.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
23
|
Lei L, Yang Y, Mao M, Li H, Li M, Yang Y, Yin J, Hu T. Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene. Front Microbiol 2015; 6:1432. [PMID: 26733973 PMCID: PMC4685068 DOI: 10.3389/fmicb.2015.01432] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023] Open
Abstract
The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharide, which act as a scaffold for its biofilm, thus contributing to its pathogenicity, environmental stress tolerance, and antimicrobial resistance. The two-component system VicRK of S. mutans regulates a group of virulence genes that are associated with biofilm matrix synthesis. Knockout of vicX affects biofilm formation, oxidative stress tolerance, and transformation of S. mutans. However, little is known regarding the vicX-modulated structural characteristics of the exopolysaccharides underlying the biofilm formation and the phenotypes of the vicX mutants. Here, we identified the role of vicX in the structural characteristics of the exopolysaccharide matrix and biofilm physiology. The vicX mutant (SmuvicX) biofilms seemingly exhibited "desertification" with architecturally impaired exopolysaccharide-enmeshed cell clusters, compared with the UA159 strain (S. mutans wild type strain). Concomitantly, SmuvicX showed a decrease in water-insoluble glucan (WIG) synthesis and in WIG/water-soluble glucan (WSG) ratio. Gel permeation chromatography (GPC) showed that the WIG isolated from the SmuvicX biofilms had a much lower molecular weight compared with the UA159 strain indicating differences in polysaccharide chain lengths. A monosaccharide composition analysis demonstrated the importance of the vicX gene in the glucose metabolism. We performed metabolite profiling via (1)H nuclear magnetic resonance spectroscopy, which showed that several chemical shifts were absent in both WSG and WIG of SmuvicX biofilms compared with the UA159 strain. Thus, the modulation of structural characteristics of exopolysaccharide by vicX provides new insights into the interaction between the exopolysaccharide structure, gene functions, and cariogenicity. Our results suggest that vicX gene modulates the structural characteristics of exopolysaccharide associated with cariogenicity, which may be explored as a potential target that contributes to dental caries management. Furthermore, the methods used to purify the EPS of S. mutans biofilms and to analyze multiple aspects of its structure (GPC, gas chromatography-mass spectrometry, and (1)H nuclear magnetic resonance spectroscopy) may be useful approaches to determine the roles of other virulence genes for dental caries prevention.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Yingming Yang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Mengying Mao
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Hong Li
- Centre of Infectious Diseases, West China Hospital of Sichuan University Chengdu, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Yan Yang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Jiaxin Yin
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China; Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
24
|
Davey L, Cohen A, LeBlanc J, Halperin SA, Lee SF. The disulfide oxidoreductase SdbA is active in Streptococcus gordonii using a single C-terminal cysteine of the CXXC motif. Mol Microbiol 2015; 99:236-53. [PMID: 26395460 DOI: 10.1111/mmi.13227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2015] [Indexed: 12/31/2022]
Abstract
Recently, we identified a novel disulfide oxidoreductase, SdbA, in the oral bacterium Streptococcus gordonii. Disulfide oxidoreductases form disulfide bonds in nascent proteins using a CXXC catalytic motif. Typically, the N-terminal cysteine interacts with substrates, whereas the C-terminal cysteine is buried and only reacts with the first cysteine of the motif. In this study, we investigated the SdbA C(86) P(87) D(88) C(89) catalytic motif. In vitro, SdbA single cysteine variants at the N or C-terminal position (SdbAC86P and SdbAC89A ) were active but displayed different susceptibility to oxidation, and N-terminal cysteine was prone to sulfenylation. In S. gordonii, mutants with a single N-terminal cysteine were inactive and formed unstable disulfide adducts with other proteins. Activity was partially restored by inactivation of pyruvate oxidase, a hydrogen peroxide generator. Presence of the C-terminal cysteine alone (in the SdbAC86P variant) could complement the ΔsdbA mutant and restore disulfide bond formation in recombinant and natural protein substrates. These results provide evidence that certain disulfide oxidoreductases can catalyze disulfide bond formation using a single cysteine of the CXXC motif, including the buried C-terminal cysteine.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Canadian Center for Vaccinology (CCfV), Dalhousie University and the Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Alejandro Cohen
- Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| | - Jason LeBlanc
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Canadian Center for Vaccinology (CCfV), Dalhousie University and the Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada.,Canadian Center for Vaccinology (CCfV), Dalhousie University and the Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.,Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
25
|
Cortes PR, Piñas GE, Cian MB, Yandar N, Echenique J. Stress-triggered signaling affecting survival or suicide of Streptococcus pneumoniae. Int J Med Microbiol 2014; 305:157-69. [PMID: 25543170 DOI: 10.1016/j.ijmm.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen that can survive to stress conditions, such as the acidic environment of inflammatory foci, and tolerates lethal pH through a mechanism known as the acid tolerance response. We previously described that S. pneumoniae activates acidic-stress induced lysis in response to acidified environments, favoring the release of cell wall compounds, DNA and virulence factors. Here, we demonstrate that F(0)F(1)-ATPase is involved in the response to acidic stress. Chemical inhibitors (DCCD, optochin) of this proton pump repressed the ATR induction, but caused an increased ASIL. Confirming these findings, mutants of the subunit c of this enzyme showed the same phenotypes as inhibitors. Importantly, we demonstrated that F(0)F(1)-ATPase and ATR are necessary for the intracellular survival of the pneumococcus in macrophages. Alternatively, a screening of two-component system (TCS) mutants showed that ATR and survival in pneumocytes were controlled in contrasting ways by ComDE and CiaRH, which had been involved in the ASIL mechanism. Briefly, CiaRH was essential for ATR (ComE represses activation) whereas ComE was necessary for ASIL (CiaRH protects against induction). They did not regulate F0F1-ATPase expression, but control LytA expression on the pneumococcal surface. These results suggest that both TCSs and F(0)F(1)-ATPase control a stress response and decide between a survival or a suicide mechanism by independent pathways, either in vitro or in pneumocyte cultures. This biological model contributes to the current knowledge about bacterial response under stress conditions in host tissues, where pathogens need to survive in order to establish infections.
Collapse
Affiliation(s)
- Paulo R Cortes
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Germán E Piñas
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Melina B Cian
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Nubia Yandar
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Jose Echenique
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina.
| |
Collapse
|
26
|
Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, Xu P, Kitten T. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 2014; 92:1243-59. [PMID: 24750294 DOI: 10.1111/mmi.12625] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2014] [Indexed: 01/16/2023]
Abstract
Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Katie E Crump
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Streptococcus pneumoniae phosphotyrosine phosphatase CpsB and alterations in capsule production resulting from changes in oxygen availability. J Bacteriol 2014; 196:1992-2003. [PMID: 24659769 DOI: 10.1128/jb.01545-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae produces a protective capsular polysaccharide whose production must be modulated for bacterial survival within various host niches. Capsule production is affected in part by a phosphoregulatory system comprised of CpsB, CpsC, and CpsD. Here, we found that growth of serotype 2 strain D39 under conditions of increased oxygen availability resulted in decreased capsule levels concurrent with an ∼5-fold increase in Cps2B-mediated phosphatase activity. The change in Cps2B phosphatase activity did not result from alterations in the levels of either the cps2B transcript or the Cps2B protein. Recombinant Cps2B expressed in Escherichia coli similarly exhibited increased phosphatase activity under conditions of high-oxygen growth. S. pneumoniae D39 derivatives with defined deletion or point mutations in cps2B demonstrated reduced phosphatase activity with corresponding increases in levels of Cps2D tyrosine phosphorylation. There was, however, no correlation between these phenotypes and the level of capsule production. During growth under reduced-oxygen conditions, the Cps2B protein was essential for parental levels of capsule, but phosphatase activity alone could be eliminated without an effect on capsule. Under increased-oxygen conditions, deletion of cps2B did not affect capsule levels. These results indicate that neither Cps2B phosphatase activity nor Cps2D phosphorylation levels per se are determinants of capsule levels, whereas the Cps2B protein is important for capsule production during growth under conditions of reduced but not enhanced oxygen availability. Roles for factors outside the capsule locus, possible interactions between capsule regulatory proteins, and links to other cellular processes are also suggested by the results described in this study.
Collapse
|
28
|
Liu EYM, Chang FY, Chang JC, Fung CP. Differences in virulence of pneumolysin and autolysin mutants constructed by insertion duplication mutagenesis and in-frame deletion in Streptococcus pneumoniae. BMC Biotechnol 2014; 14:16. [PMID: 24558977 PMCID: PMC3936844 DOI: 10.1186/1472-6750-14-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 02/04/2014] [Indexed: 11/30/2022] Open
Abstract
Background Insertion duplication mutagenesis (IDM) and in-frame deletion (IFD) are common techniques for studying gene function, and have been applied to pneumolysin (ply), a virulence gene in Streptococcus pneumoniae (D39). Discrepancies in virulence between the two techniques were observed in both the previous and present studies. This phenomenon was also observed during mutation analysis of autolysin (lytA). Results Our data showed that target gene restoration (TGR) occurred in IDM mutants, even in the presence of antibiotics, while the IFD mutants were stable. In PCR result, TGR occurred later in IDM-ply and -lytA mutants cultured in non-supplemented medium (4–5 h) compared with those grown in medium supplemented with erythromycin (erm)/chloramphenicol (cat) (3–4 h), but plateaued faster. Real-time PCR for detecting TGR had been performed. When compared with 8-h culture, TGR detection increased from Day 1 and Day 2 of IDM mutant’s culture. erm-sensitive clones from IDM mutant were found. Southern blot hybridization and Western blotting also confirmed the phenomenon of TGR. The median survival of mice following intraperitoneal (IP) injection with a 3-h culture of IDM-mutants was significantly longer than that with an 8-h culture, irrespective of antibiotic usage. The median survival time of mice following IP injection of a 3-h culture versus an 8-h culture of IDM-ply in the absence of antibiotics was 10 days versus 2 days (p = 0.031), respectively, while in the presence of erm, the median survival was 5 days versus 2.5 days (p = 0.037), respectively. For an IDM-lytA mutant, the corresponding values were 8.5 days versus 2 days (p = 0.019), respectively, for non-supplemented medium, and 2.5 versus 2 days (p = 0.021), respectively, in the presence of cat. A comparable survival rate was observed between WT D39 and an 8-h IDM culture. Conclusion TGR in IDM mutants should be monitored to avoid inconsistent results, and misinterpretation of data due to TGR could lead to important biological meaning being overlooked. Therefore, based on these results, IFD is preferable to IDM for disruption of target genes.
Collapse
Affiliation(s)
| | | | | | - Chang-Phone Fung
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| |
Collapse
|
29
|
Genomic characterization of ciprofloxacin resistance in a laboratory-derived mutant and a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother 2013; 57:4911-9. [PMID: 23877698 DOI: 10.1128/aac.00418-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The broad-spectrum fluoroquinolone ciprofloxacin is a bactericidal antibiotic targeting DNA topoisomerase IV and DNA gyrase encoded by the parC and gyrA genes. Resistance to ciprofloxacin in Streptococcus pneumoniae mainly occurs through the acquisition of mutations in the quinolone resistance-determining region (QRDR) of the ParC and GyrA targets. A role in low-level ciprofloxacin resistance has also been attributed to efflux systems. To look into ciprofloxacin resistance at a genome-wide scale and to discover additional mutations implicated in resistance, we performed whole-genome sequencing of an S. pneumoniae isolate selected for resistance to ciprofloxacin in vitro (128 μg/ml) and of a clinical isolate displaying low-level ciprofloxacin resistance (2 μg/ml). Gene disruption and DNA transformation experiments with PCR fragments harboring the mutations identified in the in vitro S. pneumoniae mutant revealed that resistance is mainly due to QRDR mutations in parC and gyrA and to the overexpression of the ABC transporters PatA and PatB. In contrast, no QRDR mutations were identified in the genome of the S. pneumoniae clinical isolate with low-level resistance to ciprofloxacin. Assays performed in the presence of the efflux pump inhibitor reserpine suggested that resistance is likely mediated by efflux. Interestingly, the genome sequence of this clinical isolate also revealed mutations in the coding region of patA and patB that we implicated in resistance. Finally, a mutation in the NAD(P)H-dependent glycerol-3-phosphate dehydrogenase identified in the S. pneumoniae clinical strain was shown to protect against ciprofloxacin-mediated reactive oxygen species.
Collapse
|
30
|
Davey L, Ng CKW, Halperin SA, Lee SF. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J Biol Chem 2013; 288:16416-16429. [PMID: 23615907 DOI: 10.1074/jbc.m113.464578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Crystal K W Ng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
31
|
Identification of mutations involved in the requirement of potassium for growth of typical Melissococcus plutonius strains. Appl Environ Microbiol 2013; 79:3882-6. [PMID: 23584776 DOI: 10.1128/aem.00598-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melissococcus plutonius is a fastidious honeybee pathogen, and the addition of KH(2)PO(4) to culture medium is required for its growth. Using genome sequences and a newly developed vector, we showed that mutations in genes encoding Na(+)/H(+) antiporter and cation-transporting ATPase are involved in the potassium requirement for growth.
Collapse
|
32
|
The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J Bacteriol 2013; 195:1561-72. [PMID: 23354751 DOI: 10.1128/jb.01964-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All fully sequenced strains of Streptococcus pneumoniae (pneumococcus) contain a version of the blp locus which is responsible for the regulation and secretion of a variable repertoire of pneumococcal bacteriocins called pneumocins and their associated immunity proteins. Pneumocins mediate intra- and interspecies competition in vitro and have been shown to provide a competitive advantage in vivo. Pneumocin production is stimulated by extracellular accumulation of the peptide pheromone, BlpC. Both BlpC and the functional pneumocins are secreted out of the cell via the Blp transporter, BlpAB. The conserved surface-expressed serine protease, HtrA, has been shown to limit activation of the locus and secretion of functional pneumocins. In this work, we demonstrate that htrA mutants stimulate the blp locus at lower cell density and to a greater extent than strains expressing wild-type HtrA. This effect is not due to direct proteolytic degradation of secreted pheromone by the protease, but instead is a result of HtrA-mediated disruption of peptide processing and secretion. Because pneumocins are secreted through the same transporter as the pheromone, this finding explains why pheromone supplementation cannot completely restore pneumocin inhibition to strains expressing high levels of HtrA despite restoration of blp transcriptional activity. HtrA restricts pneumocin production to high cell density by limiting the rate of accumulation of BlpC in the environment. Importantly, HtrA does not interfere with the ability of a strain to sense environmental pheromones, which is necessary for the induction of protective immunity in the face of pneumocin-secreting competitors.
Collapse
|
33
|
Ajdic D, Chen Z. A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage. Mol Oral Microbiol 2012. [PMID: 23193985 DOI: 10.1111/omi.12009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most common type of carbohydrate-transport system in Streptococcus mutans is the phosphoenolpyruvate-sugar phosphotransferase system (PTS). Fourteen PTS exist in S. mutans UA159. Several studies have shown that microorganisms growing in biofilms express different genes compared with their planktonic counterparts. In this study, we showed that one PTS of S. mutans was expressed in sucrose-grown biofilms. Furthermore, the same PTS was also responsible for the transport and metabolism of disaccharide nigerose (3-O-α-d-glucopyranosyl-d-glucose). Additionally, the results indicate that the studied PTS might be involved in the transport and metabolism of carbohydrates synthesized by glucosyltransferase B and glucosyltransferase C of S. mutans. To our knowledge, this is the first report that shows PTS transport of a disaccharide (and possibly extracellular oligosaccharides) with α-1,3 linkage.
Collapse
Affiliation(s)
- D Ajdic
- University of Miami, Miller School of Medicine, Miami, FL, USA.
| | | |
Collapse
|
34
|
Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. mBio 2012; 3:mBio.00303-12. [PMID: 23033471 PMCID: PMC3518915 DOI: 10.1128/mbio.00303-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. The paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD have been identified as crucial for virulence of the human pathogen Streptococcus pneumoniae. This study maps the presence of the corresponding genes and enzyme activities in S. pneumoniae and in related commensal species of the genera Streptococcus, Gemella, and Granulicatella. The distribution, genome location, and sequence diversification indicate that zmpB is the ancestral gene predating the evolution of today’s humanoid species. The ZmpB protease may play an important but yet unidentified role in the association of streptococci of the Mitis and Salivarius groups with their human host, as it is ubiquitous in these two groups, except for a fragmented gene in Streptococcus thermophilus, the only species not associated with humans. The relative sequence diversification of the IgA1 protease, ZmpB, and ZmpD is striking evidence of differences in selection for diversification of these surface-exposed proteins in the pathogen S. pneumoniae compared to the closely related commensal streptococci.
Collapse
|
35
|
Boncoeur E, Durmort C, Bernay B, Ebel C, Di Guilmi AM, Croizé J, Vernet T, Jault JM. PatA and PatB Form a Functional Heterodimeric ABC Multidrug Efflux Transporter Responsible for the Resistance of Streptococcus pneumoniae to Fluoroquinolones. Biochemistry 2012; 51:7755-65. [DOI: 10.1021/bi300762p] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Emilie Boncoeur
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Claire Durmort
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Benoît Bernay
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Christine Ebel
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Anne Marie Di Guilmi
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Jacques Croizé
- Unité de bactériologie, CHU la Tronche, Grenoble, France
| | - Thierry Vernet
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| | - Jean-Michel Jault
- Université Joseph Fourier-Grenoble 1, Institut de Biologie Structurale,
Grenoble, France, CNRS, Institut de Biologie
Structurale, Grenoble, France, and CEA,
Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
36
|
Chen T, Huang Q, Li Z, Zhang W, Lu C, Yao H. Construction and characterization of a Streptococcus suis serotype 2 recombinant expressing enhanced green fluorescent protein. PLoS One 2012; 7:e39697. [PMID: 22911688 PMCID: PMC3401235 DOI: 10.1371/journal.pone.0039697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important pathogen, responsible for diverse diseases in swine and humans. To obtain a S. suis 2 strain that can be tracked in vitro and in vivo, we constructed the Egfp-HA9801 recombinant S. suis 2 strain with egfp and spcr genes inserted via homologous recombination. To assess the effects of the egfp and spcr genes in HA9801, the biochemical characteristics, growth features and virulence in Balb/C mice were compared between the recombinant and the parent HA9801 strain. We detected the EGFP expression from Egfp-HA9801 by epifluorescence microscopy. The results showed that the biochemical characterization and growth features of the Egfp-HA9801 recombinant were highly similar to that of the parent HA9801. We did not find significant differences in lethality (50% lethal dose), morbidity and mortality between the two strains. Furthermore, the bacterial counts in each various tissues of Egfp-HA9801-infected mice displayed similar dynamic compared with the HA9801-infected mice. Our results also showed that the Egfp-HA9801 cells grown at 37°C for 36 h displayed greater green fluorescence signals than the cells grown at 28°C for 36 h and 37°C for 24 h. The fluorescence in the tissue cryosections of Egfp-HA9801-injected mice was also stronger than that of the HA9801 group. Together, these results indicate that the egfp and spcr insertions into the Egfp-HA9801 recombinant did not significantly change the virulence when compared with HA980, and this EGFP labeled strain can be used for future S. suis 2 pathogenesis research.
Collapse
Affiliation(s)
- Tao Chen
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qin Huang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhaolong Li
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
37
|
The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J Bacteriol 2012; 194:4589-600. [PMID: 22730123 DOI: 10.1128/jb.00830-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer is an important means of bacterial evolution that is facilitated by transduction, conjugation, and natural genetic transformation. Transformation occurs after bacterial cells enter a state of competence, where naked DNA is acquired from the extracellular environment. Induction of the competent state relies on signals that activate master regulators, causing the expression of genes involved in DNA uptake, processing, and recombination. All streptococcal species contain the master regulator SigX and SigX-dependent effector genes required for natural genetic transformation; however, not all streptococcal species have been shown to be naturally competent. We recently demonstrated that competence development in Streptococcus mutans requires the type II ComRS quorum-sensing circuit, comprising an Rgg transcriptional activator and a novel peptide pheromone (L. Mashburn-Warren, D. A. Morrison, and M. J. Federle, Mol. Microbiol. 78:589-606, 2010). The type II ComRS system is shared by the pyogenic, mutans, and bovis streptococci, including the clinically relevant pathogen Streptococcus pyogenes. Here, we describe the activation of sigX by a small-peptide pheromone and an Rgg regulator of the type II ComRS class. We confirm previous reports that SigX is functional and able to activate sigX-dependent gene expression within the competence regulon, and that SigX stability is influenced by the cytoplasmic protease ClpP. Genomic analyses of available S. pyogenes genomes revealed the presence of intact genes within the competence regulon. While this is the first report to show natural induction of sigX, S. pyogenes remained nontransformable under laboratory conditions. Using radiolabeled DNA, we demonstrate that transformation is blocked at the stage of DNA uptake.
Collapse
|
38
|
Characterization and functional analysis of atl, a novel gene encoding autolysin in Streptococcus suis. J Bacteriol 2012; 194:1464-73. [PMID: 22228730 DOI: 10.1128/jb.06231-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 (S. suis 2) is an important swine and human pathogen responsible for septicemia and meningitis. A novel gene, designated atl and encoding a major autolysin of S. suis 2 virulent strain HA9801, was identified and characterized in this study. The Atl protein contains 1,025 amino acids with a predicted molecular mass of 113 kDa and has a conserved N-acetylmuramoyl-l-alanine amidase domain. Recombinant Atl was expressed in Escherichia coli, and its bacteriolytic and fibronectin-binding activities were confirmed by zymography and Western affinity blotting. Two bacteriolytic bands were shown in the sodium dodecyl sulfate extracts of HA9801, while both were absent from the atl inactivated mutant. Cell chains of the mutant strain became longer than that of the parental strain. In the autolysis assay, HA9801 decreased to 20% of the initial optical density (OD) value, while the mutant strain had almost no autolytic activity. The biofilm capacity of the atl mutant was reduced ∼30% compared to the parental strain. In the zebrafish infection model, the 50% lethal dose of the mutant strain was increased up to 5-fold. Furthermore, the adherence to HEp-2 cells of the atl mutant was 50% less than that of the parental strain. Based on the functional analysis of the recombinant Atl and observed effects of atl inactivation on HA9801, we conclude that Atl is a major autolysin of HA9801. It takes part in cell autolysis, separation of daughter cells, biofilm formation, fibronectin-binding activity, cell adhesion, and pathogenesis of HA9801.
Collapse
|
39
|
LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J Bacteriol 2011; 194:627-35. [PMID: 22123253 DOI: 10.1128/jb.06273-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Streptococcus pneumoniae and probably most other members of the genus Streptococcus are competent for natural genetic transformation. During the competent state, S. pneumoniae produces a murein hydrolase, CbpD, that kills and lyses noncompetent pneumococci and closely related species. Previous studies have shown that CbpD is essential for efficient transfer of genomic DNA from noncompetent to competent cells in vitro. Consequently, it has been proposed that CbpD together with the cognate immunity protein ComM constitutes a DNA acquisition mechanism that enables competent pneumococci to capture homologous DNA from closely related streptococci sharing the same habitat. Although genes encoding CbpD homologs or CbpD-related proteins are present in many different streptococcal species, the genomes of a number of streptococci do not encode CbpD-type proteins. In the present study we show that the genomes of nearly all species lacking CbpD encode an unrelated competence-regulated murein hydrolase termed LytF. Using Streptococcus gordonii as a model system, we obtained evidence indicating that LytF is a functional analogue of CbpD. In sum, our results show that a murein hydrolase gene is part of the competence regulon of most or all streptococcal species, demonstrating that these muralytic enzymes constitute an essential part of the streptococcal natural transformation system.
Collapse
|
40
|
Fani F, Leprohon P, Légaré D, Ouellette M. Whole genome sequencing of penicillin-resistant Streptococcus pneumoniae reveals mutations in penicillin-binding proteins and in a putative iron permease. Genome Biol 2011; 12:R115. [PMID: 22108223 PMCID: PMC3334601 DOI: 10.1186/gb-2011-12-11-r115] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 09/29/2011] [Accepted: 11/22/2011] [Indexed: 01/10/2023] Open
Affiliation(s)
- Fereshteh Fani
- Centre de recherche en Infectiologie du Centre de recherche du CHUL and Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Laurier, Québec, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
UNLABELLED Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. IMPORTANCE The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during ribosomal decoding induced competence, while decreasing the error rate repressed competence. This pattern of regulation was promoted by the HtrA protease, which selectively repressed competence when translational fidelity was high but not when accuracy was low. Our findings demonstrate that this organism is able to monitor the accuracy of information used for protein biosynthesis and suggest that errors trigger a response addressing both the immediate challenge of misfolded proteins and, through genetic exchange, upstream coding errors that may underlie protein folding defects. This pathway may represent an evolutionary strategy for maintaining the coding integrity of the genome.
Collapse
|
42
|
Conserved mutations in the pneumococcal bacteriocin transporter gene, blpA, result in a complex population consisting of producers and cheaters. mBio 2011; 2:mBio.00179-11. [PMID: 21896678 PMCID: PMC3171984 DOI: 10.1128/mbio.00179-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
All fully sequenced strains of Streptococcus pneumoniae possess a version of the blp locus, which is responsible for bacteriocin production and immunity. Activation of the blp locus is stimulated by accumulation of the peptide pheromone, BlpC, following its secretion by the ABC transporter, BlpA. The blp locus is characterized by significant diversity in blpC type and in the region of the locus containing putative bacteriocin and immunity genes. In addition, the blpA gene can represent a single large open reading frame or be divided into several smaller fragments due to the presence of frameshift mutations. In this study, we use a collection of strains with blp-dependent inhibition and immunity to define the genetic changes that bring about phenotypic differences in bacteriocin production or immunity. We demonstrate that alterations in blpA, blpC, and bacteriocin/immunity content likely play an important role in competitive interactions between pneumococcal strains. Importantly, strains with a highly conserved frameshift mutation in blpA are unable to secrete bacteriocins or BlpC, but retain the ability to respond to exogenous peptide pheromone produced by cocolonizing strains, stimulating blp-mediated immunity. These “cheater” strains can only coexist with bacteriocin-producing strains that secrete their cognate BlpC and share the same immunity proteins. The variable outcome of these interactions helps to explain the heterogeneity of the blp pheromone, bacteriocin, and immunity protein content. Streptococcus pneumoniae resides in a polymicrobial environment and competes for limited resources by the elaboration of small antimicrobial peptides called bacteriocins. A conserved cluster of genes in the S. pneumoniae genome is involved in the production of bacteriocins and their associated protective immunity proteins through secretion of a signaling pheromone. In this study, we show that a significant number of strains have lost the ability to secrete bacteriocins and signaling pheromones due to a specific mutation in a dedicated transporter protein. Because the regulatory and immunity portion of the locus is retained, these “cheater” strains can survive in the face of invasion from a bacteriocin-producing strain without the cost of bacteriocin secretion. The outcome of such interactions depends on each strain’s repertoire of pheromone, immunity protein, and bacteriocin genes, such that intrastrain competition drives the diversity in bacteriocin, immunity protein, and pheromone content.
Collapse
|
43
|
Zhu L, Lau GW. Inhibition of competence development, horizontal gene transfer and virulence in Streptococcus pneumoniae by a modified competence stimulating peptide. PLoS Pathog 2011; 7:e1002241. [PMID: 21909280 PMCID: PMC3164649 DOI: 10.1371/journal.ppat.1002241] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023] Open
Abstract
Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae. Streptococcus pneumoniae is a major cause of pneumonia, ear infection and meningitis. Antibiotic resistance among S. pneumoniae isolates is increasingly a major clinical problem. The acquisition of antibiotic resistance genes in S. pneumoniae is controlled by a peptide pheromone called competence-stimulating peptide (CSP). CSP binds to a receptor called ComD, which in turn activates its cognate transcription factor ComE to initiate DNA uptake and integration into the S. pneumoniae genome. CSP-ComD/E also regulates the expression of virulence factors required for infection. In this study, multiple synthetic analogues of CSP pheromone were examined for their ability to inhibit acquisition of exogenous DNA, and to control infection by S. pneumoniae in mice. Two of these analogues, CSP1-E1A and CSP2-E1A, competitively inhibit the ability of S. pneumoniae to acquire the streptomycin resistance rpsL gene and the capsule gene cap3A during mouse models of acute pneumonia and bacteremia. CSP1-E1A also reduces mouse mortality during lung infection by S. pneumoniae. This is the first demonstration of the use of CSP analogues to attenuate virulence and to inhibit acquisition of an antibiotic resistance gene in S. pneumoniae. Because the CSP-ComD/E system is conserved among many pathogenic bacteria, CSP analogues may be applicable to reduce the spread of antibiotic resistance genes and to treat infections.
Collapse
Affiliation(s)
- Luchang Zhu
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
44
|
Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 2011; 7:e1002190. [PMID: 21829369 PMCID: PMC3150281 DOI: 10.1371/journal.ppat.1002190] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the Firmicute phylum.
Collapse
|
45
|
LaSarre B, Federle MJ. Regulation and consequence of serine catabolism in Streptococcus pyogenes. J Bacteriol 2011; 193:2002-12. [PMID: 21317320 PMCID: PMC3133027 DOI: 10.1128/jb.01516-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pyogenes (also called group A Streptococcus [GAS]), is found strictly in humans and is capable of causing a wide variety of infections. Here we demonstrate that serine catabolism in GAS is controlled by the transcriptional regulator Spy49_0126c. We have designated this regulator SerR (for serine catabolism regulator). Microarray and transcriptional reporter data show that SerR acts as a transcriptional repressor of multiple operons, including sloR and sdhBA. Purified recombinant SerR binds to the promoters of both sloR and sdhB, demonstrating that this regulation is direct. Deletion of serR results in a lower culture yield of the mutant than of the wild type when the strains are grown in defined medium unless additional serine is provided, suggesting that regulation of serine metabolism is important for maximizing bacterial growth. Deletion of sloR or sdhB in the ΔserR mutant background restores growth to wild-type levels, suggesting that both operons have roles in serine catabolism. While reports have linked sloR function to streptolysin O expression, transport experiments with radiolabeled l-serine reveal that the sloR operon is required for rapid acquisition of serine, suggesting a novel role for this operon in amino acid metabolism.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Microbiology and Immunology, College of Medicine
| | - Michael J. Federle
- Department of Microbiology and Immunology, College of Medicine
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
46
|
Albarracín Orio AG, Piñas GE, Cortes PR, Cian MB, Echenique J. Compensatory evolution of pbp mutations restores the fitness cost imposed by β-lactam resistance in Streptococcus pneumoniae. PLoS Pathog 2011; 7:e1002000. [PMID: 21379570 PMCID: PMC3040684 DOI: 10.1371/journal.ppat.1002000] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/10/2010] [Indexed: 11/19/2022] Open
Abstract
The prevalence of antibiotic resistance genes in pathogenic bacteria is a major challenge to treating many infectious diseases. The spread of these genes is driven by the strong selection imposed by the use of antibacterial drugs. However, in the absence of drug selection, antibiotic resistance genes impose a fitness cost, which can be ameliorated by compensatory mutations. In Streptococcus pneumoniae, β-lactam resistance is caused by mutations in three penicillin-binding proteins, PBP1a, PBP2x, and PBP2b, all of which are implicated in cell wall synthesis and the cell division cycle. We found that the fitness cost and cell division defects conferred by pbp2b mutations (as determined by fitness competitive assays in vitro and in vivo and fluorescence microscopy) were fully compensated by the acquisition of pbp2x and pbp1a mutations, apparently by means of an increased stability and a consequent mislocalization of these protein mutants. Thus, these compensatory combinations of pbp mutant alleles resulted in an increase in the level and spectrum of β-lactam resistance. This report describes a direct correlation between antibiotic resistance increase and fitness cost compensation, both caused by the same gene mutations acquired by horizontal transfer. The clinical origin of the pbp mutations suggests that this intergenic compensatory process is involved in the persistence of β-lactam resistance among circulating strains. We propose that this compensatory mechanism is relevant for β-lactam resistance evolution in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Andrea G. Albarracín Orio
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Germán E. Piñas
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Echenique
- Departamento de Bioquímica Clínica - CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
47
|
Cui Y, Zhang X, Gong Y, Niu S, Yin N, Yao R, Xu W, Li D, Wang H, He Y, Cao J, Yin Y. Immunization with DnaJ (hsp40) could elicit protection against nasopharyngeal colonization and invasive infection caused by different strains of Streptococcus pneumoniae. Vaccine 2011; 29:1736-44. [PMID: 21238570 DOI: 10.1016/j.vaccine.2010.12.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 12/12/2010] [Accepted: 12/27/2010] [Indexed: 11/29/2022]
Abstract
Increasing mortality, morbidity and economic costs have been paid to pneumococcal diseases every year. Currently, vaccination is the most promising strategy to reduce the occurrence of pneumococcal infection. In this study, we investigated the protective efficacy of immunization with recombinant DnaJ (hsp40) protein against infections of different serotypes of Streptococcus pneumoniae. We demonstrated that mucosal immunization with DnaJ antigen could induce both systemic and mucosal antibodies for DnaJ and stimulate the release of high levels of IL-10, IFN-γ and IL-17A. Moreover, this mucosal vaccination could reduce nasal or lung colonization of pneumococcus and elicit protection against different serotypes of invasive pneumococcal infections. As well, we found that intraperitoneal immunization with DnaJ could also protect against invasive infections caused by different serotypes of pneumococcus, and passive immunization with antibodies specific for DnaJ confirmed that this protection was antibody-mediated. Our results therefore support the potential of DnaJ as a conserved pneumococcal protein vaccine.
Collapse
Affiliation(s)
- Yali Cui
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education, Chongqing Medical University, Department of Laboratory Medicine, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Role of the cell wall microenvironment in expression of a heterologous SpaP-S1 fusion protein by Streptococcus gordonii. Appl Environ Microbiol 2010; 77:1660-6. [PMID: 21193663 DOI: 10.1128/aem.02178-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The charge density in the cell wall microenvironment of Gram-positive bacteria is believed to influence the expression of heterologous proteins. To test this, the expression of a SpaP-S1 fusion protein, consisting of the surface protein SpaP of Streptococcus mutans and a pertussis toxin S1 fragment, was studied in the live vaccine candidate bacterium Streptococcus gordonii. Results showed that the parent strain PM14 expressed very low levels of SpaP-S1. By comparison, the dlt mutant strain, which has a mutation in the dlt operon preventing d-alanylation of the cell wall lipoteichoic acids, and another mutant strain, OB219(pPM14), which lacks the LPXTG major surface proteins SspA and SspB, expressed more SpaP-S1 than the parent. Both the dlt mutant and the OB219(pPM14) strain had a more negatively charged cell surface than PM14, suggesting that the negative charged cell wall played a role in the increase in SpaP-S1 production. Accordingly, the addition of Ca(2+), Mg(2+), and K(+), presumably increasing the positive charge of the cell wall, led to a reduction in SpaP-S1 production, while the addition of bicarbonate resulted in an increase in SpaP-S1 production. The level of SpaP-S1 production could be correlated with the level of PrsA, a peptidyl-prolyl cis/trans isomerase, in the cells. PrsA expression appears to be regulated by the cell envelope stress two-component regulatory system LiaSR. The results collectively indicate that the charge density of the cell wall microenvironment can modulate heterologous SpaP-S1 protein expression in S. gordonii and that this modulation is mediated by the level of PrsA, whose expression is regulated by the LiaSR two-component regulatory system.
Collapse
|
49
|
Mashburn-Warren L, Morrison DA, Federle MJ. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 2010; 78:589-606. [PMID: 20969646 DOI: 10.1111/j.1365-2958.2010.07361.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All streptococcal genomes encode the alternative sigma factor SigX and 21 SigX-dependent proteins required for genetic transformation, yet no pyogenic streptococci are known to develop competence. Resolving this paradox may depend on understanding the regulation of sigX. We report the identification of a regulatory circuit linked to the sigX genes of mutans, pyogenic, and bovis streptococci that uses a novel small, double-tryptophan-containing sigX-inducing peptide (XIP) pheromone. In all three groups, the XIP gene (comS), and sigX have identical, non-canonical promoters consisting of 9 bp inverted repeats separated from a -10 hexamer by 19 bp. comS is adjacent to a gene encoding a putative transcription factor of the Rgg family and is regulated by its product, which we designate ComR. Deletion of comR or comS in Streptococcus mutans abolished transformability, as did deletion of the oligopeptide permease subunit oppD, suggesting that XIP is imported. Providing S. mutans with synthetic fragments of ComS revealed that seven C-terminal residues, including the WW motif, cause robust induction of both sigX and the competent state. We propose that this circuit is the proximal regulator of sigX in S. mutans, and we infer that it controls competence in a parallel way in all pyogenic and bovis streptococci.
Collapse
Affiliation(s)
- Lauren Mashburn-Warren
- Center for Pharmaceutical Biotechnology, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
50
|
Kadioglu A, Brewin H, Härtel T, Brittan JL, Klein M, Hammerschmidt S, Jenkinson HF. Pneumococcal protein PavA is important for nasopharyngeal carriage and development of sepsis. Mol Oral Microbiol 2010; 25:50-60. [PMID: 20331793 DOI: 10.1111/j.2041-1014.2009.00561.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Summary The pneumococcal cell surface protein PavA is a virulence factor associated with adherence and invasion in vitro. In this study we show in vivo that PavA is necessary for Streptococcus pneumoniae D39 colonization of the murine upper respiratory tract in a long-term carriage model, with PavA-deficient pneumococci being quickly cleared from nasopharyngeal tissue. In a pneumonia model, pavA mutants were not cleared from the lungs of infected mice and persisted to cause chronic infection, whereas wild-type pneumococci caused systemic infection. Hence, under the experimental conditions, PavA-deficient pneumococci appeared to be unable to seed from lung tissue into blood, although they survived in blood when administered intravenously. In a meningitis model of infection, levels of PavA-deficient pneumococci in blood and brain following intercisternal injection were significantly lower than wild type. Taken collectively these results suggest that PavA is involved in successful colonization of mucosal surfaces and in translocation of pneumococci across host barriers. Pneumococcal sepsis is a major cause of mortality worldwide so identification of factors such as PavA that are necessary for carriage and for translocation from tissue to blood is of clinical and therapeutic importance.
Collapse
Affiliation(s)
- A Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester Medical School, Leicester, UK.
| | | | | | | | | | | | | |
Collapse
|